Skip to main content
Log in

The Relationship Between Serum Concentration and Therapeutic Effect of Haloperidol in Patients with Acute Schizophrenia

  • Review Article
  • Target Concentration Intervention
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Haloperidol is the most commonly used antipsychotic drug in the therapy of acute schizophrenia. Clinicians have been using therapeutic drug monitoring in an attempt to improve clinical application of this drug. The scale of interest in this area is emphasised by the large number of studies (about 50) concerning the serum concentration-therapeutic effect relationship (SCTER) of haloperidol, including 35 studies on patients with acute schizophrenia. However, conflicting results concerning the existence and position of a therapeutic window have emerged.

This article aims to provide a comprehensive review of the study design of studies in patients with acute schizophrenia before the study data are used for decision-making. For this purpose, a reproducible system for the evaluation of studies in this special area, a so-called total study score (TSS), was developed on an empirical basis. Thus, insufficient study design was found to be a reason for negative results. On the other hand, in spite of a great variability, the majority of studies with good design provided evidence for a significant SCTER: a bisigmoidal dependence of clinical effect on haloperidol serum concentration.

The therapeutic effects of haloperidol increase at low concentrations, and the concentration has a maximum effect at about 10 μg/L and again decreasing at higher concentrations. The data of 552 patients also fit to this model in a single scatter plot (pseudo-r2 = 0.076, p < 0.001). The position of the therapeutic window was determined at about 5.6 to 16.9 μg/L. Patients treated with serum concentrations within this optimal range had a significantly better response compared with outside this range (p < 0.001, Student t-test). Therefore, a quantitative synthesis of all available data by means of effect-size analysis provides a mean effect-size (ġ) = 0.499 ± 0.182 (standard deviation) for the comparison of haloperidol-treatment with serum concentrations within versus outside the therapeutic window.

Thus, because of this moderate positive effect, serum concentration assay of haloperidol is recommended for patients with acute schizophrenia in a therapeutic drug monitoring programme. The modalities of haloperidol therapeutic drug monitoring in clinical practice are discussed, e.g. patient selection, method and time for serum concentration measurement, influence of premedication and comedication, interpretation of results and dose adjustment. Clinical investigations into this subject should focus on covariates which are responsible for the variability of the SCTER. Serum concentration assay is advised for investigations of nonresponse to exclude patients with pseudo-drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hegarty JD, Baldessarini RJ, Tohen M, et al. One hundred years of schizophrenia: a meta-analysis of the outcome literature. Am J Psychiatry. 1994; 151: 1409–16.

    PubMed  CAS  Google Scholar 

  2. Bassuk EL, Gerson S. Deinstitutionalisation and mental health services. Sci Am. 1978; 238: 46–53.

    Article  PubMed  CAS  Google Scholar 

  3. Berger PA. Medical treatment of mental illness: Pharmacotherapies revolutionize psychiatric care and present scientific and ethical challenges to society. Science. 1978; 200: 974–81.

    Article  PubMed  CAS  Google Scholar 

  4. Boston Consulting Group. The contribution of pharmaceutical companies: what’s at stake for America. Boston (MA): Boston Consulting Group, 1993 Sep.

    Google Scholar 

  5. Fatemi HS, Meltzer HY, Roth BL. Atypical antipsychotic drugs: Clinical and preclinical studies. In: Czemansky JG, editor. Handbook of experimental pharmacology. Vol. 120: antipsychotics. Berlin: Springer Verlag, 1996: 77–103.

    Google Scholar 

  6. Gerlach J, Peacook L. New antipsychotics: the present status. Int Clin Psychopharmacol. 1995; 10 Suppl. 3: 39–48.

    Article  PubMed  Google Scholar 

  7. Tamminga CA, Lahti AC. The new generation of antipsychotic drugs. Int Clin Psychopharmacol. 1996; 11 Suppl. 2: 73–6.

    Article  PubMed  Google Scholar 

  8. Mattes A. Risperidone: how good is the evidence for efficacy? Schizophr Bull. 1997; 23: 155–61.

    Article  PubMed  CAS  Google Scholar 

  9. Balant-Gorgia AE, Balant L. Antipsychotic drugs: clinical pharmacokinetics of potential candidates forplasma concentration monitoring. Clin Pharmacokinet. 1987; 13: 65–90.

    Article  PubMed  CAS  Google Scholar 

  10. Baldessarini RJ, Cohen BM, Teicher MH. Significance of neuroleptic dose and plasma levels in the pharmacological treatment of psychoses. Arch Gen Psychiatry. 1988; 45: 79–91.

    Article  PubMed  CAS  Google Scholar 

  11. Eap CB, Koeb L, Baumann P. Artifacts in the analysis of thioridazine and other neuroleptics. J Pharmaceut Biomed Anal. 1993; 11: 451–7.

    Article  CAS  Google Scholar 

  12. Schley J. Photo-decomposition and metabolism of the phenothiazine drug perazine. Drug Res. 1986; 36: 635–637.

    CAS  Google Scholar 

  13. Ulrich S. Sensitive gas-liquid Chromatographic method for the assay of the neuroleptic drug cis(Z)-flupentixol in human serum or plasma. J Chromatogr B. 1995; 668: 31–40.

    Article  CAS  Google Scholar 

  14. Rivera-Calimlim L, Hershey L. Neuroleptic concentrations and clinical response. Ann Rev Pharmacol Toxicol. 1984; 24: 361–86.

    Article  CAS  Google Scholar 

  15. Dahl SG. Plasma level monitoring of antipsychotic drugs: clinical utility. Clin Pharmacokinet. 1986; 11: 36–61.

    Article  PubMed  CAS  Google Scholar 

  16. Preskorn SH, Burke MJ, Fast GA. Therapeutic drug monitoring: principles and practice. Psychiatr Clin North Am. 1993; 16: 611–41.

    PubMed  CAS  Google Scholar 

  17. Lohse MJ, Müller-Oerlinghausen B. Psychopharmaka. In: Schwabe U, Paffrath D, editors. Arzneiverordnungsreport’ 96. Stuttgart: Fischer Verlag, 1996: 383–402.

    Google Scholar 

  18. Wode-Helgodt B, Borg S, Fyrö B, et al. Clinical effects and drug concentrations in plasma and cerebrospinal fluid in psychotic patients treated with fixed doses of chlorpromazine. Acta Psychiatr Scand. 1978; 58: 149–73.

    Article  PubMed  CAS  Google Scholar 

  19. Rimon R, Averbuch I, Rozick P, et al. Serum and CSF levels of haloperidol by radioimmunoassay and radioreceptorassay during high-dose therapy of resistant schizophrenic patients. Psychopharmacol. 1981; 73: 197–9.

    Article  CAS  Google Scholar 

  20. D’Agostino RB, Weintraub M. Meta-Analysis: a method for synthesizing research. Clin Pharmacol Ther. 1995; 58: 605–15.

    Article  PubMed  Google Scholar 

  21. Gibaldi M. Meta-analysis: a review of its place in therapeutic decision making. Drugs. 1993; 46: 805–18.

    Article  PubMed  CAS  Google Scholar 

  22. Froemming JS, Lam YWF, Jann MW, et al. Pharmacokinetics of haloperidol. Clin Pharmacokinet. 1989; 17: 396–423.

    Article  PubMed  CAS  Google Scholar 

  23. Midha KK, Hawes EM, Hubbard JW, et al. The search for correlations between neuroleptic plasma levels and clinical outcome: a critical review. In: Meltzer HY, editor. Psychopharmacology: the third generation of progress. New York: Raven Press, 1987: 1341–51.

    Google Scholar 

  24. Rao ML. Zur Bedeutung der therapeutischen Serumspiegelüberwachung von Neuroleptika bei Nonresponse. In: Möller HJ, editor. Therapieresistenz unter Neuroleptikabehandlung. Wien: Springer Verlag, 1993: 85–97.

    Chapter  Google Scholar 

  25. Volavka J, Cooper ThB. Review of haloperidol blood level and clinical response: looking through the window. J Clin Psychopharmacol. 1987; 7: 25–30.

    Article  PubMed  CAS  Google Scholar 

  26. Forsman A, Ohman R. Applied pharmacokinetics of haloperidol in man. Curr Ther Res. 1977; 21: 396–411.

    CAS  Google Scholar 

  27. Haas S, Beckmann H. Pimozide versus haloperidol in acute schizophrenia: a double blind controlled study. Pharmacopsychiatria. 1982; 15: 70–4.

    Article  PubMed  CAS  Google Scholar 

  28. McEvoy JP, Stiller RL, Farr R. Plasma haloperidol levels drawn at neuroleptic threshold doses: a pilot study. J Clin Psychopharmacol. 1986; 6: 133–8.

    Article  PubMed  CAS  Google Scholar 

  29. Ericksen StE, Hurt StW, Chang S, et al. Haloperidol dose, plasma levels, and clinical response: a double-blind study. Psychopharmacol Bull. 1978; 14: 15–8.

    PubMed  CAS  Google Scholar 

  30. Möller HJ, Kissling W, Maurach R, et al. Beziehungen zwischen Haloperidol-Serumspiegel, Prolactin-Serumspiegel, antipsychotischem Effekt und extrapyramidalen Begleitwirkungen. Pharmacopsychiatria. 1981; 14: 27–34.

    Article  Google Scholar 

  31. Möller HJ, Kissling W. Zur Frage der Beziehung zwischen Haloperidol-Serumspiegel und antipsychotischem Effekt. In: Heinrich K, Klieser E, editors. Probleme der neuroleptischen Dosierung. Stuttgart: Schattauer Verlag, 1987: 85–95.

    Google Scholar 

  32. Bernardo M, Palao DJ, Arauxo A, et al. Monitoring plasma level of haloperidol in schizophrenia. Hosp Community Psychiatry. 1993; 44: 115–8.

    PubMed  CAS  Google Scholar 

  33. Palao DJ, Arauxo A, Brunet M, et al. Haloperidol: therapeutic window in schizophrenia. J Clin Psychopharmacol. 1994; 14: 303–10.

    Article  PubMed  CAS  Google Scholar 

  34. Coryell W, Kelly M, Perry PJ, et al. Haloperidol plasma levels and acute clinical change in schizophrenia. J Clin Psychopharmacol. 1990; 10: 397–402.

    Article  PubMed  CAS  Google Scholar 

  35. Kelly MW, Perry PJ, Coryell WH, et al. Reduced haloperidol plasma concentration and clinical response in acute exacerbations of schizophrenia. Psychopharmacology. 1990; 102: 514–20.

    Article  PubMed  CAS  Google Scholar 

  36. Swigar ME, Jatlow PI, Goicoechea N, et al. Ratio of serum prolactin to haloperidol and early clinical outcome in acute psychosis. Am J Psychiatry. 1984; 141: 1281–3.

    PubMed  CAS  Google Scholar 

  37. Miller DD, Hershey LA, Duffy JP, et al. Serum haloperidol concentrations and clinical response in acute psychosis. J Clin Psychopharmacol. 1984; 6: 305–10.

    Google Scholar 

  38. Smith RC, Baumgartner R, Burd A, et al. Haloperidol and thioridazine drug levels and clinical response in schizophrenia: comparison of gas-liquid chromatography and radioreceptor drug level assays. Psychopharmacol Bull. 1985; 21: 52–8.

    PubMed  CAS  Google Scholar 

  39. Brown WA, Laughren Th, Chisholm E, et al. Low serum neuroleptic levels predict relapse in schizophrenic patients. Arch Gen Psychiatry. 1982; 39: 998–1000.

    Article  PubMed  CAS  Google Scholar 

  40. Cohen BM, Lipinski JF, Pope HG, et al. Neuroleptic blood levels and therapeutic effects. Psychopharmacol. 1980; 70: 191–3.

    Article  CAS  Google Scholar 

  41. Cohen BM, Baldessarini RJ. Haloperidol and clinical response. Am J Psychiatry. 1981; 138: 1513–4.

    PubMed  CAS  Google Scholar 

  42. Contreras S, Alexander H, Faber R, et al. Neuroleptic radioreceptor activity and clinical outcome in schizophrenia. J Clin Psychopharmacol. 1987; 8: 95–7.

    Google Scholar 

  43. Dunlop StR, Shea PhA, Hendrie HC. The relationship between plasma and red blood cell neuroleptic levels, oral dosage, and clinical parameters in a chronic schizophrenic population. Biol Psychiatry. 1982; 17: 929–36.

    PubMed  CAS  Google Scholar 

  44. Michiels M, Hendricks R, Heykants J. Antibodies to haloperidol: a very sensitive tool for the radioimmunologic determination of some butyrophenones. Preclin Res Rep R1625/2. Beerse (Belgium): Janssen Pharmaceutica, 1976.

    Google Scholar 

  45. Poland RE, Rubin RT. Radioimmunoassay of haloperidol in human serum: correlation of serum haloperidol with serum prolactin. Life Sci. 1981; 29: 1837–45.

    Article  PubMed  CAS  Google Scholar 

  46. Clark BR, Tower BB, Rubin RT. Radioimmunoassay of haloperidol in human serum. Life Sci. 1977; 20: 319–26.

    Article  PubMed  CAS  Google Scholar 

  47. Ulrich S, Meyer FP, Neuhof S, et al. Megabore capillary gasliquid Chromatographic method with nitrogen-phosphorus selective detection for the assay of haloperidol and reduced haloperidol in serum: results of therapeutic drug-monitoring during acute therapy of eight schizophrenics. J Chromatogr B. 1995; 663: 289–96.

    Article  CAS  Google Scholar 

  48. Mendlewicz J, Linkowski P, Alexandre J, et al. Haloperidol plasma levels and clinical response in schizophrenia. In: Usdin E, Dahl SG, Gram LF, et al., editors. Clinical pharmacology in psychiatry. New York: Elsevier, 1981: 233–7.

    Google Scholar 

  49. Neborsky R, Janowsky DS, Perel J, et al. Haloperidol plasma/red blood cell ratios and clinical efficacy. Psychopharmacol Bull. 1982; 18: 17–20.

    PubMed  CAS  Google Scholar 

  50. Neborsky RJ, Janowsky DS, Perel JM, et al. Plasma/RBC haloperidol ratios and improvement in acute psychotic symptoms. J Clin Psychiatry. 1984; 45: 10–3.

    PubMed  CAS  Google Scholar 

  51. Linkowski P, Hubain Ph, von Frenckell R, et al. Haloperidol plasma levels and clinical response in paranoid schizophrenics. Eur Arch Psychiatr Neurol Sci. 1984; 234: 231–6.

    Article  CAS  Google Scholar 

  52. Bleeker JAC, Dingemans PM, Frohn-de Winter ML, et al. Plasma level and effect of low-dose haloperidol in acute psychosis. Psychopharmacol Bull. 1984; 20: 317–9.

    PubMed  CAS  Google Scholar 

  53. Potkin StG, Shen Y, Zhou D, et al. Does a therapeutic window for plasma haloperidol exist?: preliminary Chinese data. Psychopharmacol Bull. 1985; 21: 59–61.

    PubMed  CAS  Google Scholar 

  54. van Putten Th, Marder StR, May RA, et al. Plasma levels of haloperidol and clinical response. Psychopharmacol Bull. 1985; 21: 69–72.

    PubMed  Google Scholar 

  55. Shostak M, Perel JM, Stiller RL, et al. Plasma haloperidol and clinical response: a role for reduced haloperidol in antipsychotic activity? J Clin Psychopharmacol. 1987; 7: 394–400.

    Article  PubMed  CAS  Google Scholar 

  56. Aschauer HN, Schönbeck G, Langer G, et al. Plasma concentrations of haloperidol and prolactin and clinical outcome in acutely psychotic patients. Pharmacopsychiatria. 1988; 21: 246–51.

    Article  CAS  Google Scholar 

  57. Neto MR, Müller-Spahn F, Rüther E, et al. Haloperidol plasma level after a test dose as predictor for the clinical response to treatment in acute schizophrenic patients. Pharmacopsychiatria. 1988; 21: 226–31.

    Article  Google Scholar 

  58. Santos JL, Cabranes JA, Vazquez C, et al. Clinical response and plasma haloperidol levels in chronic and subchronic schizophrenia. Biol Psychiatry. 1989; 26: 381–8.

    Article  PubMed  CAS  Google Scholar 

  59. Müller WE, Vogel P, Gattaz WF. Haloperidol: Plasmaspiegel und antipsychotische Wirksamkeit — Pharmakologische Erklärungsansätze für fehlende Korrelationen. In: Laux G, Riederer P, editors. Plasmaspiegelbestimmung von Psychopharmaka: Therapeutisches Drug Monitoring. Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH, 1992: 67–73.

    Google Scholar 

  60. van Putten Th, Marder StR, Mintz J, et al. Haloperidol plasma levels and clinical response: a therapeutic window relationship. Am J Psychiatry. 1992; 149: 500–5.

    PubMed  Google Scholar 

  61. Shostak M, Perel JM. Radioimmunoassay for haloperidol. Fed Proc. 1976; 35: 531.

    Google Scholar 

  62. Rubin RT, Forsman A, Heykants J, et al. Serum haloperidol determinations in psychiatric patients: comparison of methods and correlation with serum prolactin. Archs Gen Psychiatr. 1980; 37: 1069–74.

    Article  CAS  Google Scholar 

  63. Pajersky J, Perel JM, Stiller RM. Comparison of gas chromatography and radioimmunoassay of haloperidol and applications in pharmacokinetic studies. Fed Proc. 1982; 41: 1065.

    Google Scholar 

  64. Wistedt B, Johanidesz G, Omerhodzic M, et al. Plasma haloperidol levels and clinical response in acute schizophrenia. Nord Psykiatr Tidsskr 1984; 9–13.

  65. Spitzer RL, Endicott J, Robins E. Research diagnostic criteria for a selected group of functional disorders. 3rd ed. New York: Biometrie Research Division, New York State Psychiatric Institute, 1977.

    Google Scholar 

  66. American Psychiatric Association, Committee on Nomenclature and Statistics. Diagnostic and statistical manual of mental disorders. American Psychiatric Association, editor. 3rd ed. Washington, DC: American Psychiatric Press, 1980.

    Google Scholar 

  67. Williams JBW, Spitzer RL. Research diagnostic criteria and DSM-III. Arch Gen Psychiatry. 1982; 39: 1283–9.

    Article  PubMed  CAS  Google Scholar 

  68. Soyka M. Die Alkoholhalluzinose: Klinik, Pathophysiologie und Therapie. Nervenarzt. 1996; 67: 891–5.

    Article  PubMed  CAS  Google Scholar 

  69. Jibiki I, Kubota T, Fujimoto K, et al. Effective clinical response at low plasma levels of haloperidol in Japanese schizophrenics with acute psychotic state. Jpn J Psychiatry Neurol. 1993; 47: 627–9.

    PubMed  CAS  Google Scholar 

  70. Bjørndal N, Bjerre M, Gerlach J, et al. High dosage haloperidol therapy in chronic schizophrenic patients: a double-blind study of clinical response, side effects, serum haloperidol, and serum prolactin. Psychopharmacology. 1980; 67: 17–23.

    Article  PubMed  Google Scholar 

  71. Gerlach J, Behnke K, Heltberg J, et al. Sulpiride and haloperidol in schizophrenia: a double-blind cross-over study of therapeutic effect, side effects and plasma concentrations. Br J Psychiatry. 1985; 147: 283–8.

    Article  PubMed  CAS  Google Scholar 

  72. Hollister LE, Kim DY. Intensive treatment with haloperidol of treatment-resistant chronic schizophrenic patients. Am J Psychiatry. 1982; 139: 1466–8.

    PubMed  CAS  Google Scholar 

  73. Itoh H, Yagi G, Fujii Y, et al. The relationship between haloperidol blood levels and clinical responses. Prog Neuro-Psychopharmacol Biol Psychiatr. 1984; 8: 285–92.

    Article  CAS  Google Scholar 

  74. Ko GN, Korpi ER, Kirch DG. Haloperidol and reduced haloperidol concentrations in plasma and red blood cells from chronic schizophrenic patients. J Clin Psychopharmacol. 1989; 9: 186–90.

    Article  PubMed  CAS  Google Scholar 

  75. Rao VAR, Bishop M, Coppen A. Clinical state, plasma levels of haloperidol and prolactin: a correlation study in chronic schizophrenia. Br J Psychiatry. 1980; 137: 518–21.

    Article  PubMed  CAS  Google Scholar 

  76. Rimón R, Averbuch I, Rozick P, et al. Serum and CSF levels of haloperidol by radioimmunoassay and radioreceptor assay during high-dose therapy of resistant schizophrenic patients. Psychopharmacology. 1981; 73: 197–9.

    Article  PubMed  Google Scholar 

  77. van Putten Th, Marshall BD, Liberman RP, et al. Systematic dose reduction in treatment-resistent schizophrenic patients. Psychopharmacol Bull. 1993; 29: 315–20.

    PubMed  Google Scholar 

  78. Bigelow LB, Kirch DG, Braun T, et al. Absence of relationship of serum haloperidol concentration and clinical response in chronic schizophrenia: a fixed-dose study. Psychopharmacol Bull. 1985; 21: 66–8.

    PubMed  CAS  Google Scholar 

  79. Kirch DG, Bigelow LB, Korpi ER, et al. Serum haloperidol concentration and clinical response in schizophrenia. Schizophr Bull. 1988; 14: 283–9.

    PubMed  CAS  Google Scholar 

  80. Cannon M, Jones P. Schizophrenia. J Neurol Neurosurg Psychiatry. 1996; 61: 604–13.

    Article  Google Scholar 

  81. Volavka J, Cooper Th, Czobor P, et al. Haloperidol blood levels and clinical effects. Arch Gen Psychiatry. 1992; 49: 354–61.

    Article  PubMed  CAS  Google Scholar 

  82. Volavka J, Cooper ThB, Czobor P, et al. Plasma haloperidol levels and clinical effects in schizophrenia and schizoaffective disorder. Arch Gen Psychiatry. 1995; 52: 837–45.

    Article  PubMed  CAS  Google Scholar 

  83. Moulin MA, Davy JP, Debruyne D, et al. Serum level monitoring and therapeutic effect of haloperidol in schizophrenic patients. Psychopharmacology. 1982; 76: 346–50.

    Article  PubMed  CAS  Google Scholar 

  84. Altamura C, Mauri M, Cavallaro R, et al. Reduced haloperidol/haloperidol ratio and clinical outcome in schizophrenia: preliminary evidences. Prog Neuropsychopharmacol Biol Psychiatry. 1988; 12: 689–94.

    Article  PubMed  CAS  Google Scholar 

  85. Magliozzi JR, Hollister LE, Arnold KV, et al. Relationship of serum haloperidol levels to clinical response in schizophrenic patients. Am J Psychiatry. 1981; 138: 365–7.

    PubMed  CAS  Google Scholar 

  86. Extein I, Augusthy KA, Gold MS, et al. Plasma haloperidol levels and clinical response in acute schizophrenia. Psychopharmacol Bull. 1982; 18: 156–8.

    PubMed  CAS  Google Scholar 

  87. Mavroidis ML, Kanter DR, Hirschowitz J, et al. Clinical response and plasma haloperidol levels in schizophrenia. Psychopharmacology. 1983; 81: 354–6.

    Article  PubMed  CAS  Google Scholar 

  88. Garver DL, Hirschowitz J, Glicksteen GA, et al. Haloperidol plasma and red blood cell levels and clinical antipsychotic response. J Clin Psychopharmacol. 1984; 4: 133–7.

    Article  PubMed  CAS  Google Scholar 

  89. Balant-Gorgia AE, Eisele R, Balant L, et al. Plasma haloperidol levels and therapeutic response in acute mania and schizophrenia. Eur Arch Psychiatry Neurol Sci. 1984; 234: 1–4.

    Article  PubMed  CAS  Google Scholar 

  90. Davis JM, Ericksen StE, Hur St, et al. Haloperidol plasma levels and clinical response: basic concepts and clinical data. Psychopharmacol Bull. 1985; 21: 48–51.

    PubMed  CAS  Google Scholar 

  91. Smith RC. Plasma haloperidol levels and clinical response. Arch Gen Psychiatry. 1987; 44: 1110–2.

    Article  PubMed  CAS  Google Scholar 

  92. Stevens A, Mahal A, Gaertner HJ. Haloperidol and reduced haloperidol serum levels: correlation with psychopathology in acute schizophrenia. Pharmacopsychiatria. 1992; 25: 218–23.

    Article  CAS  Google Scholar 

  93. Doddi S, Rifkin A, Karajgi B, et al. Blood levels of haloperidol and clinical outcome in schizophrenia. J Clin Psychopharmacol. 1994; 14: 187–95.

    Article  PubMed  CAS  Google Scholar 

  94. Ulrich S, Neuhof S, Braun V, et al. Therapeutic window of serum haloperidol concentration in acute schizophrenia and schizoaffective disorder. Pharmacopsychiatria. In press.

  95. Venitz J. Pharmacokinetic-pharmacodynamic modelling of reversible drug effects. In: Derendorf H, Hochhaus G, editors. Handbook of pharmacokinetic/pharmacodynamic correlation. Boca Raton: CRC Press, 1995: 1–34.

    Google Scholar 

  96. Nordström A-L, Farde L, Wiesel F-A, et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry. 1993; 33: 227–35.

    Article  PubMed  Google Scholar 

  97. Nyberg S, Farde L, Halldin Ch, et al. D2-dopamine receptor occupancy during low-dose treatment with haloperidol decanoate. Am J Psychiatry. 1995; 152: 173–8.

    PubMed  CAS  Google Scholar 

  98. Asberg M, Cronholm B, Sjöqvist F, et al. Relationship between plasma level and therapeutic effect of nortriptyline. BMJ. 1971; 4: 331–4.

    Article  Google Scholar 

  99. Seeman P. Therpeutic receptor-blocking concentrations of neuroleptics. Int Clin Psychopharmacol. 1995; 10 Suppl. 3: 5–13.

    Article  PubMed  Google Scholar 

  100. Crow TJ, MacMillan JF, Johnson AL, et al. A randomised controlled trial of prophylactic neuroleptic treatment. Br J Psychiatry. 1986; 148: 120–7.

    Article  PubMed  CAS  Google Scholar 

  101. Convit A, Volavka J, Czobor P, et al. Effect of subtle neurological dysfunction on response to haloperidol treatment in schizophrenia. Am J Psychiatry. 1994; 151: 49–56.

    PubMed  CAS  Google Scholar 

  102. Awad AG, Hogan TP, Voruganti LNP, et al. Patients’ subjective experiences on antipsychotic medication: implications for outcome and quality of life. Int Clin Psychopharmacol. 1995; 10 Suppl. 3: 123–32.

    Article  PubMed  Google Scholar 

  103. Altamura AC. A multidimensional (pharmacokinetic and clinical-biological) approach to neuroleptic response in schizophrenia with particular reference to drug resistance. Schizophr Res. 1992; 8: 187–98.

    Article  Google Scholar 

  104. Duncan E, Wolkin A, Angrist B, et al. Plasma homovanillic acid in neuroleptic responsive and nonresponsive schizophrenics. Biol Psychiatry. 1993; 34: 523–8.

    Article  PubMed  CAS  Google Scholar 

  105. Mauri MC, Vita A, Giobbio GM, et al. Prediction of response to haloperidol in schizophrenia: neuroendocrine, neuromorphological and clinical variables. Int Clin Psychopharmacol. 1994; 9: 3–7.

    Article  PubMed  CAS  Google Scholar 

  106. Ramchand R, Wei J, Ramchand CN, et al. Increased serum IgE in schizophrenic patients who responded poorly to neuroleptic treatment. Life Sci. 1994; 54: 1579–84.

    Article  PubMed  CAS  Google Scholar 

  107. Bogerts B. Derzeitiger Stand der biologischen Schizophrenieforschung: Relevanz für die Therapie. In: Bundesärztekammer, editor. Fortschritt und Fortbildung in der Medizin. Köln: Deutscher Ärzteverlag, 1988: 294–9.

    Google Scholar 

  108. Stevens A, Stevens I, Mahal A, et al. Haloperidol and lorazepam combined: Clinical effects and drug plasma levels in the treatment of acute schizophrenic psychosis. Pharmacopsychiatria. 1992; 25: 273–7.

    Article  CAS  Google Scholar 

  109. Arana GW, Goff DC, Friedman H, et al. Does carbamazepineinduced reduction of plasma haloperidol levels worsen psychotic symptoms? Am J Psychiatry. 1986; 143: 650–1.

    PubMed  CAS  Google Scholar 

  110. Fast DK, Jones BD, Kusalic M, et al. Effect of carbamazepine on neuroleptic plasma levels and efficacy. Am J Psychiatry. 1986; 143: 117–8.

    PubMed  CAS  Google Scholar 

  111. Jann MW, Ereshevsky L, Sakland SR, et al. Effects of carbamazepine on haloperidol levels. J Clin Psychopharmacol. 1985; 5: 106–9.

    Article  PubMed  CAS  Google Scholar 

  112. Dose M, Emrich HM. Carbamazepin als Adjuvans der neuroleptischen Behandlung schizophrener Psychosen. In: Müller-Oerlinghausen B, Haas S, Stoll KD, editors. Carbamazepin in der Psychiatrie. Stuttgart: Georg Thieme Verlag, 1989: 225–30.

    Google Scholar 

  113. Zwaag CV, McGee M, McEvoy JP, et al. Response of patients with treatment-refractory schizophrenia to clozapine within three serum levels ranges. Am J Psychiatry. 1996; 153: 1579–84.

    Google Scholar 

  114. Javaid JI, Janicak PG, Sharma RP, et al. Prediction of haloperidol steady-state levels in plasma after a single test dose. J Clin Psychopharmacol. 1996; 16: 45–50.

    Article  PubMed  CAS  Google Scholar 

  115. Olesen OV, Juul-Nielsen S, Rosenberg R. Neuroleptic treatment in a gerontopsychiatric department: serum concentrations of perphenazine and haloperidol. Nord J Psychiatry. 1994; 48: 337–42.

    Article  Google Scholar 

  116. Devanand DP, Cooper T, Sackeim HA, et al. Low dose oral haloperidol and blood levels in Alzheimer’s disease: a preliminary study. Psychopharmacol Bull. 1992; 28: 169–73.

    PubMed  CAS  Google Scholar 

  117. Bowen WD, Moses EL, Tolentino PJ, et al. Metabolites of haloperidol display preferential activity at sigma receptors compared to dopamine-D2 receptors. Eur J Pharmacol. 1990; 27: 111–8.

    Article  Google Scholar 

  118. Korpi ER, Wyatt R. Reduced haloperidol: effects on striatal dopamine metabolism and conversion to haloperidol in the rat. Psychopharmacology. 1984; 83: 34–7.

    Article  PubMed  CAS  Google Scholar 

  119. Kirch DG, Palmer MR, Egan M, et al. Electrophysiological interactions between haloperidol and reduced haloperidol, and dopamine, norepinephrine and phencyclidine in rat brain. Neuropharmacology. 1985; 24: 375–9.

    Article  PubMed  CAS  Google Scholar 

  120. Chang W-H, Shieh Y-S, Liu H-Ch, et al. Plasma reduced haloperidol/haloperidol ratios in schizophrenic patients treated with high dosages of haloperidol. Eur Neuropsychopharmacol. 1994; 4: 119–26.

    Article  PubMed  CAS  Google Scholar 

  121. Eyles DW, Stedman TJ, Pond SM. Nonlinear relationship between circulating concentrations of reduced haloperidol and haloperidol: evaluation of possible mechanisms. Psychopharmacology. 1994; 116: 161–6.

    Article  PubMed  CAS  Google Scholar 

  122. Bertilsson L, Dahl ML, Equist B, et al. Disposition of neuroleptics perphenazine, zuclopenthicol and haloperidol cosegregates with polymorphic debrisoquine hydroxylation. In: Gram LF, Balant LP, Meltzer HY, et al., editors. Clinical Pharmacology in Psychiatry. Berlin: Springer Verlag, 1993: 230–7.

    Chapter  Google Scholar 

  123. Chang WH, Chen TY, Lee CF, et al. Low plasma reduced haloperidol/haloperidol ratios in Chinese patients. Biol Psychiatry. 1987; 22: 1406–8.

    Article  PubMed  CAS  Google Scholar 

  124. Ereshevsky L, Saklad SR, Jann MJ, et al. Haloperidol and reduced haloperidol plasma levels in selected schizophrenic patients. J Clin Psychopharmacol. 1984; 4: 138–42.

    Google Scholar 

  125. Rollema H, Skolnik M, D’Engelbronner J, et al. PP+-like neurotoxicity of a pyridinium metabolite derived from haloperidol: in vivo microdialysis and in vitro mitochondrial studies. J Pharmacol Exp Ther. 1994; 268: 380–7.

    PubMed  CAS  Google Scholar 

  126. Subramanyam B, Rollema H, Woolf Th, et al. Identification of a potentially neurotoxic pyridinium metabolite of haloperidol in rats. Biochem Biophys Res Commun. 1990; 166: 238–44.

    Article  PubMed  CAS  Google Scholar 

  127. Eyles DW, McLennan HR, Jones A, et al. Quantitative analysis of two pyridinium metabolites of haloperidol in patients with schizophrenia. Clin Pharmacol Ther. 1994; 56: 512–20.

    Article  PubMed  CAS  Google Scholar 

  128. Eyles DW, Avent KM, Stedman TJ, et al. Two pyridinium metabolites of haloperidol are present in the brain of patients at post-mortem. Life Sci. 1997; 60: 529–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Ulrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulrich, S., Wurthmann, C., Brosz, M. et al. The Relationship Between Serum Concentration and Therapeutic Effect of Haloperidol in Patients with Acute Schizophrenia. Clin Pharmacokinet 34, 227–263 (1998). https://doi.org/10.2165/00003088-199834030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199834030-00005

Keywords

Navigation