Skip to main content
Log in

Drug Binding in Plasma

A Summary of Recent Trends in the Study of Drug and Hormone Binding

  • Review Article
  • Clinical Pharmacokinetic Concepts
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The ligands are generally bound in plasma to a significant extent by several transport proteins (both high and low affinity), irrespective of their endogenous or exogenous origin. The protein binding of endogenous compounds (such as hormones) exhibits higher affinity and specificity than those of exogenous compounds (such as drugs). For plasma proteins that bind the same ligand(s), structural similarities or a common genetic origin may be found, although this is not a general rule. Alterations in ligand binding may be due to modifications of either the structure or the level of the binding protein. These modifications may result from genetic make up, physiology or pathology. In some situations, plasma binding may impair the distribution of drugs to tissues, with drug distribution then mainly restricted to the distribution compartment of the drug-binding protein. In other instances, the plasma drug-binding is permissive, and does not limit drug distribution to tissues. A given drug-transport protein system may have either a permissive or a restrictive effect on the drug distribution, depending on the tissue.

The physiological significance of the high-affinity transport proteins is not completely understood. These proteins may increase the plasma concentration of poorly hydrosoluble ligands, ensure a more uniform tissue distribution and increase the life of the ligands. The life of the protein may also be increased by ligand binding. High-affinity transport proteins are also involved in some specific carrier mediated transfer mechanisms. It is possible to demonstrate structure-binding relationships or binding selectivity for the plasma transport proteins, but these are quite independent of relationships observed at the receptor level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baulieu EE. Current approaches to steroid hormone-cell interactions. In Fuxe et al. (Eds) Central Regulation of the Endocrine System, pp. 239–260, Plenum Publishing Corporation, New York, 1979

    Chapter  Google Scholar 

  • Baulieu EE. Steroid hormone binding plasma proteins and their intra- and extra-cellular congeners. In Forest & Pugeat (Eds) Binding proteins of steroid hormones, Colloque INSERM, Vol 149, pp. 1–11, John Libbey Eurotext Ltd, London, 1986

    Google Scholar 

  • Benveniste J, Nunez D, Duriez P, Korth R, Bidault J, et al. Preformed PAF-acether and lyso PAF-acether are bound to blood lipoproteins. FEBS Letters 2: 371–376, 1988

    Article  Google Scholar 

  • Berde CB, Hudson BS, Simoni RD, Sklar LA. Human serum albumin. Spectroscopic studies of binding and proximity relationships for fatty acids and bilirubin. Journal of Biological Chemistry 254: 391–400, 1979a

    PubMed  CAS  Google Scholar 

  • Berde CB, Nagai M, Deutsch HF. Human alpha-foetoprotein. Fluorescence studies on binding and proximity relationships for fatty acids and bilirubin. Journal of Biological Chemistry 254: 12609–12614, 1979b

    PubMed  CAS  Google Scholar 

  • Bree F, Eap CB, Baumann P, Duché JC, Tillement JP. Comparison of drug binding capacities of two AAG peptidic variants of human origin. In Baumann et al. (Eds) Alpha-1-acid glycoprotein: genetics, biochemistry, physiological functions and pharmacology, pp. 399–403, Alan R. Liss Inc, New York, 1989b

    Google Scholar 

  • Bree F, Houin G, Barre J, Riant P, Tillement JP. Binding to alpha-1-acid glycoprotein and relevant apparent volume of distribution. In Baumann et al. (Eds) Alpha-1-acid glycoprotein: genetics, biochemistry, physiological functions and pharmacology, pp. 321–336, Alan R. Liss Inc, New York, 1989a

    Google Scholar 

  • Brock A. Binding of digitoxin to human serum albumin: Influence of free fatty acids, bile acids and protein unfolding on the digitoxinalbumin interaction. Acta Pharmacologica Toxicologica 38: 497–507, 1976

    Article  CAS  Google Scholar 

  • Brodie BB, Kurtz H, Schanker LJ. The importance of dissociation constant and lipid solubility on influencing the passage of drugs into the CSF. Journal of Pharmacology and Experimental Therapeutics 130: 20–25, 1960

    PubMed  CAS  Google Scholar 

  • Brown JR. Structural origins of mammalian albumins. Federation Proceedings 35: 2141–2144, 1976

    PubMed  CAS  Google Scholar 

  • Brown JR. Serum albumin. Amino acid sequence. In Rosenoer et al. (Eds) Albumin structure, function & uses, pp. 27–51, Pergamon Press, Oxford, 1977

    Google Scholar 

  • Brown MS, Goldstein JL. Receptor-mediated control of cholesterol metabolism. Science 191: 150–154, 1976

    Article  PubMed  CAS  Google Scholar 

  • Carter DC, He XM. Structure of human serum albumin. Science 249: 302–303, 1990

    Article  PubMed  CAS  Google Scholar 

  • Carter DC, He XM, Munson SH, Twigg PD, Gernert KM, et al. Three dimensional structure of human serum albumin. Science 244: 1195–1198, 1989

    Article  PubMed  CAS  Google Scholar 

  • Cooke NE. Isolation, structural determination and genetic analysis of the gene encoding serum Vitamin D binding protein. In Forest & Pugeat (Eds) Binding proteins of steroid hormones, Colloque INSERM, Vol. 149, pp. 169–170, John Libbey Eurotext Ltd, London, 1986

    Google Scholar 

  • Cooke NE, Haddad JG. Vitamin D binding Protein (Gc-Globulin). Endocrine Review 10: 294–307, 1989

    Article  CAS  Google Scholar 

  • Cooke NE, Willard HF, David EV, George DL. Direct regional assignment of the gene for vitamin D binding protein (Gc-globulin) to human chromosome 4q-11-g13 and identification of an associated DNA polymorphism. Human Genetics 73: 225–232, 1986

    Article  PubMed  CAS  Google Scholar 

  • Cornford EM, Diep CP, Pardridge WM. Blood-brain barrier transport of valproic acid. Journal of Neurochemistry 44: 1541–1550, 1985

    Article  PubMed  CAS  Google Scholar 

  • Eap CB, Baumann P. Isoelectric focusing of alpha-1-acid glycoprotein (orosomucoid) in immobilized pH gradients with 8M urea: detection of its desialylated variants using an alkaline phosphataselinked secondary antibody system. Electrophoresis 9: 650–654, 1988

    Article  PubMed  CAS  Google Scholar 

  • Eap CB, Baumann P. The genetic polymorphism of human alpha-1-acid glycoprotein. In Baumann et al. (Eds) Alpha-1-acid glycoprotein: genetics, biochemistry, physiological functions and pharmacology, pp. 111–125, Alan R. Liss Inc, New York, 1989

    Google Scholar 

  • Eap CB, Cuendet C, Baumann P. Selectivity in the binding of psychotropic drugs to the variants of alpha-1-acid glycoprotein. Naunyn-Schmiedebergs Archives of Pharmacology 337: 220–224, 1988a

    CAS  Google Scholar 

  • Eap CB, Cuendet C, Baumann P. Binding of amitriptyline to alpha-1-acid glycoprotein and its variants. Journal of Pharmacy and Pharmacology 40: 767–770, 1988b

    Article  PubMed  CAS  Google Scholar 

  • Eap CB, Cuendet C, Baumann P. Binding of d-methadone and dl-methadone to proteins in plasma of healthy volunteers: role of the variants of alpha-1-acid glycoprotein. Clinical Pharmacology and Therapeutics 47: 338–346, 1990

    Article  PubMed  CAS  Google Scholar 

  • Fehske KJ, Muller WE, Wollert U. The location of drug binding sites in human serum albumin. Biochemical Pharmacology 30: 687–692, 1981

    Article  PubMed  CAS  Google Scholar 

  • Gentin M, Vincent M, Brochon JC, Levesey AK, Cittanova N, et al. Time-resolved fluorescence of the single tryptophan residue in rat alpha-foetoprotein and rat serum albumin: analysis by the maximum-entropy method. Biochemistry 29: 10405–10412, 1990

    Article  PubMed  CAS  Google Scholar 

  • Gibbs EM, Dugaiczyk A. Origin of structural domains of the serum albumin gene family and a predicted structure of the gene for vitamin D-binding protein. Molecular Biology and Evolution 4: 364–370, 1987

    PubMed  CAS  Google Scholar 

  • Goodman DS. The interaction of human serum albumin with long chain fatty acid anions. Journal of the American Chemical Society 80: 3892–3898, 1958

    Article  CAS  Google Scholar 

  • Guechot J, Vaubourdolle M, Ballet F, Goboudeau J, Darnis F, et al. Hepatic uptake of sex steroid in men with alcoholic cirrhosis. Gastroenterology 92: 203–207, 1987

    PubMed  CAS  Google Scholar 

  • Haddad JG. Traffic, binding and cellular access of vitamin D sterols. In Peek WA (Ed.) Bone and mineral research, Vol. 5, pp. 291–305, Elsevier Science Publishers, Amsterdam, 1987

    Google Scholar 

  • Hammond GL. Molecular properties of corticosteroid binding globulin and the sex steroid binding protein. Endocrine Review 11: 65–80, 1990

    Article  CAS  Google Scholar 

  • Hammond GL, Smith CL, Paterson NAM, Sibbald WJ. A role for corticosteroid-binding globulin in delivery of cortisol to activated neutrophils. Journal of Clinical Endocrinology and Metabolism 71: 34–39, 1990

    Article  PubMed  CAS  Google Scholar 

  • Hayes A, Cooper RG. Studies on the absorption, distribution and excretion of propranolol in various species. Journal of Pharmacology and Experimental Therapeutics 176: 302–311, 1971

    PubMed  CAS  Google Scholar 

  • Heikinheimo O. Antiprogesterone steroid RU 486 pharmacokinetics and receptor binding in humans. Academic dissertation, Medical Faculty of the University of Helsinki, Hilsinki, Finland, 1989

    Google Scholar 

  • Hervé F. Fonctions de transport de l’alpha-1-foetoproteine et de l’albumine. Comparaison des mecanismes de liaison. Relations possibles avec la conformation des deux proteines. Ph.D. Thesis, Université Pierre et Marie Curie, Paris VI, Paris, 1986

    Google Scholar 

  • Hervé F, Duché JC, Barre J, Millot MC, Tillement JP. pH titration curves of the desialylated human alpha-1-acid glycoprotein variants by combined isoelectrofocusing-electrophoresis: utilization in the development of a fractionation method for the protein variants by chromatography on immobilized metal affinity adsorbent. Journal of Chromatography 577: 43–59, 1992

    Article  PubMed  Google Scholar 

  • Hervé F, Duché JC, Sportes N, Tillement JP. High-performance anion-exchange Chromatographic study of desialylated human alpha-1-acid glycoprotein variants: development of a fractionation method for the protein slow variants. Journal of Chromatography 539: 405–416, 1991

    Article  PubMed  Google Scholar 

  • Hervé F, Gomas E, Duché JC, Tillement JP. Fractionation of the genetic variants of human alpha-1-acid glycoprotein in the native form by chromatography on an immobilized copper(II) affinity adsorbent: heterogeneity of the separate variants by isoelectrofocusing and by concanavalin A affinity chromatography. Journal of Chromatography 615: 47–57, 1993a

    Article  PubMed  Google Scholar 

  • Hervé F, Gomas E, Duché JC, Tillement JP. Evidence for differences in the binding of drugs between the two main genetic variants of human alpha-1-acid glycoprotein. British Journal of Clinical Pharmacology 36: 241–249, 1993b

    Article  PubMed  Google Scholar 

  • Hervé F, Rajkowski KM, Martin MT, Dessen Ph, Cittanova N. Drug-binding properties of rat alpha-1-foetoprotein: binding of warfarin, phenylbutazone, azapropazone, diazepam, digitoxin and cholic acid. Biochemical Journal 221: 401–406, 1984

    PubMed  Google Scholar 

  • Hervé F, Rajkowski KM, Martin MT, Dessen Ph, Cittanova N. Drug-binding properties of rat alpha-foetoprotein: specificities of the phenylbutazone-binding and warfarin-binding sites. Biochemical Journal 239: 451–458, 1986

    PubMed  Google Scholar 

  • Hervé F, Rajkowski KM, Martin MT, Dessen Ph, Cittanova N. Participation of the lone tryptophan residue of rat alpha-foetoprotein in its drug binding sites: comparison with rat serum albumin. Biochemical Journal 244: 81–85, 1987a

    PubMed  Google Scholar 

  • Hervé F, Rajkowski KM, Martin MT, Dessen Ph, Cittanova N. The warfarin and phenylbutazone binding sites of rat alpha-1-fetoprotein (AFP): interaction with other drugs and estrogens. In Jacobson & Mizejewski (Eds) Biological activities of alpha-1-fetoprotein, Vol. I, pp. 51–67, CRC Press, Boca Raton, 1987b

    Google Scholar 

  • Hirano K, Watanabe Y, Adachi T, Ito Y, Sugiura M. Drug-binding properties of human alpha-foetoprotein. Biochemical Journal 231: 189–191, 1985

    PubMed  CAS  Google Scholar 

  • Jones DR, Hall SD, Jackson EK, Branch RA, Wilkinson GR. Brain uptake of benzodiazepines: effects of lipophilicity and plasma protein binding. Journal of Pharmacology and Experimental Therapeutics 245: 816–822, 1988

    PubMed  CAS  Google Scholar 

  • Kragh-Hansen U. Molecular aspects of ligand binding to serum albumin. Pharmacological Reviews 33: 17–53, 1981

    PubMed  CAS  Google Scholar 

  • Kragh-Hansen U. Relation between high affinity binding sites of markers for binding regions on human serum albumin. Biochemical Journal 225: 629–638, 1985

    PubMed  CAS  Google Scholar 

  • Kragh-Hansen U. Genetic variants of human serum albumin and proalbumin: identification and possible pharmacological significance. In Tillement et al. (Eds) Blood binding and drug transfer, pp. 31–48, Editions Fort et Clair, Paris, 1993

    Google Scholar 

  • Kragh-Hansen U, Brennan SO, Galliano M, Sugita O. Binding of warfarin, salicylate and diazepam to genetic variants of human serum albumin with known mutations. Molecular Pharmacology 37: 238–242, 1990a

    PubMed  CAS  Google Scholar 

  • Kragh-Hansen U, Minchiotti L, Brennan SO, Sugita O. Hormone binding to natural mutants of human serum albumin. European Journal of Biochemistry 193: 169–174, 1990b

    Article  PubMed  CAS  Google Scholar 

  • Kremer JMH, Wilting J, Janssen LMH. Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacological Reviews 40: 1–48, 1988

    PubMed  CAS  Google Scholar 

  • Krinsky NI, Cornwell DG, Oncley JL. The transport of vitamin A and carotenoids in human plasma. Archives of Biochemistry and Biophysics 73: 233–246, 1958

    Article  PubMed  CAS  Google Scholar 

  • Law SW, Dugaiczyk A. Homology between the primary structure of alpha-foetoprotein, deduced from a complete cDNA sequence, and seram albumin. Nature 291: 201–205, 1981

    Article  PubMed  CAS  Google Scholar 

  • Madison J, Arai K, Sakamoto Y, Feld RD, Kyle RA, et al. Genetic variants of seram albumin in Americans and Japanese. Proceedings of the National Academy of Sciences of the USA 88: 9853–9857, 1991

    Article  PubMed  CAS  Google Scholar 

  • Mendel CM, Weisiger RA, Jones AL, Cavalieri RR. Thyroid hormone-binding proteins in plasma facilitates uniform distribution of thyroxine within tissues: a perfused rat liver study. Endocrinology 120: 1742–1750, 1987

    Article  PubMed  CAS  Google Scholar 

  • Minchiotti L, Galliano M, Iadarola P, Meloni ML, Ferri G, et al. The molecular defect in a COOH-terminal-modified and shortened mutant of human seram albumin. Journal of Biological Chemistry 264: 3385–3389, 1989

    PubMed  CAS  Google Scholar 

  • Muller WE, Rick S, Branner F. Drug binding to human alpha-1-acid glycoprotein: focus on a single binding site. In Tillement & Lindenlaub (Eds) Protein binding and drug transport, pp. 29–47, FK. Schuttauer Verlag, Stuttgart, New York, 1986

    Google Scholar 

  • Oie S, Tozer TN. Effect of altered plasma protein binding on apparent volume of distribution. Journal of Pharmaceutical Sciences 68: 1203–1205, 1979

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf WH. Measurement of brain uptake of radiolabelled substances using a tritiated water internal standard. Brain Research 24: 372–376, 1970

    Article  PubMed  CAS  Google Scholar 

  • Pandian MR, Morgan C, Nelson JC, Fisher DA. Differentiating various abnormalities of thyroxin binding to serum proteins by radioelectrophoresis of thyroxin and immunoassay of binding proteins. Clinical Chemistry 36: 457–461, 1990

    PubMed  CAS  Google Scholar 

  • Pardridge WM. Transport of proteins bound hormones into tissues in vivo. Endocrine Reviews 2: 103–123, 1981

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM. Recent advances in blood-brain barrier transport. Annual Review of Pharmacology and Toxicology 28: 25–39, 1988

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM, Eisenberg J, Cefalu WT. Absence of albumin receptor on brain capillaries in vivo or in vitro. American Journal of Physiology 249: E264–E, 1985

    PubMed  CAS  Google Scholar 

  • Pardridge WM, Sakiyama R, Fierer G. Transport of propranolol and lidocaine through the rat blood brain barrier: primary role of globulin-bound drug. Journal of Clinical Investigation 71: 900–908, 1983

    Article  PubMed  CAS  Google Scholar 

  • Parmelee DC, Evenson MA, Deutsch HF. The presence of fatty acids in human alpha-foetoprotein. Journal of Biological Chemistry 253: 2114–2119, 1978

    PubMed  CAS  Google Scholar 

  • Paxton JW. Alpha-1-acid glycoprotein and binding of basic drugs. Methods and Findings in Experimental and Clinical Pharmacology 5: 635–648, 1983

    PubMed  CAS  Google Scholar 

  • Pemberton PA, Stein PE, Pepys MB, Potter JM, Carrel RW. Hormone binding globulins undergo serpin conformation change in inflammation. Nature 336: 257–258, 1988

    Article  PubMed  CAS  Google Scholar 

  • Rajkowski KM, Hervé F, Cittanova N. The interpretation of ligand displacement experiments: calculations for multisite acceptors. Computation in Biomedical Research 20: 324–332, 1987

    Article  CAS  Google Scholar 

  • Riant P, Urien S, Albengres E, Renouard A, Tillement JP. Effect of the binding of imipramine to erythrocytes and plasma proteins on its transport through the rat blood-brain barrier. Journal of Neurochemistry 51: 421–425, 1988

    Article  PubMed  CAS  Google Scholar 

  • Rosner W. The functions of corticosteroid-binding globulin and sex hormone-binding globulin: recent advances. Endocrine Reviews 11: 80–91, 1990

    Article  PubMed  CAS  Google Scholar 

  • Routledge PA. The plasma protein binding of basic drugs. British Journal of Clinical Pharmacology 22: 499–506, 1986

    Article  PubMed  CAS  Google Scholar 

  • Same DH, Refetoff S, Nelson JC, Linarelli LG. A new inherited abnormality of thyroxine binding globulin (TBG-San Diego) with decreased affinity for thyroxine and triiodothyronine. Journal of Clinical Endocrinology and Metabolism 68: 114–119, 1989

    Article  Google Scholar 

  • Schanker LS. Mechanism of drug absorption and distribution. Annual Review of Pharmacology 1: 29–44, 1961

    Article  CAS  Google Scholar 

  • Schmid K. Alpha-1-acid glycoprotein. In Putnam FW (Ed.) The plasma proteins. Structure, function and genetic control, Vol. 1, pp. 183–228, Academic Press, New York, 1975

    Google Scholar 

  • Schnitzer JE, Carley WW, Palade GE. Albumin interacts specifically with a 60 kDa microvascular endothelial glycoprotein. Proceeding of the National Academy of Sciences of the United States of America 85: 6773–6777, 1988

    Article  CAS  Google Scholar 

  • Tillement JP. The relationship between plasma protein binding distribution and pharmacokinetic of drugs. In Tillement JP (Ed.) Advances in pharmacology and therapeutics, Vol. 7, pp. 103–112, Pergamon Press, Oxford, New York, 1978

    Google Scholar 

  • Tillement JP, Houin G, Zini R, Urien S, Albengres E, et al. The binding of drugs to biological macromolecules in plasma: recent advances and therapeutic significance. Advances in Drug Research 13: 59–94, 1984

    CAS  Google Scholar 

  • Tillement JP, Urien S, Chaumet-Riffaud P, Riant P, Bree F, et al. Blood binding and tissue uptake of drugs: recent advances and perspectives. Fundamental and Clinical Pharmacology 2: 223–238, 1988

    Article  PubMed  CAS  Google Scholar 

  • Tillement JP, Zini R, D’Athis P, Boissier JR. Fixation de la chlorpromazine, de l’imipramine et de la nortriptyline sur les proteines plasmatiques. Journal de Pharmacologie Clinique 1: 227–233, 1974

    CAS  Google Scholar 

  • Tinguely D, Baumann P, Conti M, Jonzier-Perey M, Schopf J. Interindividual differences in the binding of antidepressants to plasma proteins: the role of the variants of alpha-1-acid glycoprotein. European Journal of Clinical Pharmacology 27: 661–666, 1985

    Article  PubMed  CAS  Google Scholar 

  • Urano Y, Sakai M, Watanabe K, Tamaoki T. Tandem arrangement of the albumin and alpha-foetoprotein genes in the human genome. Gene 32: 255–265, 1984

    Article  PubMed  CAS  Google Scholar 

  • Urien S, Albengres E, Zini R, Tillement JP. Evidence for binding of certain acidic drugs to alpha-1-acid glycoprotein. Biochemical Pharmacology 31: 3687–3689, 1982

    Article  PubMed  CAS  Google Scholar 

  • Urien S, Morin D, Tillement JP. Effect of alpha-1-acid glycoprotein, albumin and palmitic acid on the brain and salivary gland extraction of warfarin in rats. Journal of Pharmacology and Experimental Therapeutics 248: 781–785, 1989

    PubMed  CAS  Google Scholar 

  • Urien S, Pinquier JL, Paquette B, Chaumet-Riffaud P, Kiechel JR, et al. Effect of the binding of isradipine and darodipine to different plasma proteins on their transfer through the rat blood brain barrier: drug binding to lipoproteins does not limit the transfer of drug. Journal of Pharmacology and Experimental Therapeutics 242: 349–353, 1987

    PubMed  CAS  Google Scholar 

  • Vallner JJ, Chen L. Beta-lipoproteins: possible plasma proteins for basic drugs. Journal of Pharmacological Sciences 66: 420–421, 1977

    Article  CAS  Google Scholar 

  • Verbeeck RK, Blackburn JK, Lolewen GR. Clinical pharmacokinetics of non steroidal anti-inflammatory drugs. Clinical Pharmacokinetics 8: 297–331, 1983

    Article  PubMed  CAS  Google Scholar 

  • Weisiger RA, Gollan J, Ockner R. Receptor for albumin on the liver cell surface may mediate uptake of fatty acids and other albumin-bound substances. Science 211: 1048–1051, 1981

    Article  PubMed  CAS  Google Scholar 

  • Williams MH, Van Alstyne EL, Galbraith RM. Evidence of a novel association of unsaturated fatty acids with Gc (Vitamin D-binding protein). Biochemical and Biophysical Research Communications 153: 1019–1024, 1988

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Brune JL, Naylor SL, Cupples RL, Naberhaus KH, et al. Human group-specific component (Pc) is a member of the albumin family. Proceedings of the National Academy of Sciences of the USA 82: 7994–7998, 1985

    Article  PubMed  CAS  Google Scholar 

  • Zini R, Riant P, Barre J, Tillement JP. Disease-induced variations in plasma proteins levels: implications for drug dosage regimens (part 1). Clinical Pharmacokinetics 19: 147–159, 1990

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hervé, F., Urien, S., Albengres, E. et al. Drug Binding in Plasma. Clin. Pharmacokinet. 26, 44–58 (1994). https://doi.org/10.2165/00003088-199426010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199426010-00004

Keywords

Navigation