Skip to main content
Log in

Determination of Ascorbic Acid in Commercial Tablets Using Pencil Drawn Electrochemical Paper-based Analytical Devices

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This study describes the use of electrochemical paper-based analytical devices (ePADs) drawn with graphite pencil for the determination of ascorbic acid (AA) in commercial tablets. ePADs were fabricated using vegetal paper and graphite pencil. First, the three-electrode electrochemical cell drawn using a graphical software and toner lines were laser printed on the vegetal paper surface to delimit the electrode areas. Then, the electrode regions were manually painted with graphite pencil. Afterwards, the pseudo-reference electrode was defined with the deposition of silver ink over the graphite surface. Cyclic voltammetry and square wave voltammetry (SWV) experiments were performed to optimize the electroanalytical parameters as well as to quantitatively determine the AA concentration in two commercial tables. ePADs exhibited linear behavior for a concentration range between 0.5 and 3.0 mmol L−1. The achieved limit of detection and sensitivity were 70 μmol L−1 and 0.47 μA/mmol L−1, respectively. The AA concentration levels found by SWV experiments in both CenevitTM and Energil CTM were 2.80 ± 0.02 and 3.10 ± 0.01 mmol L−1, respectively. The accuracy of the proposed devices was investigated through recovery experiments in three concentration levels and it presented values between 95 and 115%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Martinez, S. T. Phillips, G. M. Whitesides, and E. Carrilho, Anal. Chem., 2010, 82, 3.

    Article  CAS  PubMed  Google Scholar 

  2. D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, Anal. Chem., 2015, 87, 19.

    Article  CAS  PubMed  Google Scholar 

  3. W. K. Tomazelli Coltro, C.-M. Cheng, E. Carrilho, and D. P. de Jesus, Electrophoresis, 2014, 35, 2309.

    Article  CAS  PubMed  Google Scholar 

  4. R. Pelton, TrAC Trends Anal. Chem., 2009, 28, 925.

    Article  CAS  Google Scholar 

  5. G. G. Morbioli, T. Mazzu-Nascimento, L. A. Milan, A. M. Stockton, and E. Carrilho, Anal. Chem., 2017, 89, 4786.

    Article  CAS  PubMed  Google Scholar 

  6. T. Mazzu-Nascimento, G. G. Morbioli, L. A. Milan, F. C. Donofrio, C. A. Mestriner, and E. Carrilho, Anal. Chim. Acta, 2017, 950, 156.

    Article  CAS  PubMed  Google Scholar 

  7. T. M. G. Cardoso, R. B. Channon, J. A. Adkins, M. Talhavini, W. K. T. Coltro, and C. S. Henry, Chem. Commun., 2017, 53, 7957.

    Article  CAS  Google Scholar 

  8. K. L. Dornelas, N. Dossi, and E. Piccin, Anal. Chim. Acta, 2015, 858, 82.

    Article  CAS  PubMed  Google Scholar 

  9. J. Lankelma, Z. Nie, E. Carrilho, and G. M. Whitesides, Anal. Chem., 2012, 84, 4147.

    Article  CAS  PubMed  Google Scholar 

  10. L. Y. Shiroma, M. Santhiago, A. L. Gobbi, and L. T. Kubota, Anal. Chim. Acta, 2012, 725, 44.

    Article  CAS  PubMed  Google Scholar 

  11. C. L. S. Chagas, F. R. de Souza, T. M. G. Cardoso, R. C. Moreira, J. A. F. da Silva, D. P. de Jesus, and W. K. T. Coltro, Anal. Methods, 2016, 8, 6682.

    Article  CAS  Google Scholar 

  12. D. G. Rackus, R. P. S. de Campos, C. Chan, M. M. Karcz, B. Seale, T. Narahari, C. Dixon, M. D. Chamberlain, and A. R. Wheeler, Lab Chip, 2017, 77, 2272.

    Article  Google Scholar 

  13. H. Wang, J. Liu, R. G. Cooks, and Z. Ouyang, Angew. Chem., 2010, 722, 889.

    Article  Google Scholar 

  14. H. V. Pereira, V. S. Amador, M. M. Sena, R. Augusti, and E. Piccin, Anal. Chim. Acta, 2016, 940, 104.

    Article  CAS  PubMed  Google Scholar 

  15. T. C. Colletes, P. T. Garcia, R. B. Campanha, P. V. Abdelnur, W. Romao, W. K. T. Coltro, and B. G. Vaz, Analyst, 2016, 747, 1707.

    Article  Google Scholar 

  16. F. Terzi, B. Zanfrognini, S. Ruggeri, N. Dossi, G. M. Casagrande, and E. Piccin, Sens Actuators, B, 2017, 245, 352.

    Article  CAS  Google Scholar 

  17. S. Nantaphol, R. B. Channon, T. Kondo, W. Siangproh, O. Chailapakul, and C. S. Henry, Anal. Chem., 2017, 89, 4100.

    Article  CAS  PubMed  Google Scholar 

  18. J. Mettakoonpitak, K. Boehle, S. Nantaphol, P. Teengam, J. A. Adkins, M. Srisa-Art, and C. S. Henry, Electroanalysis, 2016, 28, 1420.

    Article  CAS  Google Scholar 

  19. J. Adkins, K. Boehle, and C. Henry, Electrophoresis, 2015, 36, 1811.

    Article  CAS  PubMed  Google Scholar 

  20. J.-M. Oh and K.-F. Chow, Anal. Methods, 2015, 7, 7951.

    Article  Google Scholar 

  21. M. Santhiago, J. Bettini, S. R. Araujo, and C. C. B. Bufon, ACS Appl. Mater. Interfaces, 2016, 8, 10661.

    Article  CAS  PubMed  Google Scholar 

  22. W. Dungchai, O. Chailapakul, and C. S. Henry, Anal. Chem., 2009, 87, 5821.

    Article  Google Scholar 

  23. R.F. Carvalhal, M. Simao Kfouri, M. H. de Oliveira Piazetta, A. L. Gobbi, and L. T. Kubota, Anal. Chem., 2010, 82, 1162.

    Article  CAS  PubMed  Google Scholar 

  24. M. Santhiago, M. Strauss, M. P. Pereira, A. S. Chagas, and C. C. B. Bufon, ACS Appl. Mater. Interfaces, 2017, 9, 11959.

    Article  CAS  PubMed  Google Scholar 

  25. N. Dossi, F. Terzi, E. Piccin, R. Toniolo, and G. Bontempelli, Electroanalysis, 2016, 28, 250.

    Article  CAS  Google Scholar 

  26. N. Dossi, R. Toniolo, A. Pizzariello, F. Impellizzieri, E. Piccin, and G. Bontempelli, Electrophoresis, 2013, 34, 2085.

    Article  CAS  PubMed  Google Scholar 

  27. N. Dossi, R. Toniolo, F. Terzi, E. Piccin, and G. Bontempelli, Electrophoresis, 2015, 36, 1830.

    Article  CAS  PubMed  Google Scholar 

  28. C.-W. Lin, Z. Zhao, J. Kim, and J. Huang, Sci. Rep., 2014, 4, 3812.

    Article  PubMed  PubMed Central  Google Scholar 

  29. C. L. S. Chagas, L. Costa Duarte, E. O. Lobo-Junior, E. Piccin, N. Dossi, and W. K. T. Coltro, Electrophoresis, 2015, 36, 1837.

    Article  CAS  PubMed  Google Scholar 

  30. M. Santhiago, C. S. Henry, and L. T. Kubota, Electrochim. Acta, 2014, 730, 771.

    Article  Google Scholar 

  31. N. Dossi, S. Petrazzi, R. Toniolo, F. Tubaro, F. Terzi, E. Piccin, R. Svigelj, and G. Bontempelli, Anal. Chem., 2017, 89, 10454.

    Article  CAS  PubMed  Google Scholar 

  32. R. G. C. S. dos Reis and F. Colmati, J. Solid State Electrochem., 2016, 20, 2559.

    Article  CAS  Google Scholar 

  33. Q. Qin, X. Bai, and Z. Hua, J. Electroanal. Chem., 2016, 782, 50.

    Article  CAS  Google Scholar 

  34. A. M. Pisoschi, A. Pop, A. I. Serban, and C. Fafaneata, Electrochim. Acta, 2014, 121, 443.

    Article  CAS  Google Scholar 

  35. A. Chen and B. Shah, Anal. Methods, 2013, 5, 2158.

    Article  CAS  Google Scholar 

  36. S. Thiagarajan and S.-M. Chen, Talanta, 2007, 74, 212.

    Article  CAS  PubMed  Google Scholar 

  37. R. P. da Silva, A. W. O. Lima, and S. H. P. Serrano, Anal. Chim. Acta, 2008, 612, 89.

    Article  PubMed  Google Scholar 

  38. P. Kalimuthu and S. A. John, Talanta, 2010, 80, 1686.

    Article  CAS  PubMed  Google Scholar 

  39. S. Qi, B. Zhao, H. Tang, and X. Jiang, Electrochim. Acta, 2015, 161, 395.

    Article  CAS  Google Scholar 

  40. X. Zheng, Y. Guo, J. Zheng, X. Zhou, Q. Li, and R. Lin, Sens. Actuators, B, 2015, 213, 188.

    Article  CAS  Google Scholar 

  41. L. Wang, C. Gong, Y. Shen, W. Ye, M. Xu, and Y. Song, Sens. Actuators, B, 2017, 242, 625.

    Article  CAS  Google Scholar 

  42. D. Zhang, L. Li, W. Ma, X. Chen, and Y. Zhang, Mater. Sci. Eng. C, 2017, 70, 241.

    Article  CAS  Google Scholar 

  43. M. Taei and M. S. Jamshidi, Microchem. J., 2017, 130, 108.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant 448089/2014-9). Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Fundaçao de Amparo à Pesquisa do Estado de Goiás (FAPEG) and Institute Nacional de Ciência e Tecnologia de Bioanalítica (INCTBio). CAPES and CNPq are also acknowledged for the scholarships and researcher fellowship (grant 308140/2016-8) granted to the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendell K. T. Coltro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, V.X.G., Dias, A.A., Carvalho, L.L. et al. Determination of Ascorbic Acid in Commercial Tablets Using Pencil Drawn Electrochemical Paper-based Analytical Devices. ANAL. SCI. 34, 91–95 (2018). https://doi.org/10.2116/analsci.34.91

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.34.91

Keywords

Navigation