Skip to main content
Log in

Effects of Alkali and Alkaline Earth Metal Chlorides on the Atomization of Lead and Chromium in Graphite Furnace Atomic Absorption Spectrometry

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Potassium chloride, calcium chloride, sodium chloride and magnesium chloride cause many different types of interference in the determination of lead and chromium by graphite furnace atomic absorption spectrometry. Simultaneous volatilization of the analyte and the interferent from different, but close, points in the tube are very helpful in the explanation of interference mechanisms. The kind of interference that affects the sensitivity of the determination depends on the thermal behavior of the matrix before and during atomization of the elements. If chloride vapor is formed by decomposition of the matrix before or during atomization of the analyte elements, the formation of a metal chloride in the gas phase may be responsible for decreasing in the sensitivity. If, on the other hand, the matrix is present as a solid or liquid while the elements atomize, the occlusion of the analyte in the bulk of the matrix and the loss by a carrier-type mechanism or a slower transfer of heat to the analyte delaying the atomization cause some changes in the sensitivity. Expulsion of analyte vapors by expanding matrix gases was not effective due to the low heating-rate of the system used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Behne, P. Brotter, H. Gessner, G. Hube, W. Mertz and U. Rosik, Fresenius’Z. Anal Chem., 278, 269 (1976).

    Article  CAS  Google Scholar 

  2. G. R. Sirota and J. F. Uthe, Anal Chem., 49, 823 (1977).

    Article  CAS  Google Scholar 

  3. K. Julshawn, At. Absorption NewsL, 16, 149 (1977).

    Google Scholar 

  4. K. Matsusaki, T. Yoshino and Y. Yamamoto, Anal. Chim. Acta, 124, 163 (1981).

    Article  CAS  Google Scholar 

  5. J. Kumpulainen, Anal Chim. Acta, 113, 355 (1980).

    Article  CAS  Google Scholar 

  6. W. Freeh, E. Lundberg and A. Cedergren, Prog. Anal At. Spectrosc., 8, 257 (1985).

    Google Scholar 

  7. I. Rubeska, J. Koreckova and D. Weiss, At. Absorption News. 16, 1 (1977).

    CAS  Google Scholar 

  8. C. Veillon, K. Y. Patterson and N. A. Bryden, Anal. Chim. Acta, 136, 233 (1982).

    Article  CAS  Google Scholar 

  9. C. Veillon, B. E. Guthrie and W. R. Wolf, Anal. Chem., 52, 457 (1980).

    Article  CAS  Google Scholar 

  10. W. Wendl and G. Muller-Vogt, Spectrochim. Acta, 39B, 238 (1984).

    Google Scholar 

  11. J. M. Ottaway, Proc. Anafyt. Div. Chem. Soc., 13, 185 (1976).

    Article  CAS  Google Scholar 

  12. E. J. Czobik and J. P. Matousek, Talanta, 24, 573 (1977).

    Article  CAS  Google Scholar 

  13. S. Yasuda and H. Kakiyama, Anal Chim. Acta, 84, 291 (1976).

    Article  CAS  Google Scholar 

  14. S. Yamada and H. Kakiyama, Anal. Chim, Acta, 89, 369 (1977).

    Article  Google Scholar 

  15. J. Smeyers-Verbeke, Y. Michotte, P. van den Winkel and D. L. Massort, Anal Chem., 48, 125 (1976).

    Article  CAS  Google Scholar 

  16. C. W. Fuller, At. Absorption NewsL, 14, 73 (1975).

    CAS  Google Scholar 

  17. W. G. Brumbaugh and S. R. Koirtyohann, Anal. Chem., 60, 1051 (1988).

    Article  CAS  Google Scholar 

  18. J. P. Erspamer and T. M. Niemczyk, Anal. Chem., 54, 538 (1982).

    Article  CAS  Google Scholar 

  19. R. E. Sturgeon, D. F. Mitchell and S. S. Bennan, Anal Chem., 55, 1059 (1083).

    Article  Google Scholar 

  20. J. A. Holcombe, G. D. Rayson and N. Akerlind, Spectrochim. Acta, 37B, 319 (1982).

    Article  CAS  Google Scholar 

  21. A. Cedergen, W. Freeh and E. Lundberg, Anal. Chem. 56, 1382 (1984).

    Article  Google Scholar 

  22. W. Freeh and A. Cedergren, Anal Chim. Acta, 131, 45 (1976).

    Article  Google Scholar 

  23. W. Freeh and A. Cedergren, Anal. Chim. Acta, 88, 57 (1977).

    Article  Google Scholar 

  24. W. Slavin, G. R. Carnrick and D. C. Manning, Anal. Chem., 56, 163 (1984).

    Article  CAS  Google Scholar 

  25. D. C. Manning and W. Slavin, Appl. Spectrosc, 37, 1 (1983).

    Article  CAS  Google Scholar 

  26. D. D. Siemer, E. Lundberg and W. Freeh, Appl Spectrosc, 38, 389 (1984).

    Article  CAS  Google Scholar 

  27. B. Welz, S. Akman and G. Schlemmer, J. Anal. At. Spectrom. 2, 793 (1987).

    Article  CAS  Google Scholar 

  28. S. Bektas, S. Akman and T. Balkis, Anal. Set, 5, 438 (1989).

    Google Scholar 

  29. B. V. L’vov, Spectrochim. Acta, 33B, 153 (1978).

    Article  Google Scholar 

  30. B. Welz, S. Akman and G. Schlemmer, Analyst [London], 110, 459 (1985).

    Article  CAS  Google Scholar 

  31. R. C. Weast, “Handbook of Chemistry of Physics”, 61st ed., CRC Press, Boca Raton, 1980.

    Google Scholar 

  32. Z. Slovak and B. Docekal, Anal. Chim. Acta, 130, 203 (1981).

    Article  CAS  Google Scholar 

  33. W. Slavin, D. C. Manning and G. R. Carnrick, At. Spectrosc, 2, 136 (1981).

    Google Scholar 

  34. W. Slavin, G. R. Carnrick and D. C. Manning, Anal Chem., 54, 621 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bektas, S., Akman, S. Effects of Alkali and Alkaline Earth Metal Chlorides on the Atomization of Lead and Chromium in Graphite Furnace Atomic Absorption Spectrometry. ANAL. SCI. 6, 547–554 (1990). https://doi.org/10.2116/analsci.6.547

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.6.547

Keywords

Navigation