Skip to main content
Log in

Disease-induced Changes in the Plasma Binding of Basic Drugs

  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The plasma binding of basic (cationic) drugs differs from that of the more completely studied acidic drugs. Basic drugs associate with a number of plasma constituents. α1-Acid glycoprotein, lipoprotein, and albumin all appear to play an important role in the binding of most of these drugs. Acidic drugs bind largely to albumin. The variation in plasma albumin is relatively narrow and is almost always in the direction of decreased concentrations. α1-Acid glycoprotein and lipoproteins show large fluctuations due both to physiological and pathological conditions. Decreases and increases in concentration have been observed. Associated with these changes in binding proteins, both decreases and increases in plasma binding of basic drugs have been recorded. Increased binding with disease appears to be virtually unique to basic drugs.

The implications of these newly described disease-induced increases in plasma binding have yet to be explored. With the limited information in hand the following consequences are predicted. Increased binding will tend to decrease the volume of distribution of total (bound plus free) drug. The clearance will be unchanged or decreased depending upon the initial clearance of the drug and the avidity of the protein binding. As the half-life depends upon both clearance and volume of distribution, changes in it will be variable, depending upon changes in these two parameters. It is predicted that the area under the free drug plasma concentration-time curve will decrease with increasing binding after an intravenous dose while it will be unchanged after an oral dose.

The relationship of total drug plasma concentration to free drug concentration will change with changes in binding. Thus plasma concentration monitoring of drug therapy by use of total drug concentrations will be inaccurate in situations in which large variations in binding occur. Misinterpretations of both therapeutic monitoring and pharmacokinetic studies in disease slates with altered binding are likely unless these changes are appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affrime, M. and Reidenberg, M.M.: The protein binding of some drugs in plasma from patients with alcoholic liver disease. European Journal of Clinical Pharmacology 8: 267–269 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Agostoni, A.; Vergani, C.; Stabilini, R.; Marasini, B.; Arcidiacono, R.; Sbaffi, A. and Binaghi, P.: Immunochemical quantitation of acute phase reactive proteins in myocardial infarction. American Heart Journal 80: 313–318 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Aladjemoff, L.; Dikstein, S. and Shafrir, E.: The binding of d-tubocurarine chloride to plasma proteins. Journal of Pharmacology and Experimental Therapeutics 123: 43–47 (1958).

    PubMed  CAS  Google Scholar 

  • Aronson, K.F.; Ekelund, G.; Kindmark, C.O. and Laurell, C.B.: Sequential changes of plasma proteins after surgical trauma. Scandinavian Journal of Clinical Investigation 29: 127–136 (1972).

    Article  Google Scholar 

  • Asmal, A.C.; Leary, W.P.; Thandroyen, F.; Botha, J. and Wattrus, S.: A dose-response study of the anticoagulant and lipolytic activities of heparin in normal subjects. British Journal of Clinical Pharmacology 7: 531–533 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Avant, G.R.; Schenker, S. and Alford, R.H.: The effect of cirrhosis on the disposition and elimination of clindamycin. Digestive Diseases 20: 223–230 (1975).

    Article  CAS  Google Scholar 

  • Babb, J.; Bishop, H.; Schneider, R.E.; Hawkins, C.F. and Hoare, A.M.: Plasma propranolol levels in infammatory disease. Lancet 1: 1413 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Baraka, A. and Gabali, F.: Correlation between tubocurarine requirements and plasma protein pattern. British Journal of Anaesthesia 40: 89–93 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Belpaire, F.M.; Bogaert, M.G. and Mussche, M.M.: Influence of acute renal failure on the protein binding of drugs in animals and in man. European Journal of Clinical Pharmacology 11: 27–32 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson, L.; Braithwaite, R.; Tybring, G.; Garle, M. and Borgå, O.: Techniques for plasma protein binding of demethyl-chlorimipramine. Clinical Pharmacology and Therapeutics 26: 265–271 (1979).

    PubMed  CAS  Google Scholar 

  • Bianchetti, G.; Graziani, G.; Brancaccio, D.; Morganti, A.; Leonetti, G.; Manfin, M.; Sega, R.; Gomeni, R.; Ponticelli, C. and Morselli, P.L.: Pharmacokinetics and effects of propranolol in terminal uraemic patients and in patients undergoing regular dialysis treatment. Clinical Pharmacokinetics 1: 373–384 (1975).

    Article  Google Scholar 

  • Bickel, M.H.: Binding of chlorpromazine and imipramine to red cells, albumin, lipoproteins and other blood components. Journal of Pharmacy and Pharmacology 27: 733–738 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Blaschke, T.F.: Protein binding and kinetics of drugs in liver disease. Clinical Pharmacokinetics 2: 32–44 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Borgå, O.; Piafsky, K.M., and Nilsen, G.: Plasma protein binding of basic drugs. Clinical Pharmacology and Therapeutics 22: 539–544 (1977).

    PubMed  Google Scholar 

  • Branch, R.A.; James, J. and Read, A.E.: A study of factors influencing drug disposition in chronic liver disease, using and the model drug (+)-propranolol. British Journal of Clinical Pharmacology 3: 243–249 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Chan, K.; Kendall, M.J.; Mitchard, M. and Wells, W.D.E.: The effect of ageing on plasma pethidine concentration. British Journal of Clinical Pharmacology 2: 297–302 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Chignell, C.F.: Protein binding; in Garett and Hirtz (Eds) Drug Fate and Metabolism: Methods and Techniques, vol. 1, pp. 187–228 (Marcel Dekker, New York and Basel 1977).

    Google Scholar 

  • Chio, L.F. and Oon, C.J.: Changes in serum alpha, antitrypsin, alpha, acid glycoprotein and beta2 glycoprotein 1 in patients with malignant hepatocellular carcinoma. American Cancer Society 43: 596–604 (1979).

    CAS  Google Scholar 

  • Cochran, E.; Carl, J.; Hanin, I.; Koslow, S. and Robins, E.: Effect of Vacutainer stoppers on plasma tricyclic levels: A reevaluation. Communications in Psychopharmacology 2: 495–503 (1978).

    PubMed  CAS  Google Scholar 

  • Cohen, E.N.; Corbascio, A. and Fleischli, G.: The distribution and fate of d-tubocurarine. Journal of Pharmacology and Experimental Therapeutics 147: 120–129 (1965).

    PubMed  CAS  Google Scholar 

  • Cotham, R.H. and Shand, D.: Spuriously low plasma propranolol concentrations resulting from blood collection methods. Clinical Pharmacology and Therapeutics 18: 535–538 (1975).

    PubMed  CAS  Google Scholar 

  • Craig, W.A. and Kunin, C.M.: Trimethoprim-sulfamethoxazole: Pharmacodynamic effects of urinary pH and impaired renal function. Annals of Internal Medicine 78: 491–497 (1973).

    PubMed  CAS  Google Scholar 

  • Danon, A. and Chen, Z.: Binding of imipramine to plasma proteins: Effect of hyperlipoproteinemia. Clinical Pharmacology and Therapeutics 25: 316–321 (1979).

    PubMed  CAS  Google Scholar 

  • Dealing, W.H.; McGuckin, W.F. and Elveback, L.R.: Serum α1, acid glycoprotein in chronic ulcerative colitis. Gastroenterology 56: 295–303 (1969).

    Google Scholar 

  • Ehrenebo, M.; Agurell, S.; Boreus, L.O.; Gordon, E. and Lonroth, R.: Pentazocine binding to blood cells and plasma proteins. Clinical Pharmacology and Therapeutics 16: 424–429 (1974).

    Google Scholar 

  • Evans, G.H. and Shand, D.G.: Disposition of propranolol VI Independent variation in steady-state circulating drug concentrations and half-life as a result of plasma drug binding in man. Clinical Pharmacology and Therapeutics 14: 494–500 (1973).

    PubMed  CAS  Google Scholar 

  • Evans, G.H.; Nies, A.S. and Shand, D.G.: The disposition of propranolol. III. Decreased half-life and volume of distribution as a result of plasma binding in man, monkey, dog and rat. Journal of Pharmacology and Experimental Therapeutics 180: 114–122 (1973).

    Google Scholar 

  • Freedberg, K.A.; Innis, R.B.; Creese, I. and Snyder, S.H.: Antischizophrenic drugs: Differential plasma protein binding and therapeutic activity. Life Sciences 24: 2467–2474 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Fremstad, D.; Bergerud, K.; Haffner, J.F.W. and Lunde, P.K.M.: Increased plasma binding of quinidine after surgery: A preliminary report. European Journal of Clinical Pharmacology 10: 441–444 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Fremstad D. and Bergerud, K.: Plasma protein binding of drugs as influenced by blood collection methods. Acta Pharmacologica et Toxicologica 39: 570–572 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Fremstad, D.: Increased plasma binding and decreased blood cell binding of quinidine in blood from anuric rats. Acta Pharmacologica et Toxicologica 41: 148–160 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Fremstad, D.; Nilsen, O.G.; Storstein, L.; Amlie, J. and Jacobsen, S.: Pharmacokinetics of quinidine related to plasma protein binding in man. European Journal of Clinical Pharmacology 15: 187–192 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Ganguly, M. and Westphal, U.: Steroid-protein interactions. Journal of Biological Chemistry 243: 6130–6139 (1968).

    PubMed  CAS  Google Scholar 

  • Ghoneim, M.M.; Kramer, E.; Bannow, R.; Pandya, H. and Routh, J.I.: Binding of d-tubocurarine to plasma proteins in normal man and in patients with hepatic or renal disease. Anesthesiology 39: 410–415 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Grafnetterova, J.; Vodrazka, Z.; Jandova, D.; Schuck, O.; Tomasek, R. and Lachmanova, J.: The binding of chloramphenicol to serum proteins in patients with chronic renal insufficiency. Clinical Nephrology 6: 448–450 (1976).

    PubMed  CAS  Google Scholar 

  • Gugler, R. and Azarnoff, D.L.: Drug protein binding and the nephrotic syndrome. Clinical Pharmacokinetics 1: 25–35 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Hughes, I.E. and Ilett, K.F.: The distribution of quinidine in human blood. British Journal of Clinical Pharmacology 2: 521–525 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Isaacs, V.E. and Schoenwald, R.D.: Binding of quinidine to a red blood cell hemolysate preparation. Journal of Pharmaceutical Sciences 63: 1267–1271 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Jellett, L.B.: The distribution of quinidine in human blood. British Journal of Clinical Pharmacology 2: 521–525 (1975).

    Article  PubMed  Google Scholar 

  • Jellett, L.B. and Shand, D.G.: Uptake of propranolol by washed human red blood cells. Pharmacologist 15: 245 (1973).

    Google Scholar 

  • Johansson, B.G.; Kindmark, C.O.; Trell, E.Y. and Wollheim, F.A.: Sequential changes of plasma proteins after myocardial infarction. Scandinavian Journal of Clinical Laboratory Investigation 29: 117–126 (Suppl. 124, 1972).

    Article  Google Scholar 

  • Johansson, K.A.; Applegren, C.; Borg, K.O. and Elofsson, R.: Binding of two adrenergic beta-receptor antagonists, alprenolol and H93/26, to human serum proteins. Acta Pharmacologica Suecica 11: 333–346 (1974).

    CAS  Google Scholar 

  • Judis, J.: Binding of codeine, morphine, and methadone to human serum proteins. Journal of Pharmaceutical Sciences 66: 802–806 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Kangas, L.; Kanto, J.; Forsstrom, J. and Iisalo, E.: The protein binding of diazepam and N-demethyldiazepam in patients with poor renal function. Clinical Nephrology 5: 114–118 (1976).

    PubMed  CAS  Google Scholar 

  • Kates, R.E.; Sokoloski, T.D. and Comstock, T.J.: Binding of quinidine to plasma proteins in normal subjects and in patients with hyperlipoproteinemias. Clinical Pharmacology and Therapeutics 23: 30–35 (1978).

    PubMed  CAS  Google Scholar 

  • Kerkay, J. and Westphal, U.: Steroid-protein interactions XIX. Complex formation between a, acid glycoprotein and steroid hormones. Biochimica et Biophysica Acta 170: 324–333 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Kessler, K.M.; Lowenthal, D.T.; Warner, H.; Gibson, T.; Briggs, W. and Reidenberg, M.M.: Quinidine elimination in patients with congestive heart failure on poor renal function. New England Journal of Medicine 290: 706–709 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Kessler, K.M.; Leech, R.C. and Spann, J.F.: Blood collection techniques, heparin and quinidine protein binding. Clinical Pharmacology and Therapeutics 25: 204–210 (1979).

    PubMed  CAS  Google Scholar 

  • Klotz, U.; McHorse, T.S.; Wilkinson, G.R. and Schenker, S.: The effect of cirrhosis on the disposition and elimination of meperidine in man. Clinical Pharmacology and Therapeutics 16: 667–675 (1974).

    PubMed  CAS  Google Scholar 

  • Klotz, U.: Pathophysiological and disease-induced changes in drug distribution volume: Pharmacokinetic implications. Clinical Pharmacokinetics 1: 204–218 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Klotz, U.; Fischer, C.; MuUer-Seydilitz, P.; Schulz, J. and Muller, W.A.: Alterations in the disposition of differently cleared drugs in patients with cirrhosis. Clinical Pharmacology and Therapeutics 26: 221–227 (1979).

    PubMed  CAS  Google Scholar 

  • Kober, A.; Sjoholm, I.; Borgå, O.; Odar-Cederlof, I.: Protein binding of diazepam and digitoxin in uremic and normal serum. Biochemical Pharmacology 28: 1037–1042 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Koch-Weser, J. and Sellers, E.M.: Binding of drugs to serum albumin. New England Journal of Medicine 294: 311–316; 526-531 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Kopitar, V.Z. and Weisenberger, H.: Specific binding of dipyridamol to human serum protein: Its isolation, identification, and characterization as a, acidic glycoprotein. Arzneimittel-Forschung 6: 859–862 (1971).

    Google Scholar 

  • Kornhauser, D.M.; Wood, A.J.J.; Vestal, R.E.; Wilkinson, G.R.; Branch R.A. and Shand, D.G.: Biological determinants of propranolol disposition in man. Clinical Pharmacology and Therapeutics 23: 165–174 (1978).

    PubMed  CAS  Google Scholar 

  • Krieglstein, J.; Meffert, A. and Niemeyer, D.H.: Influence of emulsified fat on chlorpromazine availability in rabbit blood. Experientia 30: 924–926 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Kurz, H.; Trunk, H. and Weitz, B.: Evaluation of methods to determine protein-binding of drugs. Arzneimittel-Forschung 27: 1373–1380 (1977).

    PubMed  CAS  Google Scholar 

  • Lowenthal, D.T. and Mutterperl, R.: The pharmacokinetics of multiple dose propranolol in chronic renal disease. Clinical Pharmacology and Therapeutics 19: 111 (1976).

    Google Scholar 

  • Mangione, A.; Imhoff, T.E.; Lee, R.V.; Shum, L.Y. and Jusko, W.J.: Pharmacokinetics of theophylline in hepatic disease. Chest 73: 616–622 (1978).

    Article  PubMed  CAS  Google Scholar 

  • McDevitt, D.G.; Frisk-Holmberg, M.; Hollifield, J.W. and Shand, D.G.: Plasma binding and the affinity of propranolol for a beta receptor in man. Clinical Pharmacology and Therapeutics 20: 152–157 (1976).

    PubMed  CAS  Google Scholar 

  • McHorse, T.S.; Wilkinson, G.R.; Johnson, R.F. and Schienker, S.: Effect of acute viral hepatitis in man on the disposition and elimination of meperidine. Gastroenterology 68: 775–780 (1975).

    PubMed  CAS  Google Scholar 

  • Mellstrom, B. and Tybring, G.: Ion-pair liquid chromatography of steady-state plasma levels of chlorimipramine and demethylchlorimipramine. Journal of Chromatography 143: 597–605 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Nilsen, O.G.: Serum albumin and lipoproteins as the quinidine binding molecules in normal human sera. Biochemical Pharmacology 25: 1007–1012 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Nilsen, O.G. and Jacobsen, S.: The binding of quinidine to protein fractions of normal human sera. Biochemical Pharmacology 24: 995–998 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Nilsen, O.G.; Storstein, L. and Jacobsen, S.: Effect of heparin and fatty acids on the binding of quinidine and warfarin in plasma. Biochemical Pharmacology 26: 229–235 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Nilsen, O.G.; Leren, P.; Aakesson, I. and Jacobsen, S.: Binding of quinidine in sera with different levels of triglycerides, cholesterol, and orosomucoid protein. Biochemical Pharmacology 27: 871–876 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Olsen, G.D.: Methadone binding to human plasma albumin. Science 176: 525–526 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Olsen, G.D.; Methadone binding to human plasma proteins. Clinical Pharmacology and Therapeutics 14: 338–343 (1973).

    PubMed  CAS  Google Scholar 

  • Olsen, G.D.: Morphine binding to human plasma proteins. Clinical Pharmacology and Therapeutics 17: 31–35 (1975).

    PubMed  CAS  Google Scholar 

  • Olsen, G.D.; Bennett, W.M. and Porter, G.A.: Morphine and Phenytoin binding to plasma proteins in renal and hepatic failure. Clinical Pharmacology and Therapeutics 17: 677–684 (1975).

    PubMed  CAS  Google Scholar 

  • Perez-Mateo, M. and Erill, S.: Protein binding of salicylate and quinidine in plasma from patients with renal failure, chronic liver disease and chronic respiratory insufficiency. European Journal of Clinical Pharmacology 11: 225–231 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Piafsky, K.M. and Borgå, O.: Inhibitor of drug-protein in “Vacutainer”. Lancet 2: 963 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Piafsky, K.M.; Sitar, D.S.; Rangno, R.E. and Ogilvie, R.I.: Theophylline disposition in patients with hepatic cirrhosis. New England Journal of Medicine 296: 1495–1497 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Piafsky, K.M. and Borgå, O.: Plasma protein binding of basic drugs II. Importance of α1-acid glycoprotein for interindividual variation. Clinical Pharmacology and Therapeutics 22: 545–549 (1977).

    PubMed  CAS  Google Scholar 

  • Piafsky, K.M.; Borgå, O.; Odar-Cederlof, I.; Johansson, C. and Sjoqvist, F.: Increased plasma protein binding of propranolol and chlorpromazine mediated by disease-induced elevations of plasma a, acid glycoprotein. New England Journal of Medicine 299: 1435–1439 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Piafsky, K.M. and Knoppert, D.: Binding of local anesthetics to a, acid glycoprotein. Clinical Research 26: 836A (1978).

    Google Scholar 

  • Potter, W.Z.; Muscettola, G. and Goodwin, F.K.: Binding of imipramine to plasma protein and to brain tissue: Relationship to CSF tricyclic levels in man. Psychopharmacology 63: 187–192 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Powis, G.: A study of the interaction of tetracycline with human serum lipoproteins and albumin. Journal of Pharmacy and Pharmacology. 26: 113–118 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Reidenberg, M.M., Odar-Cederlof, I.; Bahr, C.; Borgå, O. and Sjoqvist, F.: Protein binding of diphenylhydantoin and desmethylimipramine in plasma from patients with poor renal function. New England Journal of Medicine 285: 264–267 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Reidenberg, M.M. and Affrime, M.: Influence of disease of binding of drugs to plasma proteins. Annals of the New York Academy of Sciences 226: 115–126 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Richardo, M.J.: The immunoglobulins: biology and structure; in Henry (Ed) Clinical Diagnosis and Management by Laboratory Methods, II, 16th ed., pp. 1212–1244 (Saunders, Philadelphia, 1979).

    Google Scholar 

  • Romach, M.; Sellers, E.M.; Piafsky, K.M.; and Abel, J.: Intravascular modulation of methadone (M) free fraction. Clinical Pharmacology and Therapeutics 25: 246 (1979).

    Google Scholar 

  • Rowland, M.: Influence of route of administration of drug availability. Journal of Pharmaceutical Sciences 61: 70–74 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Rowland, M.; Benet, L.Z. and Graham, G.; Clearance concepts in pharmacokinetics. Journal of Pharmacokinetics and Biopharmaceutics 1: 123–136 (1973).

    PubMed  CAS  Google Scholar 

  • Rowland, M.; Blaschke, T.F.; Meffin, P.J. and Williams, R.L.: Pharmacokinetics in disease states modifying hepatic and metabolic function in the effect of disease states on drug pharmacokinetics. L.Z. Benet (Ed.) American Pharmaceutical Association 1976.

  • Sager, G.; Nilsen, O.G. and Jacobsen, S.: Variable binding of propranolol in human serum. Biochemical Pharmacology 28: 905–911 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Schanker, L.S.; Nafploitis, P.A. and Johnson, J.M.: Passage of organic bases into human red cells. Journal of Pharmacology and Experimental Therapeutics 133: 325–331 (1961).

    PubMed  CAS  Google Scholar 

  • Schneider, R.E.; Babb, J.; Bishop, H.; Mitchard, A.M. and Hawkins, C.F.: Plasma levels of propranolol in treated patients with coeliac disease and patients with Crohn’s disease. British Medical Journal 2: 794–795 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Schneider, R.E.; Bishop, H. and Hawkins, C.F.: Plasma propranolol concentrations and the erythrocyte sedimentation rate. British Journal of Clinical Pharmacology 8: 43–47 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Schneider, RE.; Bishop, H.; Hawkins, C.F. and Kitis, G.: Drug binding to a, glycloprotein. Lancet 1: 554 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Scott, B.J.; Bradwell, A.R.; Schneider, R.E. and Bishop, H.: Propranolol binding to serum orosomucoid. Lancet 1: 930 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Shand, D.G.; Cotham, R.H. and Wilkinson, G.R.: Perfusionlimited effects to plasma drug binding on hepatic drug extraction. Life Sciences 19: 125–130 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Shull, H.J.; Wilkinson, G.R.; Johnson, R. and Schenker, S.: Normal disposition of oxazepam in acute viral hepatitis and cirrhosis. Annals of Internal Medicine 84: 420–425 (1976).

    PubMed  CAS  Google Scholar 

  • Sjholm, I.; Kober, A.; Odar-Cederlof, I. and Borgå, O.: Protein binding of drugs in uremic and normal serum: The role of endogenous binding inhibitors. Biochemical Pharmacology 25: 1205–1213 (1976).

    Article  Google Scholar 

  • Sjoqvist, F.: Clinical use of drug plasma level determinations; in Azarnoff, Hollister and Shand (Eds) Year Book of Drug Therapy 1977, pp.13–20 (Year Book, Chicago 977).

    Google Scholar 

  • Skuterud, B.; Enger, E.; Halvorsen, S.; Jacobsen, S. and Lunde, P.K.M.: The basis of drug therapy in man. 5th International Congress on Pharmacology page 79 San Francisco (1972).

    Google Scholar 

  • Snyder, S. and Ashwell, G.: Quantitation of specific serum glycoproteins in malignancy. Clinica Chimica Acta 34: 449–455 (1971).

    Article  CAS  Google Scholar 

  • Synder, S.; Durham, B.C.; Iskandrian, A.S.; Coodley, E.L. and Linhart, J.W.: Serum lipids and glycoproteins in acute myocardial infarction. American Heart Journal 90: 582–586 (1975).

    Article  Google Scholar 

  • Song, C.S.; Merkatz, I.R.; Rifkind, A.B.; Gillette, P.N. and Kappas, A.: The influence of pregnancy and oral contraceptive steroids on the concentration of plasma proteins. American Journal of Obstetrics and Gynecology 108: 227–231 (1970).

    PubMed  CAS  Google Scholar 

  • Stargel, W.W.; Roe, C.R.; Routledge, P.A. and Shand, D.G.: Importance of blood-collection tubes in plasma lidocaine determinations. Clinical Chemistry 25: 617–619 (1979).

    PubMed  CAS  Google Scholar 

  • Stovner, J.; Theodorsen, L. and Bjelke, E.: Sensitivity to gallamine and pancuronium with special reference to serum proteins. British Journal of Anaesthesia 43: 953–958 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Tamir, I.; Rifkind, B.M. and Levy, R.I.: Measurements of lipids and evaluation of lipid disorders; in Henry (Ed) Clinical Diagnosis and Management by Laboratory Methods, vol. I, 16th ed., pp. 189–227 (Saunders, Philadelphia 1979).

    Google Scholar 

  • Thiessen, J.J.; Sellers, E.M.; Denbeigh, P. and Dolman, L.: Plasma protein binding of diazepam and tolbutamide in chronic alcoholics. Journal of Clinical Pharmacology 16: 345–351 (1976).

    PubMed  CAS  Google Scholar 

  • Thompson, J.M.: Pancuronium binding by serum proteins. Anaesthesia 31: 219–227 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Tillement, J.P.; Lhoste, F. and Giudicelli, J.F.: Disease and drug protein binding. Clinical Pharmacokinetics 3: 144–154 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Tucker, G.T.; Boyes, R.N.; Bridenbaugh, P.O. and Moore, D.C.: Binding of anilide-type local anesthetics in human plasma. Anesthesiology 33: 287–303 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Tucker, G.T.; Boyes, R.N.; Bridenbaugh, P.O. and Moore, D.C.; Binding of anilide-type local anesthetics in human plasma: II. Implications in vivo with special reference to transplacental distribution. Anesthetiology 33: 304–314 (1970).

    Article  CAS  Google Scholar 

  • Vallner, J.J.: Binding of drugs by albumin and plasma protein. Journal of Pharmaceutical Sciences 66: 447–465 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Vallner, J.J. and Chen, L.: β-Lipoproteins: Possible plasma transport proteins for basic drugs. Journal of Pharmaceutical Sciences 66: 420–421 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Veith, R.C.; Raisys, V.A. and Perera, C.: The clinical impact of blood collection methods of tricyclic antidepressants as measured by GC/MS-SIM. Communications in Psychopharmacology 2: 491–494 (1978).

    PubMed  CAS  Google Scholar 

  • Weeke, B. and Jarnum, S.: Serum concentration of 19 serum proteins in Crohn’s disease and ulcerative colitis. Gut 12: 297–302 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Weeke, B.; Weeke, E. and Bendixen, G.: The variation in twenty-one serum proteins before and after renal transplantation. Acta Medica Scandinavica 189: 113–118 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Weiss, J.F.; Morantz, R.A.; Bradley, W.P. and Chretien, P.B.: Serum acute-phase proteins and immunoglobulins in patients with gliomas. Cancer Research 39: 542–544 (1979).

    PubMed  CAS  Google Scholar 

  • Werner, M. and Odenthal, D.: Serum protein changes after gastrectomy as a model of acute phase reaction. Journal of Laboratory and Clinical Medicine 70: 302–310 (1967).

    PubMed  CAS  Google Scholar 

  • Wilkinson, G.R. and Shand, D.G.: A physiological approach to hepatic drug clearance. Clinical Pharmacology and Therapeutics 18: 377–390 (1975).

    PubMed  CAS  Google Scholar 

  • Wilkinson, G.R. and Schenker, S.: Pharmacokinetics of meperidine in man. Clinical Pharmacology and Therapeutics. 19: 486–488 (1976).

    CAS  Google Scholar 

  • Wood, M.; Shand, D.G. and Wood, A.J.J.: Altered drug binding due to the use of indwelling heparinized cannulas (heparin lock) for sampling. Clinical Pharmacology and Therapeutics 25: 103–107 (1979).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piafsky, K.M. Disease-induced Changes in the Plasma Binding of Basic Drugs. Clin Pharmacokinet 5, 246–262 (1980). https://doi.org/10.2165/00003088-198005030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198005030-00004

Keywords

Navigation