Skip to main content
Log in

Recent Progress of On-line Sample Preconcentration Techniques in Microchip Electrophoresis

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This review highlights recent developments and applications of on-line sample preconcentration techniques to enhance the detection sensitivity in microchip electrophoresis (MCE); references are mainly from 2008 and later. Among various developed techniques, we focus on the sample preconcentration based on the changes in the migration velocity of analytes in two or three discontinuous solutions system, since they can provide the sensitivity enhancement with relatively easy experimental procedures and short analysis times. The characteristic features of the on-line sample preconcentration applied to microchip electrophoresis (MCE) are presented, categorized on the basis of “field strength-” or “chemically” induced changes in the migration velocity. The preconcentration techniques utilizing field strength-induced changes in the velocity include field-amplified sample stacking, isotachophoresis and transient-isotachophoresis, whereas those based on chemically induced changes in the velocity are sweeping, transient-trapping and dynamic pH junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6 References

  1. D. J. Harrison, P. G. Glavina, and A. Manz, Sens. Actuators, B, 1990, 10, 244.

    Google Scholar 

  2. S. C. Jacobson, R. Hergenröder, L. B. Koutny, R. J. Warmack, and J. M. Ramsey, Anal. Chem., 1994, 66, 1107.

    Article  CAS  Google Scholar 

  3. S. C. Jacobson, L. B. Koutny, R. Hergenröder, A. W. Moore Jr., and J. M. Ramsey, Anal. Chem., 1994, 66, 3472.

    Article  CAS  Google Scholar 

  4. I. M. Lazar, R. S. Ramsey, S. Sundberg, and J. M. Ramsey, Anal. Chem., 1999, 71, 3627.

    Article  CAS  PubMed  Google Scholar 

  5. Y. Tachibana, K. Otsuka, S. Terabe, A. Arai, K. Suzuki, and S. Nakamura, J. Chromatgr., A, 2003, 1011, 181.

    Article  CAS  Google Scholar 

  6. R. P. Baldwin, Electrophoresis, 2000, 21, 4017.

    Article  CAS  PubMed  Google Scholar 

  7. K. Uchiyama, A. Hibara, K. Sato, H. Hisamoto, M. Tokeshi, and T. Kitamori, Electrophoresis, 2003, 24, 179.

    Article  CAS  PubMed  Google Scholar 

  8. K. Sueyoshi, F. Kitagawa, and K. Otsuka, J. Sep. Sci., 2008, 31, 2650.

    Article  CAS  PubMed  Google Scholar 

  9. J. Ou, T. Glawdel, C. L. Ren, and J. Pawliszyn, Lab Chip, 2009, 9, 1926.

    Article  CAS  PubMed  Google Scholar 

  10. G. Sommer, A. K. Singh, and A. V. Hatch, Anal. Chem., 2008, 80, 3327.

    Article  CAS  PubMed  Google Scholar 

  11. K. Shimura, K. Takahashi, Y. Koyama, K. Sato, and T. Kitamori, Anal. Chem., 2008, 80, 3818.

    Article  CAS  PubMed  Google Scholar 

  12. F. Kitagawa, S. Aizawa, and K. Otsuka, Anal. Sci., 2009, 25, 979.

    Article  CAS  PubMed  Google Scholar 

  13. J. Wen, E. W. Wilker, M. B. Yaffe, and K. F Jensen, Anal. Chem., 2010, 82, 1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. R. Ishibashi, T. Kitamori, and K. Shimura, Lab Chip, 2010, 10, 2628.

    Article  CAS  PubMed  Google Scholar 

  15. S. L. Lin, Y Y Li, H. D. Tolley, P. H. Humble, and M. H. Lee, J. Chromatogr., A, 2006, 1125, 254.

    Article  CAS  PubMed  Google Scholar 

  16. P. Myers and K. D. Bartle, J. Chromatogr., A, 2004, 1044, 253.

    Article  CAS  PubMed  Google Scholar 

  17. D. Ross and L. E. Locascio, Anal. Chem., 2002, 74, 2556.

    Article  CAS  PubMed  Google Scholar 

  18. M. Becker, A. Mansouri, C. Beilein, and D. Janasek, Electrophoresis, 2009, 30, 4206.

    Article  CAS  PubMed  Google Scholar 

  19. R. Dhopeshwarkar, D. Hlushkou, M. Nguyen, U. Tallarek, and R. M. Crooks, J. Am. Chem. Soc., 2008, 130, 10480.

    Article  CAS  PubMed  Google Scholar 

  20. D. R. Laws, D. Hlushkou, R. K. Perdue, U. Tallarek, and R. M. Crooks, Anal. Chem., 2009, 81, 8923.

    Article  CAS  PubMed  Google Scholar 

  21. W. Yang, X. Sun, T. Pan, and A. T. Woolley, Electrophoresis, 2008, 29, 3429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. N. Thaitrong, N. M. Toriello, N. Del Bueno, and R. A. Mathies, Anal. Chem., 2009, 81, 1371.

    Article  CAS  PubMed  Google Scholar 

  23. N. Beyor, L. N. Yi, T. S. Seo, and R. A. Mathies, Anal. Chem., 2009, 81, 3523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J. Dai, T. Ito, L. Sun, and R. M. Crooks, J. Am. Chem. Soc., 2003, 125, 13026.

    Article  CAS  PubMed  Google Scholar 

  25. S. Yamamoto, S. Hirakawa, and S. Suzuki, Anal. Chem., 2008, 80, 8224.

    Article  CAS  PubMed  Google Scholar 

  26. T. Hahn, C. K. O’Sullivan, and K. S. Drese, Anal. Chem., 2009, 81, 2904.

    Article  CAS  PubMed  Google Scholar 

  27. L. F. Cheow, S. H. Ko, S. J. Kim, K. H. Kang, and J. Han, Anal. Chem., 2010, 82, 3383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. D. S. Burgi and R. L. Chien, Anal. Chem., 1991, 63, 2042.

    Article  CAS  Google Scholar 

  29. J. P. Quirino and S. Terabe, Science, 1998, 282, 465.

    Article  CAS  PubMed  Google Scholar 

  30. K. Sueyoshi, F. Kitagawa, and K. Otsuka, Anal. Chem., 2008, 80, 1255.

    Article  CAS  PubMed  Google Scholar 

  31. P. Britz-McKibbin and D. D. Y. Chen, Anal. Chem., 2000, 72, 1242.

    Article  CAS  PubMed  Google Scholar 

  32. K. S. Lee, M. J. A. Shiddiky, S. H. Park, D. S. Park, and Y B. Shim, Electrophoresis, 2008, 29, 1910.

    Article  CAS  PubMed  Google Scholar 

  33. S. D. Noblitt, F. M. Schwandner, S. V. Hering, J. L. Collett, and C. S. Henry, J. Chromatogr., A, 2009, 1216, 1503.

    Article  CAS  PubMed  Google Scholar 

  34. Q. Guan and C. S. Henry, Electrophoresis, 2009, 30, 3339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. K. S. Lee, S. H. Park, S. Y. Won, and Y B. Shim, Electrophoresis, 2009, 30, 3219.

    Article  CAS  PubMed  Google Scholar 

  36. H. B. Noh, K. S. Lee, B. S. Lim, S. J. Kim, and Y B. Shim, Electrophoresis, 2010, 31, 3053.

    Article  CAS  PubMed  Google Scholar 

  37. Y He and H. K. Lee, Anal. Chem., 1999, 71, 995.

    Article  CAS  PubMed  Google Scholar 

  38. T. Kawai, K. Sueyoshi, F. Kitagawa, and K. Otsuka, Anal. Chem., 2010, 82, 6504.

    Article  CAS  PubMed  Google Scholar 

  39. F. Kohlrausch, Ann. Phys. Chem., 1897, 62, 209.

    Article  Google Scholar 

  40. F. Foret, E. Szoko, and B. L. Karger, J. Chromatogr., 1992, 608, 312.

    Article  Google Scholar 

  41. D. Liu, Z. Ou, M. Xu, and L. Wang, J. Chromatogr., A, 2008, 1214, 165.

    Article  CAS  PubMed  Google Scholar 

  42. D. Liu, B. Chen, L. Wang, and X. Zhou, Electrophoresis, 2009, 30, 4300.

    Article  CAS  PubMed  Google Scholar 

  43. R. B. Schoch, M. Ronaghi, and J. G. Santiago, Lab Chip, 2009, 9, 2145.

    Article  CAS  PubMed  Google Scholar 

  44. J. Wang, Y. Zhang, M. R. Mohamadi, N. Kaji, M. Tokeshi, and Y Baba, Electrophoresis, 2009, 30, 3250.

    Article  CAS  PubMed  Google Scholar 

  45. H. Nagata, T. Itoh, Y Baba, and M. Ishikawa, Anal. Sci., 2010, 26, 731.

    Article  CAS  PubMed  Google Scholar 

  46. C. C. Park, I. Kazakova, T. Kawabata, M. Spaid, R. L. Chien, H. G. Wada, and S. Satomura, Anal. Chem., 2008, 80, 808.

    Article  CAS  PubMed  Google Scholar 

  47. C. C. Lin, B. K. Hsu, and S. H. Chen, Electrophoresis, 2008, 29, 1228.

    Article  PubMed  Google Scholar 

  48. L. Y Qi, X. F. Yin, and J. H. Liu, J. Chromatogr., A, 2009, 1216, 4510.

    Article  CAS  PubMed  Google Scholar 

  49. D. Bottenus, T. Z. Jubery, Y Ouyang, W J. Dong, P. Dutta, and C. F. Ivory, Lab Chip, 2011, 11, 890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. N. I. Davis, M. Mamunooru, C. A. Vyas, and J. G. Shackman, Anal. Chem., 2009, 81, 5452.

    Article  CAS  PubMed  Google Scholar 

  51. T. Hirokawa, Y Takayama, A. Arai, and Z. Q. Xu, Electrophoresis, 2008, 29, 1829.

    Article  CAS  PubMed  Google Scholar 

  52. Z. Q. Xu, K. Murata, A. Arai, and T. Hirokawa, Biomicrofluid, 2010, 4, 14108.

    Article  Google Scholar 

  53. Q. Pan and M. Zhao, Anal. Chem., 2009, 81, 5333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. K. Sueyoshi, K. Hashiba, T. Kawai, F. Kitagawa, and K. Otsuka, Electrophoresis, 2011, 32, 1233.

    Article  CAS  PubMed  Google Scholar 

  55. A. A. Kazarian, E. F. Hilder, and M. C. Breadmore, J. Sep. Sci., 2011, 34, 2800.

    Article  CAS  PubMed  Google Scholar 

  56. A. A. Kazarian, E. F. Hilder, and M. C. Breadmore, Analyst, 2010, 135, 1970.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiko Kitagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitagawa, F., Kawai, T., Sueyoshi, K. et al. Recent Progress of On-line Sample Preconcentration Techniques in Microchip Electrophoresis. ANAL. SCI. 28, 85–93 (2012). https://doi.org/10.2116/analsci.28.85

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.28.85

Navigation