Skip to main content
Log in

Heart Failure Induced by Non-Cardiac Drugs

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Although heart failure is predominantly caused by cardiovascular conditions such as hypertension, coronary heart disease and valvular heart disease, it can also be an adverse reaction induced by drug therapy. In addition, some drugs have the propensity to adversely affect haemodynamic mechanisms in patients with an already existing heart condition. In this article, non-cardiac drugs known to be associated with the development or worsening of heart failure are reviewed. Moreover, drugs that may adversely affect the heart as a pump without causing symptoms or signs of heart failure are also included.

The drugs discussed include anticancer agents such as anthracyclines, mitoxantrone, cyclophosphamide, fluorouracil, capecitabine and trastuzumab; immunomodulating drugs such as interferon-α-2, interleukin-2, infliximab and etanercept; antidiabetic drugs such as rosiglitazone, pioglitazone and troglitazone; antimigraine drugs such as ergotamine and methysergide; appetite suppressants such as fenfulramine, dexfenfluramine and phentermine; tricyclic antidepressants; antipsychotic drugs such as clozapine; antiparkinsonian drugs such as pergolide and cabergoline; glucocorticoids; and antifungal drugs such as itraconazole and amphotericin B. NSAIDs, including selective cyclo-oxygenase (COX)-2 inhibitors, are included as a result of their ability to cause heart disease, particularly in patients with an already existing cardiorenal dysfunction.

Two drug groups are of particular concern. Anthracyclines and their derivatives may cause cardiomyopathy in a disturbingly high number of exposed individuals, who may develop symptoms of insidious onset several years after drug therapy. The risk seems to encompass all exposed individuals, but data suggest that children are particularly vulnerable. Thus, a high degree of awareness towards this particular problem is warranted in cancer survivors subjected to anthracycline-based chemotherapy. A second group of problematic drugs are the NSAIDs, including the selective COX-2 inhibitors. These drugs may cause renal dysfunction and elevated blood pressure, which in turn may precipitate heart failure in vulnerable individuals. Although NSAID-related cardiotoxicity is relatively rare and most commonly seen in elderly individuals with concomitant disease, the widespread long-term use of these drugs in risk groups is potentially hazardous. Pending comprehensive safety analyses, the use of NSAIDs in high-risk patients should be discouraged. In addition, there is an urgent need to resolve the safety issues related to the use of COX-2 inhibitors.

As numerous drugs from various drug classes may precipitate or worsen heart failure, a detailed history of drug exposure in patients with signs or symptoms of heart failure is mandatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. Tan C, Tasaka H, Yu K-P, et al. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Cancer 1967; 20: 333–53

    Article  PubMed  CAS  Google Scholar 

  2. Doroshow JH. Anthracyclines and anthracenediones. In: Chabner BA, Longo DL, editors. Cancer chemotherapy and biotherapy: principles and practice. Philadelphia (PA): Lippincott Williams & Wilkins, 2001: 500–37

    Google Scholar 

  3. Frishman WH, Sung HM, Yee HC, et al. Cardiovascular toxicity with cancer chemotherapy. Curr Probl Cancer 1997; 21: 301–60

    Article  PubMed  CAS  Google Scholar 

  4. Ferrans VJ. Overview of cardiac pathology in relation to anthracycline cardiotoxicity. Cancer Treat Rep 1978; 62: 955–61

    PubMed  CAS  Google Scholar 

  5. Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf 2000; 22: 263–302

    Article  PubMed  CAS  Google Scholar 

  6. Gharib MI, Burnett AK. Chemotherapy-induced cardiotoxicity: current practice and prospects of prophylaxis. Eur J Heart Fail 2002; 4: 235–42

    Article  PubMed  CAS  Google Scholar 

  7. Rosen GM, Halpern HJ. Spin trapping biologically generated free radicals: correlating formation with cellular injury. Methods Enzymol 1990; 18: 611–21

    Article  Google Scholar 

  8. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med 1998; 339: 900–5

    Article  PubMed  CAS  Google Scholar 

  9. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979; 91: 710–7

    Google Scholar 

  10. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 2003; 97: 2869–79

    Article  PubMed  CAS  Google Scholar 

  11. Lipshultz SE, Colan SD, Gleber RD, et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 1991; 324: 808–15

    Article  PubMed  CAS  Google Scholar 

  12. Steinherz LJ, Steinherz PG, Tan CT, et al. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 1991; 266: 1672–7

    Article  PubMed  CAS  Google Scholar 

  13. Jensen BV, Skovsgaard T, Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol 2002; 13: 699–709

    Article  PubMed  CAS  Google Scholar 

  14. Wojtack J, Lewicka-Nowak E, Lesniewski-Kmak K. Anthracycline-induced cardiotoxicity: clinical course, risk factors, pathogenesis, detection and prevention: review of the literature. Med Sci Monit 2000; 6: 411–20

    Google Scholar 

  15. Zavedos. Summary of product characteristics [online]. Available from URL: http://emc.medicines.org.uk/emc/assets/c/html/displayDocPrinterFriendly.asp?.documentid=9398 [Accessed 2004 Nov 23]

  16. Legha SS, Benjamin RS, Mackay B, et al. Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann Intern Med 1982; 96: 133–9

    PubMed  CAS  Google Scholar 

  17. Gianni L, Munzone E, Capri G, et al. Paclitaxel by 3-h infusion in combination with bolus doxorubicin in women with intreated metastatic breast cancer: high antitumor efficacy and cardiac effects in a dose-finding and sequence-finding study. J Clin Oncol 1995; 13: 2688–99

    PubMed  CAS  Google Scholar 

  18. Eisenhauer EA, Vermorken JB. The taxoids: comparative clinical pharmacology and therapeutic potential. Drugs 1998; 55: 5–30

    Article  PubMed  CAS  Google Scholar 

  19. Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 2002; 20: 1215–21

    Article  PubMed  CAS  Google Scholar 

  20. Grenier MA, Lipschultz SE. Epidemiology of anthracycline cardiotoxicity in children and adults. Semin Oncol 1998; 25: 72–85

    PubMed  CAS  Google Scholar 

  21. Dowd NP, Scully M, Adderly S, et al. Inhibition of cyclooxygenase-2 aggravates doxorubicin-mediated cardiac injury in vivo. J Clin Invest 2001, 90

    Google Scholar 

  22. von Hoff D, Rozencweig M, Piccart M. The cardiotoxicity of anticancer agents. Semin Oncol 1982; 9: 23–33

    Google Scholar 

  23. Sparano JA, Brown DL, Wolff AC. Predicting cancer therapy-induced cardiotoxicity: the role of troponins and other markers. Drug Saf 2002; 25: 301–11

    Article  PubMed  CAS  Google Scholar 

  24. Lipschultz SE, Rifai N, Sallan SE, et al. Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation 1997; 96: 2641–8

    Article  Google Scholar 

  25. Auner HW, Tinchon C, Linkesch W, et al. Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann Hematol 2003; 82: 218–22

    PubMed  CAS  Google Scholar 

  26. Kismet E, Varan A, Ayabakan C, et al. Serum troponin T levels and echocardiographic evaluation in children treated with doxorubicin. Pediatr Blood Cancer 2004; 42: 220–4

    Article  PubMed  Google Scholar 

  27. Cardinale D, Sandri MT, Martinoni A, et al. Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Ann Oncol 2002; 13: 710–5

    Article  PubMed  CAS  Google Scholar 

  28. Cardinale D, Sandri MT, Colombo A, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 2004; 109: 2749–54

    Article  PubMed  CAS  Google Scholar 

  29. Nousiainen T, Vanninen E, Jantunen E, et al. Natriuretic peptides during the development of doxorubicin-induced left ventricular diastolic dysfunction. J Intern Med 2002; 251: 228–34

    Article  PubMed  CAS  Google Scholar 

  30. Poutanen T, Tikanoja T, Riikonen P, et al. Long-term prospective follow-up study of cardiac function after cardiotoxic therapy for malignancy in children. J Clin Oncol 2003; 21: 2349–56

    Article  PubMed  CAS  Google Scholar 

  31. Schwartz RG, McKenzie WB, Alexander J, et al. Congestive heart failure and left venticular dysfunction complicating doxorubicin therapy: seven-year experience using serial radionuclide angiocardiography. Am J Med 1987; 82: 1109–18

    Article  PubMed  CAS  Google Scholar 

  32. Weiss AJ, Metter GE, Fletcher WS, et al. Studies on adriamycin using a weekly regimen demonstrating its clinical effectiveness and lack of cardiac toxicity. Cancer Treat Rep 1976; 60: 813–22

    PubMed  CAS  Google Scholar 

  33. Chlebowski RT, Paroly WS, Pugh RP, et al. Adriamycin given as a weekly schedule without a loading course: clinically effective with reduced incidence of cardiotoxicity. Cancer Treat Rep 1980; 64: 47–51

    PubMed  CAS  Google Scholar 

  34. Hortobagyi GN, Frye D, Budzar AU, et al. Decreased cardiac toxicity of doxorubicin administered by continuous intravenous infusion in combination chemotherapy for metastatic breast carcinoma. Cancer 1989; 63: 37–45

    Article  PubMed  CAS  Google Scholar 

  35. Shapira J, Gotfried M, Lishner M, et al. Reduced cardiotoxicity of doxorubicin by a 6-hour infusion regimen: a prospective randomized evaluation. Cancer 1990; 65: 870–3

    Article  PubMed  CAS  Google Scholar 

  36. Lipschultz SE, Giantris AL, Lipsitz SR, et al. Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91-01 acute lymphoblastic leukemia protocol. J Clin Oncol 2002; 20: 1677–82

    Article  Google Scholar 

  37. Levitt GA, Dorup I, Sorensen K, et al. Does anthracycline administration by infusion in children affect late cardiotoxicity? Br J Haematol 2004; 124: 463–8

    Article  PubMed  CAS  Google Scholar 

  38. Waterhouse DN, Tardi PG, Mayer LD, et al. A comparison of liposomal formulations of doxorubicin with drug administered in free form. Drug Saf 2001; 24: 903–20

    Article  PubMed  CAS  Google Scholar 

  39. Safra T. Cardiac safety of liposomal anthracyclines. Oncologist 2003; 8: 17–24

    Article  PubMed  CAS  Google Scholar 

  40. Theodoulou M, Hudis C. Cardiac profiles of liposomal anthracyclines: greater cardiac safety versus conventional doxorubicin? Cancer 2004; 100: 2052–63

    Article  PubMed  CAS  Google Scholar 

  41. Garattini S, Bertele V. Efficacy, safety, and cost of new anticancer drugs. BMJ 2002; 325: 269–71

    Article  PubMed  Google Scholar 

  42. Swain SM, Vici P. The current and future role of dexrazoxane as a cardioprotectant in anthracycline treatment: expert panel review. J Cancer Res Clin Oncol 2004; 130: 1–7

    Article  PubMed  CAS  Google Scholar 

  43. Lipshultz SE, Rifai N, Dalton VM, et al. The effects of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med 2004; 351: 145–53

    Article  PubMed  CAS  Google Scholar 

  44. Delgado RM, Nawar MA, Zewail AM, et al. Cyclooxygenase inhibitor treatment improves left ventricular function and mortality in a murine model of doxorubicin-induced heart failure. Circulation 2004; 109: 1428–33

    Article  PubMed  CAS  Google Scholar 

  45. Tew KD, Colvin OM, Chabner BA. Alkylating agents. In: Chabner BA, Longo DL, editors. Cancer chemotherapy and biotherapy: principles and practice. Philadelphia (PA): Lippincott Williams & Wilkins, 2001: 373–414

    Google Scholar 

  46. Schimmel KJ, Richel DJ, van den Brink RB, et al. Cardiotoxicity of cytotoxic drugs. Cancer Treat Rev 2004; 30: 181–91

    Article  PubMed  CAS  Google Scholar 

  47. Grem JL. 5-Fluoropyrimidines. In: Chabner BA, Longo DL, editors. Cancer chemotherapy and biotherapy: principles and practice. Philadelphia (PA): Lippincott Williams & Wilkins, 2001: 185–264

    Google Scholar 

  48. Vogel C, Cobleigh M, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER-2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20: 719–26

    Article  PubMed  CAS  Google Scholar 

  49. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanised anti-HER2 monoclonal antibody in women who have HER-2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17: 2639–48

    PubMed  CAS  Google Scholar 

  50. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–92

    Article  PubMed  CAS  Google Scholar 

  51. Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 2002; 20: 1215–21

    Article  PubMed  CAS  Google Scholar 

  52. Suter TM, Cook-Bruns N, Barton C. Cardiotoxicity associated with trastuzumab (Herceptin) therapy in the treatment of metastatic breast cancer. Breast 2004; 13: 173–83

    Article  PubMed  CAS  Google Scholar 

  53. Marty M, Baselga J, Gatzemeier U, et al. Pooled analysis of six trials of trastuzumab (Herceptin): exploratory analysis of changes in left ventricular ejection fraction (LVEF) as a surrogate for clinical cardiac events. Breast Cancer Res Treat 2003; 82Suppl. 1: S48

    Google Scholar 

  54. Perez EA. Cardiac issues related to trastuzumab. Breast 2004; 13: 171–2

    Article  PubMed  Google Scholar 

  55. Deyton LR, Walker RE, Kowachs JA, et al. Reversible cardiac dysfunction associated with interferon alpha therapy in AIDS patients with Kaposi’s sarcoma. N Engl J Med 1989; 321: 1246–9

    Article  PubMed  CAS  Google Scholar 

  56. Sonnenblick M, Rosenmann D, Rosin A. Reversible cardiomyopathy induced by interferon. BMJ 1990; 300: 1174–5

    Article  PubMed  CAS  Google Scholar 

  57. Kobayashi T, Sato Y, Hasegawa Y, et al. Multiple myeloma complicated by congestive heart failure following first administration of recombinant α-interferon. Intern Med 1992; 31: 936–40

    Article  PubMed  CAS  Google Scholar 

  58. Kuwata A, Ohashi M, Sugiyyama M, et al. A case of reversible dilated cardiomyopathy after a-interferon therapy in a patient with renal cell carcinoma. Am J Med Sci 2002; 324: 331–4

    Article  PubMed  Google Scholar 

  59. Sonnenblick M, Rosin A. Cardiotoxicity of interferon: a review of 44 cases. Chest 1991; 99: 557–61

    Article  PubMed  CAS  Google Scholar 

  60. Kragel AH, Travis WD, Steis RG, et al. Myocarditis or acute myocardial infarction associated with interleukin-2 therapy for cancer. Cancer 1990; 66: 1513–6

    Article  PubMed  CAS  Google Scholar 

  61. Samlowski WE, Ward JH, Craven CM, et al. Severe myocarditis following high-dose interleukin-2 administration. Arch Pathol Lab Med 1989; 113: 838–41

    PubMed  CAS  Google Scholar 

  62. Goel M, Flaherty L, Lavine S, et al. Reversible cardiomyopathy after high-dose interleukin-2 therapy. J Immunother 1992; 11: 225–9

    Article  PubMed  CAS  Google Scholar 

  63. Truica CI, Hansen CH, Garvin DF, et al. Idiopathic giant cell myocarditis after autologous hematopoietic stem cell transplantation and interleukin-2 immunotherapy. Cancer 1998; 83: 1231–6

    Article  PubMed  CAS  Google Scholar 

  64. Kragel AH, Travis WD, Feinberg L, et al. Pathologic findings associated with interleukin-2 therapy for cancer: a postmortem study of 19 patients. Hum Pathol 1990; 21: 493–502

    Article  PubMed  CAS  Google Scholar 

  65. Kruit WH, Punt KL, Goey SH, et al. Cardiotoxicity as a dose limiting factor in a schedule of high dose bolus therapy with IL-2- and alpha interferon. Cancer 1994; 74: 2850–6

    Article  PubMed  CAS  Google Scholar 

  66. White RL, Schwartzentruber DJ, Guleria A, et al. Cardiopulmonary toxicity of treatment with high dose interleukin-2 in 199 consecutive patients with metastatic melanoma or renal cell carcinoma. Cancer 1994; 74: 3212–22

    Article  PubMed  Google Scholar 

  67. Zhang J, Yu Z-X, Hilbert LS, et al. Cardiotoxicity of human recombinant interalukin-2 in rats: a morphological study. Circulation 1993; 87: 1340–53

    Article  PubMed  CAS  Google Scholar 

  68. Hawkey CJ. COX-2 inhibitors. Lancet 1999; 353: 307–14

    Article  PubMed  CAS  Google Scholar 

  69. Jackson LM, Hawkey CJ. COX-2 selective non-steroidal anti-inflammatory drugs: do they really offer any advantages? Drugs 2000; 59: 1207–16

    Article  PubMed  CAS  Google Scholar 

  70. Whelton A. Nephrotoxicity of nonsteroidal anti-inflammatory drugs: physiologic foundations and clinical implications. Am J Med 1999; 106(5B): 13S–24S

    Article  PubMed  CAS  Google Scholar 

  71. Johnson AG. NSAIDs and blood pressure: clinical importance in older patients. Drugs Aging 1998; 1: 17–27

    Article  Google Scholar 

  72. Feenstra J, Grobbee DE, Mosterd A, et al. Adverse cardiovascular effects of NSAIDs in patients with congestive heart failure. Drug Saf 1997; 3: 166–80

    Article  Google Scholar 

  73. Frishman WH. Effects of nonsteroidal anti-inflammatory drug therapy on blood pressure and peripheral oedema. Am J Cardiol 2002; 89(6A): 18D–25D

    Article  PubMed  CAS  Google Scholar 

  74. Bleumink GS, Feenstra J, Sturkenboom MCJM, et al. Nonsteroidal anti-inflammatory drugs and heart failure. Drugs 2003; 63: 525–34

    Article  PubMed  CAS  Google Scholar 

  75. Johnson AG, Simons LA, Simons J, et al. Nonsteroidal anti-inflammatory drugs and hypertension in the elderly: a community-based cross-sectional study. Br J Clin Pharmacol 1993; 35: 455–9

    Article  PubMed  CAS  Google Scholar 

  76. Gurwitz JH, Avorn J, Bohn RL, et al. Initiation of antihypertensive treatment during nonsteroidal anti-inflammatory drug therapy. JAMA 1994; 272: 781–6

    Article  PubMed  CAS  Google Scholar 

  77. Pope JE, Anderson JJ, Felson DT. A meta-analysis of the effects of nonsteroidal anti-inflammatory drugs on blood pressure. Arch Intern Med 1993; 153: 477–84

    Article  PubMed  CAS  Google Scholar 

  78. Johnson AG, Nguyen TV, Day RO. Do nonsteroidal anti-inflammatory drugs affect blood pressure? A meta-analysis. Ann Intern Med 1994; 121: 289–300

    PubMed  CAS  Google Scholar 

  79. Aw TJ, Haas SJ, Liew D, et al. Meta-analysis of cyclooxygenase-2 inhibitors and their effects on blood pressure. Ann Intern Med 2005; 165: 490–6

    Article  CAS  Google Scholar 

  80. Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 2001; 286: 954–9

    Article  PubMed  CAS  Google Scholar 

  81. Bombardier C, Laine L, Reicin A, et al. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. N Engl J Med 2000; 343: 1520–8

    Article  PubMed  CAS  Google Scholar 

  82. Silverstein FE, Faich G, Goldstein J, et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. JAMA 2000; 284: 1247–55

    Article  PubMed  CAS  Google Scholar 

  83. Ray WA, Stein CM, Hall K, et al. Non-steroidal anti-inflammatory drugs and risk of serious coronary heart disease: an observational study. Lancet 2002; 359: 118–23

    Article  PubMed  CAS  Google Scholar 

  84. Schlienger RG, Jick H, Meier CR. Use of nonsteroidal anti-inflammatory drugs and the risk of first-time acute myocardial infarction. Br J Clin Pharmacol 2002; 54: 327–32

    Article  PubMed  CAS  Google Scholar 

  85. Solomon DH, Glynn RJ, Levin R, et al. Nonsteroidal anti-inflammatory drug use and acute myocardial infarction. Arch Intern Med 2002; 162: 1099–104

    Article  PubMed  CAS  Google Scholar 

  86. Watson DJ, Rhodes T, Cai B, et al. Lower risk of thromboembolic cardiovascular events with naproxen among patients with rheumatoid arthritis. Arch Intern Med 2002; 162: 1105–10

    Article  PubMed  CAS  Google Scholar 

  87. Rahme E, Pilote L, LeLorier J. Association between naproxen use and protection against acute myocardial infarction. Arch Intern Med 2002; 162: 1111–5

    Article  PubMed  CAS  Google Scholar 

  88. Ray WA, Stein CM, Daugherty JR, et al. COX-2 selective nonsteroidal anti-inflammatory drugs and risk of serious coronary heart disease. Lancet 2002; 360: 1071–3

    Article  PubMed  CAS  Google Scholar 

  89. Graham DJ, Campen D, Hui R, et al. Risk of acute myocardial infarction and sudden cardiac death in patients treated with cyclo-oxygenase selective and non-selective non-steroidal anti-inflammatory drugs: nested case-control study. Lancet 2005; 365: 475–81

    PubMed  CAS  Google Scholar 

  90. Mamdani M, Rochon P, Juurlink DN, et al. Effect of selective cyclooxygenase 2 inhibitors and naproxen on short-term risk of acute myocardial infarction in the elderly. Arch Intern Med 2003; 163: 481–6

    Article  PubMed  CAS  Google Scholar 

  91. Johnsen SP, Larsson H, Tarone RE, et al. Risk of hospitalisation for myocardial infarction among users of rofecoxib, celecoxib, and other NSAIDs: a population-based case-control study. Arch Intern Med 2005; 165: 978–84

    Article  PubMed  CAS  Google Scholar 

  92. Hippisley-Cox J, Coupland C. Risk of myocardial infarction in patients taking cyclo-oxygenase-2 inhibitors or conventional non-steroidal anti-inflammatory drugs: population based nested case-control analysis. BMJ 2005; 300: 1366–9

    Article  Google Scholar 

  93. Bresalier RS, Sandler RS, Quan H, et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 2005; 352: 1092–102

    Article  PubMed  CAS  Google Scholar 

  94. Solomon SD, McMurray JJV, Pfeffer MA, et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 2005; 352: 1071–80

    Article  PubMed  CAS  Google Scholar 

  95. Heerdink ER, Leufkens HG, Herings RMC, et al. NSAIDs associated with increased risk of congestive heart failure in elderly patients taking diuretics. Arch Intern Med 1998; 158: 1108–12

    Article  PubMed  CAS  Google Scholar 

  96. Page J, Henry D. Consumption of NSAIDs and the development of congestive heart failure in elderly patients: an unrecognized public health problem. Arch Intern Med 2000; 160: 777–84

    Article  PubMed  CAS  Google Scholar 

  97. Merlo J, Broms K, Lindblad U, et al. Association of outpatient utilisation of non-steroidal anti-inflammatory drugs and hospitalised heart failure in the entire Swedish population. Eur J Clin Pharmacol 2001; 57: 71–5

    Article  PubMed  CAS  Google Scholar 

  98. Feenstra J, Heerdink ER, Grobbe DE, et al. Association of nonsteroidal anti-inflammatory drugs with first occurrence of heart failure and with relapsing heart failure: the Rotterdam study. Arch Intern Med 2002; 162: 265–70

    Article  PubMed  CAS  Google Scholar 

  99. Garcia Rodriguez LA, Hernansez-Diaz S. Nonsteroidal anti-inflammatory drugs as a trigger of clinical heart failure. Epidemiology 2003; 14: 240–6

    PubMed  Google Scholar 

  100. Mamdani M, Juurlink DN, Lee DS, et al. Cyclo-oxygenase-2 inhibitors versus non-selective non-steroidal anti-inflammatory drugs and congestive heart failure outcomes in elderly patients: a population-based cohort study. Lancet 2004; 363: 175–6

    Article  CAS  Google Scholar 

  101. Hudson M, Richard H, Pilote L. Differences in outcomes of patients with congestive heart failure prescribed celecoxib, rofecoxib, or non-steroidal anti-inflammatory drugs: population based study. BMJ 2005; 330: 1370–5

    Article  PubMed  CAS  Google Scholar 

  102. Wang C-H, Weisel RD, Liu PP, et al. Glitazones and heart failure. Circulation 2003; 107: 1350–4

    Article  PubMed  Google Scholar 

  103. Mudaliar S, Henry RR. New oral therapies for type 2 diabetes mellitus: the glitazones or insulin sensitizers. Annu Rev Med 2001; 52: 239–57

    Article  PubMed  CAS  Google Scholar 

  104. Delea TE, Edelsberg JS, Hagiwara M, et al. Use of thiazolidinediones and risk of heart failure in people with type 2 diabetes: a retrospective cohort study. Diabetes Care 2003; 26: 2983–9

    Article  PubMed  CAS  Google Scholar 

  105. Tang WH, Francis GS, Hoogwerf BJ, et al. Fluid retention after initiation of thiazolidinedione therapy in diabetic patients with established chronic heart failure. J Am Coll Cardiol 2003; 41: 1394–8

    Article  PubMed  CAS  Google Scholar 

  106. Actos. Summary of product characteristics [online]. Available from URL: http://emc.medicines.org.uk/emc/assets/c/html/displaydoc.asp?.documentid=4236 [Accessed 2004 Nov 23]

  107. Avandia. Summary of product characteristics [online]. Available from URL: http://emc.medicines.org.uk/emc/assets/c/html/displaydoc.asp?.documentid=3200 [Accessed 2004 Nov 23]

  108. Wooltorton E. Rosiglitazone (Avandia) and pioglitazone (Actos) and heart failure. CMAJ 2002; 166: 219

    PubMed  Google Scholar 

  109. Deswal A, Bozkurt B, Seta Y, et al. Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with heart failure. Circulation 1999; 99: 3224–6

    Article  PubMed  CAS  Google Scholar 

  110. Bozkurt B, Torre-Amione G, Warren MS, et al. Results of targeted anti-tumor necrosis factor therapy with etanercept (Enbrel) in patients with advanced heart failure. Circulation 2001; 103: 1044–7

    Article  PubMed  CAS  Google Scholar 

  111. Chung ES, Packer M, Lo KH, et al. Randomized double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure. Circulation 2003; 107: 3133–40

    Article  PubMed  CAS  Google Scholar 

  112. Enbrel. Summary of product characteristics [online]. Available from URL: http://emc.medicines.org.uk/emc/assets/c/html/displaydoc.asp?.documentid=3343 [Accessed 2004 Nov 23]

  113. Kwon HJ, Cote TR, Cuffe MS, et al. Case reports of heart failure after therapy with a tumor necrosis factor antagonist. Ann Intern Med 2003; 138: 807–11

    PubMed  Google Scholar 

  114. Remicade. Summary of product characteristics [online]. Available from URL: http://emc.medicines.org.uk/emc/assets/c/html/displaydoc.asp?.documentid=3236 [Accessed 2004 Nov 23]

  115. Abenhaim L, Mordie Y, Brenot F, et al. Appetite-suppressant drugs and the risk of primary pulmonary hypertension. N Engl J Med 1996; 335: 609–16

    Article  PubMed  CAS  Google Scholar 

  116. Rich S, Rubin L, Walker AM, et al. Anorexigens and pulmonary hypertension in the United States: results from the surveillance of North American pulmonary hypertension. Chest 2000; 117: 870–4

    Article  PubMed  CAS  Google Scholar 

  117. Weissmann NJ. Appetite suppressants and valvular heart disease. Am J Med Sci 2001; 321: 285–91

    Article  Google Scholar 

  118. Jollis JG, Landolfo CK, Kisslo J, et al. Fenfluramine and phentermine and cardiovascular findings: effects of treatment duration on prevalence of valve abnormalities. Circulation 2000; 101: 2071–7

    Article  PubMed  CAS  Google Scholar 

  119. Weissmann NJ, Tighe JF, Gottdiener JS, et al. An assessment of heart valve abnormalities in obese patients taking dexfenfluramine, sustained release dexfenfluramine, or placebo. N Engl J Med 1998; 339: 725–32

    Article  Google Scholar 

  120. Gardin JM, Schumacher D, Constantine G, et al. Valvular abnormalities and cardiovascular status following exposure to dexfenfluramine or phentermine/fenfluramine. JAMA 2000; 283: 1703–9

    Article  PubMed  CAS  Google Scholar 

  121. Gardin JM, Weissman NJ, Leung C, et al. Clinical and echocardiographic follow-up of patients previously treated with dexfenfluramine or phentermine/fenfluramine. JAMA 2001; 286: 2011–4

    Article  PubMed  CAS  Google Scholar 

  122. Vagelos R, Jacobs M, Popp RL, et al. Reversal of phen-fen associated valvular regurgitation documented by serial echocardiography. J Am Soc Echocardiogr 2002; 15: 653–7

    Article  PubMed  Google Scholar 

  123. Guven A, Koksal N, Cetinkaya A, et al. Effects of the sibutramine therapy on pulmonaty artery pressure in obese patients. Diabetes Obes Metab 2004; 6: 50–6

    Article  PubMed  CAS  Google Scholar 

  124. Zannad F, Gille B, Grentzinger A, et al. Effects of sibutramine on ventricular dimensions and heart valves in obese patients during weight reduction. Am Heart J 2002; 144: 508–15

    Article  PubMed  CAS  Google Scholar 

  125. Bana DS, MacNeal PS, LeCompte PM, et al. Cardiac murmurs associated with methysergide therapy. Am Heart J 1974; 88: 640–55

    Article  PubMed  CAS  Google Scholar 

  126. Hauck AJ, Edwards WD, Danielson GK, et al. Mitral and aortic valve disease associated with ergotamine therapy for migraine: report of two cases and review of the literature. Arch Pathol Lab Med 1990; 114: 62–4

    PubMed  CAS  Google Scholar 

  127. Pritchett AM, Morrison JF, Edwards WD, et al. Valvular heart disease in patients taking pergolide. Mayo Clin Proc 2002; 77: 1280–6

    Article  PubMed  Google Scholar 

  128. Horvath J, Fross RD, Kleiner-Fisman G, et al. Severe multivalvular heart disease: a new complication of the ergot derivative dopamine agonists. Mov Disord 2004; 19: 656–62

    Article  PubMed  Google Scholar 

  129. Van Camp G, Flamez A, Cosyns B, et al. Heart valvular disease in patients with Parkinson’s disease treated with high-dose pergolide. Neurology 2003; 61: 859–61

    Article  PubMed  CAS  Google Scholar 

  130. Ling LH, Ahlskog JE, Munger TM, et al. Constrictive pericarditis and pleuropulmonary disease linked to ergot dopamine agonist therapy (cabergoline) for Parkinson’s disease. Mayo Clin Proc 1999; 74: 371–5

    Article  PubMed  CAS  Google Scholar 

  131. Townsend M, Maciver DH. Constrictive pericarditis and pleuropulmonary fibrosis secondary to cabergoline treatment for Parkinson’s disease. Heart 2004; 90: e47

    Article  PubMed  CAS  Google Scholar 

  132. Acosta D, Ramos K. Cardiotoxicity of tricyclic antidepressants in primary cultures of rat myocardial calls. J Toxicol Environ Health 1984; 14: 137–43

    Article  PubMed  CAS  Google Scholar 

  133. Marti V, Ballester M, Udina C, et al. Evaluation of myocardial cell damage by In-111-monoclonal antimyosin antibodies in patients under chronic tricyclic antidepressant treatment. Circulation 1995; 91: 1619–23

    Article  PubMed  CAS  Google Scholar 

  134. Jefferson JW. Cardiovascular effetcs and toxicity of anxiolytics and antidepressants. J Clin Psychiatry 1989; 50: 368–78

    PubMed  CAS  Google Scholar 

  135. Dalack GW, Roose SP, Glassman AH. Tricyclics and heart failure. Am J Psychiatry 1991; 148: 1601

    PubMed  CAS  Google Scholar 

  136. Raeder EA, Burckhardt D, Neubauer H, et al. Long-term tri- and tetra-cyclic antidepressants, myocardial contractility, and cardiac rhythm. BMJ 1978; 2: 666–7

    Article  PubMed  CAS  Google Scholar 

  137. Giardina EG, Johnson LL, Vita J, et al. Effect of imipramine and nortriptyline on left ventricular function and blood pressure in patients treated for arrhythmias. Am Heart J 1985; 109: 992–8

    Article  PubMed  CAS  Google Scholar 

  138. Veith RC, Raskind MA, Caldwell JH, et al. Cardiovascular effects of tricyclic antidepressants in depressed patients with congestive heart disease. N Engl J Med 1982; 306: 954–6

    Article  PubMed  CAS  Google Scholar 

  139. Roose SP, Glassmann AH, Attia E, et al. Cardiovascular effects of fluoxetine in depressed patients with heart disease. Am J Psychiatry 1998; 155: 660–5

    PubMed  CAS  Google Scholar 

  140. Feenstra J, Grobbee DE, Remme WJ, et al. Drug-induced heart failure. J Am Coll Cardiol 1999; 33: 1152–62

    Article  PubMed  CAS  Google Scholar 

  141. Killian JG, Kerr K, Lawrence C, et al. Myocarditis and cardiomyopathy associated with clozapine. Lancet 1999; 354: 1841–5

    Article  Google Scholar 

  142. Hagg S, Spigset O, Bate A, et al. Myocarditis related to clozapine treatment. J Clin Psychopharmacol 2001; 21: 382–8

    Article  PubMed  CAS  Google Scholar 

  143. Coulter DM, Bate A, Meyboom RHB, et al. Antipsychotic drugs and heart muscle disorder in international pharmacovigilance: data mining study. BMJ 2001; 322: 1207–8

    Article  PubMed  CAS  Google Scholar 

  144. Sholter DE, Armstrong PW. Adverse effects of corticosteroids on the cardiovascular system. Can J Cardiol 2000; 16: 505–11

    PubMed  CAS  Google Scholar 

  145. Girod JP, Brotman DJ. Does altered glucocorticoid homeostasis increase cardiovascular risk? Cardiovasc Res 2004; 64: 217–26

    Article  PubMed  CAS  Google Scholar 

  146. Souverein PC, Berard A, Van Staa TP, et al. Use of glucocorticoids and risk of cardiovascular and cerebrovascular disease in a population based case-control study. Heart 2004; 90: 859–65

    Article  PubMed  CAS  Google Scholar 

  147. Wei L, MacDonald TM, Walker BR. Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease. Ann Intern Med 2004; 141: 764–70

    PubMed  Google Scholar 

  148. Weber KT. Aldosterone in congestive heart failure. N Engl J Med 2001; 345: 1689–97

    Article  PubMed  CAS  Google Scholar 

  149. Ahmad SR, Singer SJ, Leissa BG. Congestive heart failure associated with itraconazole. Lancet 2001; 357: 1766–7

    Article  PubMed  CAS  Google Scholar 

  150. Chung DK, Koenig MG. Reversible cardiac enlargement during treatment with amphotericin B and hydrocortisone: report of three cases. Am Rev Respir Dis 1971; 103: 831–41

    PubMed  CAS  Google Scholar 

  151. Arsura EL, Ismail Y, Freedman S, et al. Amphotericin Binduced dilated cardiomyopathy. Am J Med 1994; 97: 560–2

    Article  PubMed  CAS  Google Scholar 

  152. Danahaer PJ, Cao MK, Anstead GM, et al. Reversible dilated cardiomyopathy related to amphotericin B therapy. J Antimicrob Chemother 2004; 53: 115–7

    Article  CAS  Google Scholar 

  153. Olukoga A, Donaldsson D. Liquorice and its health implications. J R Soc Health 2000; 120: 83–9

    Article  CAS  Google Scholar 

  154. Farese RV, Biglieri EG, Shackleon CH, et al. Liquorice-induced hypermineralocorticoidism. N Engl J Med 1991; 325: 1223–7

    Article  PubMed  Google Scholar 

  155. Ferguson JE, Chalmers RJG, Rowlands DJ. Reversible dilated cardiomyopathy following treatment of atopic eczema with Chinese herbal medicine. Br J Dermatol 1998; 132: 550–2

    Google Scholar 

  156. Jones TK, Lawson BM. Profound neonatal congestive heart failure caused by maternal consumption of blue cohosh herbal medication. J Pediatr 1998; 132: 550–2

    Article  PubMed  CAS  Google Scholar 

  157. Forster PJ, Calverley M, Hubball S, et al. Chuei-Fong-Tuo-Geu-Wan in rheumatoid arthritis. BMJ 1979; 2(6185): 308

    Article  PubMed  CAS  Google Scholar 

  158. Offerhaus L, Dukes MNG, Smits HM. “Herbal medicines” and rheumatoid arthritis. BMJ 1979; 2(6191): 668

    Article  PubMed  CAS  Google Scholar 

  159. Goldman JA, Myerson G. Chinese herbal medicine: camouflaged prescribed anti-inflammatory drugs, corticosteroid and lead. Arthritis Rheum 1991; 34: 1207

    Article  PubMed  CAS  Google Scholar 

  160. Vander Stricht BI, Parvais OE, Vanhaelen-Fastre RJ, et al. Remedies may contain cocktail of active drugs. BMJ 1994; 308: 1162

    Article  Google Scholar 

  161. Bogusz MJ, al Tufail M, Hassan H. How natural are “natural herbal remedies”? A Saudi perspective. Adverse Drug React Toxicol Rev 2002; 21: 219–29

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Slørdal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slørdal, L., Spigset, O. Heart Failure Induced by Non-Cardiac Drugs. Drug-Safety 29, 567–586 (2006). https://doi.org/10.2165/00002018-200629070-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200629070-00003

Keywords

Navigation