Skip to main content
Log in

Corticosteroids and Glaucoma Risk

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Corticosteroids (glucocorticoids), used frequently as potent anti-inflammatory agents, increase the risk of glaucoma by raising the intraocular pressure (IOP) when administered exogenously (topically, periocularly or systemically) and in certain conditions of increased endogenous production (e.g. Cushing’s syndrome). Approximately 18 to 36% of the general population are corticosteroid responders. This response is increased to 46 to 92% in patients with primary open-angle glaucoma (POAG). Patients over 40 years of age and with certain systemic diseases (e.g. diabetes mellitus, high myopia) as well as relatives of patients with POAG are more vulnerable to corticosteroid-induced glaucoma. The association of corticosteroid-induced ocular hypertension in other conditions which are considered as risk factors for glaucoma (racial origins, hypertension, migraine, vasospasm) is likely but not fully established.

The proposed mechanism of corticosteroid-induced glaucoma includes morphological and functional changes in the trabecular meshwork system and is similar to the pathogenesis of POAG. Trabecular cells exposed to corticosteroids in vitro show endoreplication of nuclei, an increase in cell size and excessive production of an approximately 56kD glycoprotein, identified as myocilin and transcribed by the GLC1A gene. Induction of ocular hypertension after corticosteroid administration depends on the specific drug, the dose, the frequency of administration and the corticosteroid responsiveness of the patient. The risk of corticosteroidinduced glaucoma can be minimised with judicious use of corticosteroids, as well as education of patients and medical practitioners. New treatment modalities include modified steroids and nonsteroidal anti-inflammatory agents that will have less effect on the elevation of IOP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stern JJ. Acute glaucoma during cortisone therapy. Am J Ophthalmol 1953; 36 (3): 389–90

    PubMed  CAS  Google Scholar 

  2. Covell LL. Glaucoma induced by systemic steroid therapy. Am J Ophthalmol 1958; 45 (1): 108–9

    PubMed  CAS  Google Scholar 

  3. François J. Cortisone et tension oculaire. Ann D’Oculist 1954; 187: 805–16

    Google Scholar 

  4. Goldmann H. Cortisone glaucoma. Arch Ophthalmol 1962; 68: 621–6

    Article  PubMed  CAS  Google Scholar 

  5. Armaly MF. The heritable nature of dexamethasone-induced ocular hypertension. Arch Ophthalmol 1966; 75 (1): 32–5

    Article  PubMed  CAS  Google Scholar 

  6. Armaly MF. Inheritance of dexamethasone hypertension and glaucoma. Arch Ophthalmol 1967; 77 (6): 747–51

    Article  PubMed  CAS  Google Scholar 

  7. Becker B. Intraocular pressure response to topical corticosteroids. Invest Ophthalmol Vis Sci 1965; 49 (2): 198–205

    Google Scholar 

  8. Becker B, Hahn KA. Topical corticosteroids and heredity in primary open-angle glaucoma. Am J Ophthalmol 1964; 57 (4): 543–51

    PubMed  CAS  Google Scholar 

  9. François J, Heintz-De Bree C, Tripathi RC. The cortisone test and the heredity of primary open-angle glaucoma. Am J Ophthalmol 1966; 62 (5): 844–52

    PubMed  Google Scholar 

  10. Schwartz JT, Reuling FH, Feinleib M, et al. Twin study on ocular pressure after topical dexamethasone: I. Frequency distribution of pressure response. Am J Ophthalmol 1973; 76 (1): 126–36

    PubMed  CAS  Google Scholar 

  11. Schwartz JT, Reuling FH, Feinleib M, et al. Twin study on ocular pressure following topically applied dexamethasone: II. Inheritance of variation in pressure response. Arch Ophthalmol 1973; 90 (4): 281–6

    Article  PubMed  CAS  Google Scholar 

  12. Palmberg PF, Mandell A, Wilensky JT, et al. The reproducibility of intraocular pressure response to dexamethasone. Am J Ophthalmol 1975; 80 (5): 844–56

    PubMed  CAS  Google Scholar 

  13. Armaly MP. Hffect of corticosteroids on intraocular pressure and fluid dynamics: I. The effect of dexamethasone in the normal eye. Arch Ophthalmol 1963; 70: 482–91

    Article  PubMed  CAS  Google Scholar 

  14. Armaly MF. Effect of corticosteroids on intraocular pressure and fluid dynamics: II. The effect of dexamethasone in the glaucomatous eye. Arch Ophthalmol 1963; 70: 492–99

    Article  PubMed  CAS  Google Scholar 

  15. Becker B, Mills DW. Corticosteroids and intraocular pressure. Arch Ophthalmol 1963; 70: 500–7

    Article  PubMed  CAS  Google Scholar 

  16. Becker B, Mills DW. Elevated intraocular pressure following corticosteroid eye drops. JAMA 1963; 185 (11): 884–6

    Article  PubMed  CAS  Google Scholar 

  17. Biedner BZ, David R, Grudsky A, et al. Intraocular pressure response to corticosteroids in children. Br J Ophthalmol 1980; 64 (6): 430–1

    Article  PubMed  CAS  Google Scholar 

  18. Ohji M, Kinoshita S, Ohmi E, et al. Marked intraocular pressure response to instillation of corticosteroids in children. Am J Ophthalmol 1991; 112 (4): 450–4

    PubMed  CAS  Google Scholar 

  19. Kwok AK, Lam DS, Ng JS, et al. Ocular-hypertensive response to topical steroids in children. Ophthalmol 1997; 104 (12): 2112–6

    CAS  Google Scholar 

  20. Lam DS, Kwok AK, Chew S. Accelerated ocular hypertensive response to topical steroids in children. Br J Ophthalmol 1997; 81 (5): 422–3

    Article  PubMed  CAS  Google Scholar 

  21. Tripathi RC, Kirschner BS, Kipp M, et al. Corticosteroid treatment for inflammatory bowel disease in pediatric patients increases intraocular pressure. Gastroenterology 1992; 102 (6): 1957–61

    PubMed  CAS  Google Scholar 

  22. Davies TG. Tonographic survey of the close relatives of patients with chronic simple glaucoma. Br J Ophthalmol 1968; 52 (1): 32–9

    Article  PubMed  CAS  Google Scholar 

  23. Paterson G. Studies of the response to topical dexamethasone of glaucoma relatives. Trans Ophthalmol Soc U K 1965; 85: 295–305

    PubMed  CAS  Google Scholar 

  24. Becker B. Diabetes mellitus and primary open-angle glaucoma: the XXVII Edward Jackson Memorial Lecture. Am J Ophthalmol 1971; 1 (1 Pt 1): 1–16

    Google Scholar 

  25. Podos SM, Becker B, Morton WR. High myopia and primary open-angle glaucoma. Am J Ophthalmol 1966; 62 (6): 1039–43

    Google Scholar 

  26. Gaston H, Absolon MJ, Thurtle OA, et al. Steroid responsiveness in connective tissue diseases. Br J Ophthalmol 1983; 67 (7): 487–90

    Article  PubMed  CAS  Google Scholar 

  27. Wilson MR, Martone JF. Epidemiology of chronic open-angle glaucoma. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas. Vol. 2. St Louis (MO): Mosby, 1996: 753–68

    Google Scholar 

  28. Wolfs RCW, Klaver CCW, Ramrattan RS, et al. Genetic risk of primary open-angle glaucoma: population-based familial aggregation study. Arch Ophthalmol 1998; 116 (12): 1640–5

    PubMed  CAS  Google Scholar 

  29. Tielsch JM, Sommer A, Katz J, et al. Racial variations in the prevalance of primary open-angle glaucoma: the Baltimore Eye Survey. JAMA 1991; 266 (3): 369–74

    Article  PubMed  CAS  Google Scholar 

  30. Alfano JE, Platt D. Steroid (ACTH) induced glaucoma simulating congenital glaucoma. Am J Ophthalmol 1966; 61 (5): 911–12

    PubMed  CAS  Google Scholar 

  31. Kass MA, Kolker AE, Becker B. Chronic topical corticosteroid use simulating congenital glaucoma. J Pediatr 1972; 81 (6): 1175–7

    Article  PubMed  CAS  Google Scholar 

  32. Turner JB. A clinical review of congenital glaucoma. South Med J 1971; 64 (11): 1362–5

    Article  PubMed  CAS  Google Scholar 

  33. Perkins ES. Steroid-induced glaucoma. Proc R Soc Med 1965; 58 (7): 531–3

    PubMed  CAS  Google Scholar 

  34. Spaeth GL, Rodrigues MM, Weinreb S. Steroid-induced glaucoma: A. Persistent elevation of intraocular pressure; B. Histopathological aspects. Trans Am Ophthalmol Soc 1977; 75: 353–81

    PubMed  CAS  Google Scholar 

  35. Cubey RB. Glaucoma following the application of corticosteroid to the skin of the eyelid. Br J Dermatol 1976; 95 (2): 207–8

    Article  PubMed  CAS  Google Scholar 

  36. Zugerman C, Saunders D, Levit F. Glaucoma from topically applied steroids. Arch Dermatol 1976; 112 (9): 1326

    Article  PubMed  CAS  Google Scholar 

  37. Sugar HS. Low tension glaucoma: a practical approach. Ann Ophthalmol 1979; 11 (7): 1155–71

    PubMed  CAS  Google Scholar 

  38. Polack FM. Graft rejection and glaucoma. Am J Ophthalmol 1986; 101 (3): 294–7

    PubMed  CAS  Google Scholar 

  39. Hoskins Jr HD, Kass MA, editors. Factors influencing outcome of filtering surgery. In: Becker-Shaffer’s diagnosis and therapy of the glaucomas. St Louis (MO): Mosby, 1989: 572–82

  40. Pappa KS. Corticosteroid drugs. In: Mauger TF, Craig EL, editors. Havener’s ocular pharmacology. St Louis (MO): Mosby, 1994: 364–482

    Google Scholar 

  41. Kass MA, Johnson T. Corticosteroid-induced glaucoma. In: Ritch R, Shields MB, Krupin T, editors. The glaucomas. Vol. 2. St Louis (MO): Mosby, 1989: 1161–8

    Google Scholar 

  42. Shields MB. Steroid-induced glaucoma. In: Shields, MB. Textbook of glaucoma. 4th ed. Baltimore (MD): Williams and Wilkins, 1998: 323–8

    Google Scholar 

  43. Burde RM, Becker B. Corticosteroid-induced glaucoma and cataracts in contact lens wearers. JAMA 1970; 213 (12): 2075–7

    Article  PubMed  CAS  Google Scholar 

  44. Katsushima H. Corticosteroid-induced glaucoma following treatment of the periorbital region [in Japanese]. Nippon Ganka Gakkai Zasshi 1995; 99: (2) 238–43

    PubMed  CAS  Google Scholar 

  45. Maxwell DL. Adverse effects of inhaled corticosteroids. Biomed Pharmacother 1990; 44 (8): 421–7

    Article  PubMed  CAS  Google Scholar 

  46. Opatowsky I, Feldman RM, Gross R, et al. Intraocular pressure elevation associated with inhalation and nasal corticosteroids. Ophthalmology 1995; 102 (2): 177–9

    PubMed  CAS  Google Scholar 

  47. Friday GA. Inhaled and nasal glucocorticoids and the risks of ocular hypertension or open-angle glaucoma. Clin Pediatr (Phila) 1997; 36 (9): 551

    Article  CAS  Google Scholar 

  48. Lipworth BJ. Systemic adverse effects of inhaled corticosteroid therapy: a systematic review and meta-analysis. Arch Intern Med 1999; 159 (9): 941–55

    Article  PubMed  CAS  Google Scholar 

  49. Garbe E, Le Lorier J, Boivin JF, et al. Inhaled and nasal glucocorticoids and the risks of ocular hypertension or open-angle glaucoma. JAMA 1997; 277 (9): 722–7

    Article  PubMed  CAS  Google Scholar 

  50. Garbe E, LeLorier J, Boivin JF, et al. Risk of ocular hypertension or open-angle glaucoma in elderly patients on oral glucocorticoids. Lancet 1997; 350 (9083): 979–82

    Article  PubMed  CAS  Google Scholar 

  51. Herschler J. Increased intraocular pressure induced by repository corticosteroids. Am J Ophthalmol 1976; 82 (1): 90–3

    PubMed  CAS  Google Scholar 

  52. Hovland KR, Ellis PP. Ocular changes in renal transplant patients. Am J Ophthalmol 1967; 63 (2): 283–9

    PubMed  CAS  Google Scholar 

  53. Ticho U, Durst A, Licht A, et al. Steroid-induced glaucoma and cataract in renal transplant recipients. Isr J Med Sci 1977; 13 (9): 871–4

    PubMed  CAS  Google Scholar 

  54. Haas JS, Nootens RH. Glaucoma secondary to benign adrenal adenoma. Am J Ophthalmol 1974; 78 (3): 497–500

    PubMed  CAS  Google Scholar 

  55. Robbin DS, Haas JS. A 16-year follow-up in a corticosteroidsensitive patient with glaucoma secondary to a benign adrenal adenoma. Am J Ophthalmol 1989; 107 (3): 293–5

    PubMed  CAS  Google Scholar 

  56. Huschle OK, Jonas JB, Koniszewski G, et al. Glaucoma in central hypothalamic-hypophyseal Cushing syndrome. Fortschr Ophthalmol 1990; 87 (5): 453–6

    PubMed  CAS  Google Scholar 

  57. Tripathi RC, Kipp MA, Tripathi BJ, et al. Ocular toxicity of prednisone in pediatric patients with inflammatory bowel disease. Lens Eye Toxic Res 1992; 9 (3–4): 469–82

    PubMed  CAS  Google Scholar 

  58. Miller D, Peczon JD, Whitworth CG. Corticosteroids and functions in the anterior segment of the eye. Am J Ophthalmol 1965; 59: 31–4

    PubMed  CAS  Google Scholar 

  59. Armaly MF. Effect of corticosteroids on intraocular pressure and fluid dynamics: III. Changes in visual function and pupil size during topical dexamethasone application. Arch Ophthalmol 1964; 71: 636–44

    Article  PubMed  CAS  Google Scholar 

  60. Krupin T, LeBlanc RP, Becker B, et al. Uveitis in association with topically administered corticosteroid. Am J Ophthalmol 1970; 70 (6): 883–5

    PubMed  CAS  Google Scholar 

  61. Swartz SL, Dluhy RG. Corticosteroids: clinical pharmacology and therapeutic use. Drugs 1978; 16 (3): 238–55

    Article  PubMed  CAS  Google Scholar 

  62. Tripathi RC, Tripathi BJ. Functional anatomy of the anterior chamber angle. In: Tasman WW, Jaeger EA, editors. Duane’s biomedical foundations of ophthalmology. Vol. 1. Philadelphia (PA): JB Lippincott Co., 1989: 1–88

    Google Scholar 

  63. François J, Victoria-Troncoso V, Benozzi J, et al. Changes of the trabeculum after corticosteroid treatment in the rabbit. In: Henkind P, editor. ACTA: XXIV international congress of ophthalmology. Philadelphia (PA): JB Lippincott Co., 1983: 701–7

    Google Scholar 

  64. Yue BY. The extracellular matrix and its modulation in the trabecular meshwork. Surv Ophthalmol 1996; 40 (5): 379–90

    Article  PubMed  CAS  Google Scholar 

  65. Johnson D, Gottanka J, Flugel C, et al. Ultrastructural changes in the trabecular meshwork of human eyes treated with corticosteroids. Arch Ophthalmol 1997; 115 (3): 375–83

    Article  PubMed  CAS  Google Scholar 

  66. Clark AF, Wilson K, de Kater AW, et al. Dexamethasone-induced ocular hypertension in perfusion-cultured human eyes. Invest Ophthalmol Vis Sci 1995; 36 (2): 478–89

    PubMed  CAS  Google Scholar 

  67. Johnson DH, Bradley JMB, Acott TS. The effect of dexamethasone on glycosaminoglycans of human trabecular meshwork in perfusion organ culture. Invest Ophthalmol Vis Sci 1990; 31 (12): 2568–71

    PubMed  CAS  Google Scholar 

  68. François J, Victoria-Troncoso V. Corticosteroid glaucoma. Ophthalmologica 1977 (4); 174: 195–209

    Article  PubMed  Google Scholar 

  69. Putney LK, Brandt JD, O’Donnell ME. Effects of dexamethasone on sodium-potassium-chloride cotransport in trabecular meshwork cells. Invest Ophthalmol Vis Sci 1997; 38 (6): 1229–40

    PubMed  CAS  Google Scholar 

  70. Zhou L, Li Y, Yue B. Glucocorticoid effects on extracellular matrix proteins and integrins in bovine trabecular meshwork cells in relation to glaucoma. Int J Mol Med 1998; 1 (2): 339–46

    PubMed  CAS  Google Scholar 

  71. Hernandez MR, Weinstein BI, Dunn MW, et al. The effect of dexamethasone on the synthesis of collagen in normal human trabecular meshwork explants. Invest Ophthalmol Vis Sci 1985; 26 (12): 1784–8

    PubMed  CAS  Google Scholar 

  72. Yun AJ, Murphy CG, Polansky JR, et al. Proteins secreted by human trabecular cells: glucocorticoid and other effects. Invest Ophthalmol Vis Sci 1989; 30 (9): 2012–22

    PubMed  CAS  Google Scholar 

  73. Steely HT, Browder SL, Julian MB, et al. The effects of dexamethasone on fibronectin expression in cultured human trabecular meshwork cells. Invest Ophthalmol Vis Sci 1992; 33 (7): 2242–50

    PubMed  CAS  Google Scholar 

  74. Dickerson Jr JE, Steely Jr HT, English-Wright SL, et al. The effect of dexamethasone on integrin and laminin expression in cultured human trabecular meshwork cells. Exp Eye Res 1998; 66 (6): 731–8

    Article  PubMed  CAS  Google Scholar 

  75. Snyder RW, Stamer WD, Kramer TR, et al. Corticosteroid treat ment and trabecular meshwork proteases in cell and organ culture supernatants. Exp Eye Res 1993; 57 (4): 461–8

    Article  PubMed  CAS  Google Scholar 

  76. Samples JR, Alexander JP, Acott TS. Regulation of the levels of human trabecular matrix metalloproteinases and inhibitor by interleukin-1 and dexamethasone. Invest Ophthalmol Vis Sci 1993; 34 (12): 3386–95

    PubMed  CAS  Google Scholar 

  77. Matsumoto Y, Johnson DH. Dexamethasone decreases phagocytosis by human trabecular meshwork cells in situ. Invest Ophthalmol Vis Sci 1997; 38 (9): 1902–7

    PubMed  CAS  Google Scholar 

  78. Bill A. The drainage of aqueous humor [editorial]. Invest Ophthalmol Vis Sci 1975; 14 (1): 1–3

    CAS  Google Scholar 

  79. Clark AF, Wilson K, McCartney MD, et al. Glucocorticoidinduced formation of cross-linked actin networks in cultured human trabecular meshwork cells. Invest Ophthalmol Vis Sci 1994; 35 (1): 281–94

    PubMed  CAS  Google Scholar 

  80. Wilson K, McCartney MD, Miggans ST, et al. Dexamethasone induced ultrastructural changes in cultured human trabecular meshwork cells. Curr Eye Res 1993; 12 (9): 783–93

    Article  PubMed  CAS  Google Scholar 

  81. Clark AF, Lane D, Wilson K, et al. Inhibition of dexamethasone-induced cytoskeletal changes in cultured human trabecular meshwork cells by tetrahydrocortisol. Invest Ophthalmol Vis Sci 1996; 37 (5): 805–13

    PubMed  CAS  Google Scholar 

  82. Tchernitchiv A, Wenk EJ, Hernandez MR, et al. Glucocorticoid localization by autoradiography in the rabbit eye following systemic administration of 3H-dexamethasone. Invest Ophthalmol Vis Sci 1980; 19 (10): 1231–6

    PubMed  CAS  Google Scholar 

  83. Weinreb RN, Bloom E, Baxter JD, et al. Detection of glucocorticoid receptors in cultured human trabecular cells. Invest Ophthalmol Vis Sci 1981 (3); 21: 403–7

    PubMed  CAS  Google Scholar 

  84. Tripathi BJ, Tripathi RC, Swift HH. Hydrocortisone-induced DNA endoreplication in human trabecular cells in vitro. Exp Eye Res 1989; 49 (2): 259–70

    Article  PubMed  CAS  Google Scholar 

  85. Bigger JF, Palmberg PF, Zink HA. In vitro corticosteroid: correlation response with primary open-angle glaucoma and ocular corticosteroid sensitivity. Am J Ophthalmol 1975; 79 (1): 92–7

    PubMed  CAS  Google Scholar 

  86. Polansky J, Palmberg P, Matulich D, et al. Cellular sensitivity to glucocorticoids in patients with POAG: steroid receptors and responses in cultured skin fibroblasts. Invest Ophthalmol Vis Sci 1985; 26 (6): 805–9

    PubMed  CAS  Google Scholar 

  87. Stone EM, Fingert JH, Alward WLM, et al. Identification of a gene that causes primary open angle glaucoma. Science 1997; 275 (5300): 668–70

    Article  PubMed  CAS  Google Scholar 

  88. Alward WLM, Fingert JH, Coote MA, et al. Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLC1A). N Engl J Med 1998; 338 (15): 1022–7

    Article  PubMed  CAS  Google Scholar 

  89. Wirtz MK, Samples JR, Rust K, et al. GLC1F, a new primary open-angle glaucoma locus, maps to 7q35-q36. Arch Ophthalmol 1999; 117 (2): 237–41

    Article  PubMed  CAS  Google Scholar 

  90. Ortego J, Escribano J, Coca-Prados M. Cloning and characterization of subtracted cDNAs from a human ciliary body library encoding TIGR, a protein involved in juvenile open angle glaucoma with homology to myosin and olfactomedin. FEBS Lett 1997; 413 (2): 349–53

    Article  PubMed  CAS  Google Scholar 

  91. Tripathi BJ, Millard CB, Tripathi RC. Corticosteroids induce a sialated glycoprotein (cort-GP) in trabecular cells in vitro. Exp Eye Res 1990; 51 (6): 735–7

    Article  PubMed  CAS  Google Scholar 

  92. Partridge CA, Weinstein BI, Southren AL, et al. Dexamethasone induces specific proteins in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 1989; 30 (8): 1843–7

    PubMed  CAS  Google Scholar 

  93. Kubota R, Noda S, Wang Y, et al. A novel myosin-like protein (myocilin) expressed in the connecting cilium of the photoreceptor: molecular cloning, tissue expression, and chromosomal mapping. Genomics 1997; 41 (3): 360–9

    Article  PubMed  CAS  Google Scholar 

  94. Polansky JR, Fauss DJ, Chen P, et al. Cellular pharmacology and molecular biology of the trabecular meshwork inducible glucocorticoid response gene product. Ophthalmologica 1997; 211 (3): 126–39

    Article  PubMed  CAS  Google Scholar 

  95. Kee C, Ahn BH. TIGR gene in primary open-angle glaucoma and steroid-induced glaucoma. Korean J Ophthalmol 1997; 11 (2): 75–8

    PubMed  CAS  Google Scholar 

  96. Kubota R, Kudoh J, Mashima Y, et al. Genomic organization of the human myocilin gene (MYOC) responsible for primary open angle glaucoma (GLC1 A). Biochem Biophys Res Comm 1998; 242 (2): 396–400

    Article  PubMed  CAS  Google Scholar 

  97. Nguyen TD, Chen P, Huang WD, et al. Gene structure and properties of TIGR, an olfactomedin-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells. J Biol Chem 1998; 273 (11): 6341–50

    Article  PubMed  CAS  Google Scholar 

  98. Goldmann DB, Waubke N. A pilot study on the effect of atrial natriuretic peptide on intraocular pressure in the human [in German]. Fortschr Ophthalmol 1989; 86 (5): 494–6

    PubMed  CAS  Google Scholar 

  99. Richardson KA, Tunny TJ, Clark CV. PCR-SSCP analysis of the glucocorticoid-responsive element of the atrial natriuretic peptide gene in familial primary open-angle glaucoma. Clin Exp Pharmacol Physiol 1997; 24 (6): 427–9

    Article  PubMed  CAS  Google Scholar 

  100. Stern FA, Bito LZ. Comparison of the hypotensive and other ocular effects of prostaglandins E2 and F2 alpha on cat and rhesus monkey eyes. Invest Ophthalmol Vis Sci 1982; 22 (5): 588–98

    PubMed  CAS  Google Scholar 

  101. Weinreb RN, Mitchell MD, Polansky JR. Prostaglandin production by human trabecular cells: in vitro inhibition by dexamethasone. Invest Ophthalmol Vis Sci 1983; 24 (12): 1541–5

    PubMed  CAS  Google Scholar 

  102. Schwartz B, McCarty G, Rosner B. Increased plasma free cortisol in ocular hypertension and open angle glaucoma. Arch Ophthalmol 1987; 105 (8): 1060–5

    Article  PubMed  CAS  Google Scholar 

  103. McCarty GR, Schwartz B. Increased plasma noncortisol glucorticoid activity in open-angle glaucoma. Invest Ophthalmol Vis Sci 1991; 32 (5): 1600–8

    PubMed  CAS  Google Scholar 

  104. Southren AL, Gordon GG, Munnangi PR, et al. Altered cortisol metabolism in cells cultured from trabecular meshwork specimens obtained from patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 1983; 24 (10): 1413–7

    PubMed  CAS  Google Scholar 

  105. Weinstein BI, Gordon GG, Southren AL. Potentiation of glucocorticoid activity by 5-beta dihydrocortisol: its role in glaucoma. Science 1983; 222 (4620): 172–3

    Article  PubMed  CAS  Google Scholar 

  106. Southren AL, Hernandez MR, I’Hommedieu D, et al. Potentiation of collagen synthesis in explants of the rabbit eye by 5 beta-dihydrocortisol. Invest Ophthalmol Vis Sci 1986; 27 (12): 1757–60

    PubMed  CAS  Google Scholar 

  107. Mindel JS, Tavitian HO, Smith Jr H, et al. Comparative ocular pressure elevation by medrysone, fluorometholone, and dexamethasone phosphate. Arch Ophthalmol 1980; 98 (9): 1577–8

    Article  PubMed  CAS  Google Scholar 

  108. Akduman L, Kolker AE, Black DL, et al. Treatment of persistent glaucoma secondary to periocular corticosteroids. Am J Ophthalmol 1996; 122 (2): 275–7

    PubMed  CAS  Google Scholar 

  109. Brennan KM, Brown RM, Roberts CW. A comparison of topical non-steroidal anti-inflammatory drugs to steroids for control of post cataract inflammation. Insight 1993; 18 (1): 8–9, 11

    PubMed  Google Scholar 

  110. Gieser DK, Hodapp E, Goldberg I, et al. Flurbiprofen and intraocular pressure. Ann Ophthalmol 1981; 13 (7): 831–3

    PubMed  CAS  Google Scholar 

  111. Novack GD, Howes J, Crockett RS, et al. Change in intraocular pressure during long-term use of loteprednol etabonate. J Glaucoma 1998; 7 (4): 266–9

    Article  PubMed  CAS  Google Scholar 

  112. Friedlaender MH, Howes J. A double-masked, placebo-controlled evaluation of the efficacy and safety of loteprednol etabonate in the treatment of giant papillary conjunctivitis: the Loteprednol Etabonate Giant Papillary Conjunctivitis Study Group I. Am J Ophthalmol 1997; 123 (4): 455–64

    PubMed  CAS  Google Scholar 

  113. Shulman DG, Lothringer LL, Rubin JM, et al. A randomized, double-masked, placebo-controlled parallel study of loteprednol etabonate 0.2% in patients with seasonal allergic conjunctivitis. Ophthalmology 1999; 106 (2): 362–9

    Article  PubMed  CAS  Google Scholar 

  114. Stewart R, Horwitz B, Howes J, et al. Double-masked, placebo-controlled evaluation of loteprednol etabonate 0.5% for postoperative inflammation: Loteprednol Etabonate Post-Operative Inflammation Study Group 1. J Cataract Refract Surg 1998; 24 (11): 1480–9

    PubMed  CAS  Google Scholar 

  115. Druzgala P, Wu WM, Bodor N. Ocular absorption and distribution of loteprednol etabonate, a soft steroid, in rabbit eyes. Curr Eye Res 1991; 10 (10): 933–7

    Article  PubMed  CAS  Google Scholar 

  116. Foster CS, Alter G, DeBarge LR, et al. Efficacy and safety of rimexolone 1% ophthalmic suspension vs 1% prednisolone acetate in the treatment of uveitis. Am J Ophthalmol 1996; 122 (2): 171–82

    PubMed  CAS  Google Scholar 

  117. Leibowitz HM, Bartlett JD, Rich R, et al. Intraocular pressureraising potential of 1.0% rimexolone in patients responding to corticosteroids. Arch Ophthalmol 1996; 114 (8): 933–7

    Article  PubMed  CAS  Google Scholar 

  118. Cheeks L, Green K. Distribution of a steroid antagonist in the eye following topical administration. Curr Eye Res 1986; 5 (9): 705–9

    Article  PubMed  CAS  Google Scholar 

  119. Green K, Phillips CI, Gore SM, et al. Ocular fluid dynamics response to topical RU486, a steroid blocker. Curr Eye Res 1985; 4 (5): 605–12

    Article  PubMed  CAS  Google Scholar 

  120. Phillips CI, Green K, Gore SM, et al. Eye drops of RU 486-6, a peripheral steroid blocker, lower intraocular pressure in rabbits. Lancet 1984; I(8380): 767–8

    Article  Google Scholar 

  121. Green K, Cheeks L, Slagle T, et al. Interaction between progesterone and mifepristone on intraocular pressure in rabbits. Curr Eye Res 1989; 8 (3): 317–20

    Article  PubMed  CAS  Google Scholar 

  122. Denis P, Elena PP, Nordmann JP, et al. Mifepristone (RU 486): in vitro binding to glucocorticoid receptors in iris-ciliary body and in vivo effects on intraocular pressure in rabbits [abstract]. Invest Ophthalmol Vis Sci 1993; 34 Suppl.: 925

    Google Scholar 

  123. Southren AL, I’Hommedieu D, Gordon GG, et al. Intraocular hypotensive effect of a topically applied cortisol metabolite: 3 alpha, 5 beta-tetrahydrocortisol. Invest Ophthalmol Vis Sci 1987; 28 (5): 901–3

    PubMed  CAS  Google Scholar 

  124. Southren AL, Wandel T, Gordon GG, et al. Treatment of glaucoma with 3 alpha, 5 beta-tetrahydrocortisol: a new therapeutic modality. J Ocul Pharmacol 1994; 10 (1): 385–91

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, R.C., Parapuram, S.K., Tripathi, B.J. et al. Corticosteroids and Glaucoma Risk. Drugs & Aging 15, 439–450 (1999). https://doi.org/10.2165/00002512-199915060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199915060-00004

Keywords

Navigation