Skip to main content
Log in

Expanding Possibilities of Rolling Circle Amplification as a Biosensing Platform

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Rolling circle amplification (RCA) catalyzed by ϕ29 DNA polymerase offers a simple method for DNA amplification in the presence of a circular DNA template and its complimentary primer. RCA continuously produces long single-strand DNA using the strand displacement activity of polymerase during DNA synthesis. This property allows one to monitor the progress of a reaction by means of electrophoresis or fluorescence measurements, and has eventually allowed the application of RCA to signal increments in the sensing of a variety of molecular species. Originally, RCA was successfully applied for the detection of specific DNA, such as single nucleotide polymorphisms. In addition, the conjugation of an antibody with a primer achieves efficient signal enhancement in antigen detection, and mRNA can also be specifically detected. Since RCA is a carry-over contamination-resistant, cost-effective, and user-friendly method of DNA amplification, RCA could be a universal technology for biosensing in fields of medical- and food-related industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6 References

  1. S. Kwok and R. Higuchi, Nature, 1989, 339, 237.

    Article  CAS  PubMed  Google Scholar 

  2. J. Baner, M. Nilsson, M. Mendel-Hartvig, and U. Landegren, Nucleic Acids Res., 1998, 26, 5073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. P. M. Lizardi, X. Huang, Z. Zhu, P. Bray-Ward, D. C. Thomas, and D. C. Ward, Nat. Genet., 1998, 19, 225.

    Article  CAS  PubMed  Google Scholar 

  4. M. Stougaard, S. Juul, F. F. Andersen, and B. R. Knudsen, Integr. Biol. (Camb), 2011, 3, 982.

    Article  CAS  Google Scholar 

  5. L. Blanco, A. Bernad, J. M. Lazaro, G. Martin, C. Garmendia, and M. Salas, J. Biol. Chem., 1989, 264, 8935.

    Article  CAS  PubMed  Google Scholar 

  6. A. Fire and S. Q. Xu, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 4641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D. Liu, S. L. Daubendiek, M. A. Zillman, K. Ryan, and E. T. Kool, J. Am. Chem. Soc., 1996, 118, 1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. B. Schweitzer, S. Roberts, B. Grimwade, W. Shao, M. Wang, Q. Fu, Q. Shu, I. Laroche, Z. Zhou, V. T. Tchernev, J. Christiansen, M. Velleca, and S. F. Kingsmore, Nat. Biotechnol., 2002, 20, 359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. L. Mahmoudian, J. Melin, M. R. Mohamadi, K. Yamada, M. Ohta, N. Kaji, M. Tokeshi, M. Nilsson, and Y. Baba, Anal. Sci., 2008, 24, 327.

    Article  CAS  PubMed  Google Scholar 

  10. K. Sato, A. Tachihara, B. Renberg, K. Mawatari, K. Sato, Y. Tanaka, J. Jarvius, M. Nilsson, and T. Kitamori, Lab Chip, 2010, 10, 1262.

    Article  CAS  PubMed  Google Scholar 

  11. P. J. Asiello and A. J. Baeumner, Lab Chip, 2011, 11, 1420.

    Article  CAS  PubMed  Google Scholar 

  12. M. Nilsson, H. Malmgren, M. Samiotaki, M. Kwiatkowski, B. P. Chowdhary, and U. Landegren, Science, 1994, 265, 2085.

    Article  CAS  PubMed  Google Scholar 

  13. C. Larsson, J. Koch, A. Nygren, G. Janssen, A. K. Raap, U. Landegren, and M. Nilsson, Nat. Methods, 2004, 1, 227.

    Article  CAS  PubMed  Google Scholar 

  14. C. Larsson, I. Grundberg, O. Soderberg, and M. Nilsson, Nat. Methods, 2010, 7, 395.

    Article  CAS  PubMed  Google Scholar 

  15. N. Sasaki, A. Isu, R. Ishii, and K. Sato, Anal. Sci., 2012, 28, 537.

    Article  CAS  PubMed  Google Scholar 

  16. C. Lin, M. Xie, J. J. Chen, Y. Liu, and H. Yan, Angew. Chem., Int. Ed. Engl., 2006, 45, 7537.

    Article  CAS  Google Scholar 

  17. T. Blondal, A. Thorisdottir, U. Unnsteinsdottir, S. Hjorleifsdottir, A. Aevarsson, S. Ernstsson, O. H. Fridjonsson, S. Skirnisdottir, J. O. Wheat, A. G. Hermannsdottir, S. T. Sigurdsson, G. O. Hreggvidsson, A. V. Smith, and J. K. Kristjansson, Nucleic Acids Res., 2005, 33, 135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. H. Kuhn and M. D. Frank-Kamenetskii, Nucleic Acids Res., 2008, 36, e40.

  19. T. Murakami, J. Sumaoka, and M. Komiyama, Nucleic Acids Res., 2009, 37, e19.

  20. T. Kobori, A. Matsumoto, H. Takahashi, and S. Sugiyama, Anal. Sci., 2009, 25, 1381.

    Article  CAS  PubMed  Google Scholar 

  21. H. Takahashi, A. Matsumoto, S. Sugiyama, and T. Kobori, Anal. Biochem., 2010, 401, 242.

    Article  CAS  PubMed  Google Scholar 

  22. F. Akter, M. Mie, and E. Kobatake, Anal. Biochem., 2011, 416, 174.

    Article  CAS  PubMed  Google Scholar 

  23. F. Akter, M. Mie, S. Grimm, P. A. Nygren, and E. Kobatake, Anal. Chem., 2012, 84, 5040.

    Article  CAS  PubMed  Google Scholar 

  24. B. Schweitzer, S. Wiltshire, J. Lambert, S. O′Malley, K. Kukanskis, Z. Zhu, S. F. Kingsmore, P. M. Lizardi, and D. C. Ward, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 10113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. W. Van Dessel, F. Vandenbussche, M. Staes, N. Goris, and K. De Clercq, J. Virol. Methods, 2008, 147, 151.

    Article  PubMed  CAS  Google Scholar 

  26. K. Kitada, S. Oka, S. Kimura, K. Shimada, T. Serikawa, J. Yamada, H. Tsunoo, K. Egawa, and Y. Nakamura, J. Clin. Microbiol., 1991, 29, 1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. J. E. Olsen, S. Aabo, W. Hill, S. Notermans, K. Wernars, P. E. Granum, T. Popovic, H. N. Rasmussen, and O. Olsvik, Int. J. Food Microbiol., 1995, 28, 1.

    Article  CAS  PubMed  Google Scholar 

  28. A. K. Bej, W. Y. Ng, S. Morgan, D. D. Jones, and M. H. Mahbubani, Mol. Biotechnol., 1996, 5, 1.

    Article  CAS  PubMed  Google Scholar 

  29. G. E. Sheridan, C. I. Masters, J. A. Shallcross, and B. M. MacKey, Appl. Environ. Microbiol., 1998, 64, 1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. C. W. Dieffenbach and G. S. Dveksler, PCR Methods Appl., 1993, 3, S2.

  31. K. H. Roux, PCR Methods Appl., 1995, 4, S185.

  32. H. J. Burkardt, Clin. Chem. Lab. Med., 2000, 38, 87.

    Article  CAS  PubMed  Google Scholar 

  33. V. C. Lombardi, F. W. Ruscetti, J. Das Gupta, M. A. Pfost, K. S. Hagen, D. L. Peterson, S. K. Ruscetti, R. K. Bagni, C. Petrow-Sadowski, B. Gold, M. Dean, R. H. Silverman, and J. A. Mikovits, Science, 2009, 326, 585.

    Article  CAS  PubMed  Google Scholar 

  34. E. Sato, R. A. Furuta, and T. Miyazawa, Retrovirology, 2010, 7, 110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. B. Alberts, Science, 2011, 334, 1636.

    Article  PubMed  Google Scholar 

  36. S. Philipp, H. P. Huemer, E. U. Irschick, and C. Gassner, Transfus. Med. Hemother., 2010, 37, 21.

    Article  PubMed  PubMed Central  Google Scholar 

  37. H. Niimi, M. Mori, H. Tabata, H. Minami, T. Ueno, S. Hayashi, and I. Kitajima, J. Clin. Microbiol., 2011, 49, 3316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. P. Patel, J. A. Garson, K. I. Tettmar, S. Ancliff, C. McDonald, T. Pitt, J. Coelho, and R. S. Tedder, Transfusion, 2011, 21, 1537.

    Google Scholar 

  39. A. Kornberg and T. Baker, DNA Replication, Thesis Type, University, San Francisco, CA, 1992.

  40. S. P. Jonstrup, J. Koch, and J. Kjems, RNA, 2006, 12, 1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. H. Takahashi, K. Yamamoto, T. Ohtani, and S. Sugiyama, BioTechniques, 2009, 47, 609.

    Article  CAS  PubMed  Google Scholar 

  42. M. Stougaard, J. S. Lohmann, M. Zajac, S. Hamilton- Dutoit, and J. Koch, BMC Biotechnol., 2007, 7, 69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Y. Cheng, X. Zhang, Z. Li, X. Jiao, Y. Wang, and Y. Zhang, Angew. Chem., Int. Ed. Engl., 2009, 48, 3268.

    Article  CAS  Google Scholar 

  44. A. Lagunavicius, E. Merkiene, Z. Kiveryte, A. Savaneviciute, V. Zimbaite-Ruskuliene, T. Radzvilavicius, and A. Janulaitis, RNA, 2009, 15, 765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. N. Li, C. Jablonowski, H. Jin, and W. Zhong, Anal. Chem., 2009, 81, 4906.

    Article  CAS  PubMed  Google Scholar 

  46. Y. Zhou, Q. Huang, J. Gao, J. Lu, X. Shen, and C. Fan, Nucleic Acids Res., 2010, 38, e156.

  47. Y. Mashimo, M. Mie, S. Suzuki, and E. Kobatake, Anal. Bioanal. Chem., 2011, 401, 221.

    Article  CAS  PubMed  Google Scholar 

  48. T. Murakami, J. Sumaoka, and M. Komiyama, Nucleic Acids Res., 2012, 40, e22.

  49. P. M. Griffin and R. V. Tauxe, Epidemiol. Rev., 1991, 13, 60.

    Article  CAS  PubMed  Google Scholar 

  50. T. Murakami, J. Sumaoka, and M. Komiyama, Epicentre Forum Newsletter, 2009, 16, 7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiro Kobori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobori, T., Takahashi, H. Expanding Possibilities of Rolling Circle Amplification as a Biosensing Platform. ANAL. SCI. 30, 59–64 (2014). https://doi.org/10.2116/analsci.30.59

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.30.59

Keywords

Navigation