Skip to main content
Log in

Electrochemical antioxidant capacity measurement: a downsized system and its application to agricultural crops

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

An on-site electrochemical antioxidant capacity measurement system was developed using a screen print electrode (SPE) and circuit tester. The antioxidant capacities of eight antioxidants were evaluated with the handheld electrochemical antioxidant capacity measurement system to compare with those measured with spectroscopic methods, namely, oxygen radical absorbance capacity (ORAC) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assays, as well as the reported electrochemical method with three conventional electrodes (a glassy carbon electrode, Ag/AgCl electrode and platinum wire electrode) and a potentiostat. Additionally, the potential shifts were proportional to the logarithm of the antioxidant concentration, which obeyed the Nernstian equation. Moreover, the antioxidant capacities of extracts from vegetables (green pepper, ginger and eggplant) were measured with a handheld electrochemical system. Each measurement was finished in only ca. 3 min. The electrochemically obtained antioxidant data were comparable to those from DPPH free-radical scavenging assays and superoxide anion scavenging activity (SOSA) assays, as well as the total phenolic compound content.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Finkel, N.J. Holbrook, Nature 408, 239 (2000)

    Article  CAS  Google Scholar 

  2. W. Dröge, Physiol. Rev. 82, 47 (2002)

    Article  Google Scholar 

  3. R. Mittler, Trends Plant Sci. 7, 405 (2002)

    Article  CAS  Google Scholar 

  4. M. Valko, C.J. Rhodes, J. Moncol, M. Izakovic, M. Mazur, Chem. Biol. Interact. 160, 1 (2006)

    Article  CAS  Google Scholar 

  5. M. Valko, D. Leibfritz, J. Moncol, M.T.D. Cronin, M. Mazur, J. Telser, Int. J. Biochem. Cell Biol. 39, 44 (2007)

    Article  CAS  Google Scholar 

  6. D. Huang, O.U. Boxin, R.L. Prior, J. Agric. Food Chem. 2005, 53 (1841)

    Google Scholar 

  7. K.M. Schaich, X. Tian, J. Xie, J. Funct. Foods 18, 782 (2015)

    Article  Google Scholar 

  8. K.M. Schaich, X. Tian, J. Xie, J. Funct. Foods 14, 111 (2015)

    Article  CAS  Google Scholar 

  9. H.A.G. Niederländer, T.A. van Beek, A. Bartasiute, I.I. Koleva, J. Chromatogr. A 1210, 121 (2008)

    Article  Google Scholar 

  10. H. Li, J. He, F. Li, Z. Zhang, R. Li, J. Su, J. Zhang, B. Yang, Phytochem. Anal. 27, 73 (2016)

    Article  CAS  Google Scholar 

  11. T. Ueda, T. Okumura, Y. Tanaka, S. Akase, T. Shimamura, H. Ukeda, Anal. Sci. 32, 825 (2016)

    Article  CAS  Google Scholar 

  12. M.T. Pope, Heteropoly and isopoly oxometalates (Springer, Berlin, 1983)

    Book  Google Scholar 

  13. J.J. Borrás-Almenar, E. Coronado, A. Müller, M.T. Pope, Polyoxometalate molecular science (Springer, Netherlands, 2003)

    Book  Google Scholar 

  14. A.P. Roberts, Polyoxometalates: properties, structure and synthesis (NOVA Science Publishers, Hauppauge, 2016)

    Google Scholar 

  15. R.V. Eldik, L. Cronin, Polyoxometalate chemistry (Academic Press, Cambridge, 2017)

    Google Scholar 

  16. T. Ueda, ChemElectroChem 5, 823 (2018)

    Article  CAS  Google Scholar 

  17. T. Ueda, Anal. Sci. 37, 107 (2021)

    Article  CAS  Google Scholar 

  18. M.U. Ahmed, M.M. Hossain, M. Safavieh, Y.L. Wong, I.A. Rahman, M. Zourob, E. Tamiya, Crit. Rev. Biotechnol. 36, 495 (2016)

    PubMed  Google Scholar 

  19. F.N. Maluin, M. Sharifah, P. Rattanarat, W. Siangproh, O. Chailapakul, A.M. Issam, N.S.A. Manan, Anal. Methods 8, 8049 (2016)

    Article  CAS  Google Scholar 

  20. H.A. Yu, D.A. DeTata, S.W. Lewis, D.S. Silvester, TrAC Trends Anal. Chem. 97, 374 (2017)

    Article  CAS  Google Scholar 

  21. D.S. Silvester, Curr. Opin. Electrochem. 15, 7 (2019)

    Article  CAS  Google Scholar 

  22. M. Pohanka, Int. J. Electrochem. Sci. 15, 11024 (2020)

    Article  CAS  Google Scholar 

  23. J. Lee, D.W.M. Arrigan, D.S. Silvester, Sens. Bio-Sensing Res. 9, 38 (2016)

    Article  Google Scholar 

  24. A. Floegel, D.O. Kim, S.J. Chung, S.I. Koo, O.K. Chun, J. Food Comp. Anal. 24, 1043 (2011)

    Article  CAS  Google Scholar 

  25. K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D. Hawkins Byrne, J. Food Comp. Anal. 19, 669 (2006)

    Article  CAS  Google Scholar 

  26. N. Bernaert, D. De Paepe, C. Bouten, H. De Clercq, D. Stewart, E. Van Bockstaele, M. De Loose, B. Van Droogenbroeck, Food Chem. 134, 669 (2012)

    Article  CAS  Google Scholar 

  27. J.M. Awika, L.W. Rooney, X. Wu, R.L. Prior, L. Cisneros-Zevallos, J. Agric. Food Chem. 51, 6657 (2003)

    Article  CAS  Google Scholar 

  28. L.A. De La Rosa, E. Alvarez-Parrilla, F. Shahidi, J. Agric. Food Chem. 59, 152 (2011)

    Article  Google Scholar 

  29. Y.H. Kim, M.L. Cho, D.B. Kim, G.H. Shin, J.H. Lee, J.S. Lee, S.O. Park, S.J. Lee, H.M. Shin, O.H. Lee, Molecules 20, 13281 (2015)

    Article  CAS  Google Scholar 

  30. Z. Li, H.W. Lee, X. Liang, D. Liang, Q. Wang, D. Huang, C.N. Ong, Molecules 23, 1139 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the JSPS Core-to-Core Collaboration in Advanced Research Network, International Network on Polyoxometalate Science for Advanced Functional Energy Materials, the Cooperative Research Program of “Network Joint Research Center for Materials and Devices”, Cabinet Office grant-in-aid, and the Advanced Next-Generation Greenhouse Horticulture by IoP (Internet of Plants), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadaharu Ueda.

Additional information

Advance Publication Released Online by J-STAGE September 24, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, H., Yamasaki, N., Otsuka, Y. et al. Electrochemical antioxidant capacity measurement: a downsized system and its application to agricultural crops. ANAL. SCI. 38, 151–156 (2022). https://doi.org/10.2116/analsci.21P217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21P217

Keywords

Navigation