Skip to main content
Log in

Pharmacokinetics of Pegylated Liposomal Doxorubicin

Review of Animal and Human Studies

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Pegylated liposomal doxorubicin (doxorubicin HCl liposome injection; Doxil® or Caelyx®) is a liposomal formulation of doxorubicin, reducing uptake by the reticulo-endothelial system due to the attachment of polyethylene glycol polymers to a lipid anchor and stably retaining drug as a result of liposomal entrapment via an ammonium sulfate chemical gradient. These features result in a pharmacokinetic profile characterised by an extended circulation time and a reduced volume of distribution, thereby promoting tumour uptake.

Preclinical studies demonstrated one- or two-phase plasma concentration-time profiles. Most of the drug is cleared with an elimination half-life of 20–30 hours. The volume of distribution is close to the blood volume, and the area under the concentration-time curve (AUC) is increased at least 60-fold compared with free doxorubicin. Studies of tissue distribution indicated preferential accumulation into various implanted tumours and human tumour xenografts, with an enhancement of drug concentrations in the tumour when compared with free drug.

Clinical studies of pegylated liposomal doxorubicin in humans have included patients with AIDS-related Kaposi’s sarcoma (ARKS) and with a variety of solid tumours, including ovarian, breast and prostate carcinomas. The pharmacokinetic profile in humans at doses between 10 and 80 mg/m2 is similar to that in animals, with one or two distribution phases: an initial phase with a half-life of 1–3 hours and a second phase with a half-life of 30–90 hours. The AUC after a dose of 50 mg/m2 is approximately 300-fold greater than that with free drug. Clearance and volume of distribution are drastically reduced (at least 250-fold and 60-fold, respectively). Preliminary observations indicate that utilising the distinct pharmacokinetic parameters of pegylated liposomal doxorubicin in dose scheduling is an attractive possibility.

In agreement with the preclinical findings, the ability of pegylated liposomes to extravasate through the leaky vasculature of tumours, as well as their extended circulation time, results in enhanced delivery of liposomal drug and/or radiotracers to the tumour site in cancer patients. There is evidence of selective tumour uptake in malignant effusions, ARKS skin lesions and a variety of solid tumours.

The toxicity profile of pegylated liposomal doxorubicin is characterised by dose-limiting mucosal and cutaneous toxicities, mild myelosuppression, decreased cardiotoxicity compared with free doxorubicin and minimal alopecia. The mucocutaneous toxicities are dose-limiting per injection; however, the reduced cardiotoxicity allows a larger cumulative dose than that acceptable for free doxorubicin.

Thus, pegylated liposomal doxorubicin represents a new class of chemotherapy delivery system that may significantly improve the therapeutic index of doxorubicin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Table II
Fig. 7
Table III
Fig. 8

Similar content being viewed by others

Notes

  1. Use of tradenames is for product identification only and does not imply endorsement.

References

  1. Gregoriadis G. Targeting of drugs: implications in medicine. Lancet 1981; II: 241–6

    Article  Google Scholar 

  2. Juliano R, Stamp D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun 1975; 63: 651–8

    Article  PubMed  CAS  Google Scholar 

  3. Poste G, Bucana C, Raz A, et al. Analysis of the fate of systemically administered liposomes and implications for their use in drug delivery. Cancer Res 1982; 42: 1412–22

    PubMed  CAS  Google Scholar 

  4. Hwang KJ, Padki MM, Chow DD, et al. Uptake of small liposomes by non-reticuloendothelial tissues. Biochim Biophys Acta 1987; 901: 88–96

    Article  PubMed  CAS  Google Scholar 

  5. Gabizon A, Papahadjopoulos D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci U S A 1988; 85: 6949–53

    Article  PubMed  CAS  Google Scholar 

  6. Martin FJ. Pegylated liposomal doxorubicin: scientific rationale and preclinical pharmacology. Oncology 1997; 11: 11–32

    Google Scholar 

  7. Gabizon A, Goren D, Cohen R, et al. Development of liposomal anthracyclines: from basics to clinical applications. J Control Release 1998; 53: 275–9

    Article  PubMed  CAS  Google Scholar 

  8. Gill PS, Espina BM, Muggia F, et al. Phase I/II clinical and pharmacokinetic evaluation of liposomal daunorubicin. J Clin Oncol 1995; 13: 996–1003

    PubMed  CAS  Google Scholar 

  9. Gelmon KA, Tolcher A, Diab AR, et al. Phase I study of liposomal vincristine. J Clin Oncol 1999; 17: 697–705

    PubMed  CAS  Google Scholar 

  10. Gabizon AA. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest 2001; 19: 424–36

    Article  PubMed  CAS  Google Scholar 

  11. Woodle MC, Lasic DD. Sterically stabilized liposomes. Biochim Biophys Acta 1992; 1113: 171–99

    Article  PubMed  CAS  Google Scholar 

  12. Zalipsky S. Polyethylene glycol-lipid conjugates. In: Lasic D, Martin F, editors. Stealth liposomes. Boca Raton: CRC Press, 1995: 93–102

    Google Scholar 

  13. Lasic D, Martin F, editors. Stealth liposomes. Boca Raton: CRC Press, 1995

    Google Scholar 

  14. Barenholz Y. Liposome application: problems and prospects. Curr Opin Colloid Interface Sci 2001; 6: 66–77

    Article  CAS  Google Scholar 

  15. Cullis PR, Hope MJ, Bally MB, et al. Influence of pH gradients on the transbilayer transport of drugs, lipids, peptides and metal ions into large unilamellar vesicles. Biochim Biophys Acta 1997; 1331: 187–211

    Article  PubMed  CAS  Google Scholar 

  16. Gabizon A, Goren D, Horowitz AT, et al. Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Adv Drug Deliv Rev 1997; 24: 337–44

    Article  CAS  Google Scholar 

  17. Wigler N, Inbar M, O’Brien M, et al. Reduced cardiac toxicity and comparable efficacy in a phase III trial of pegylated lipsomal doxorubicin (Caelyx/Doxil) vs doxorubicin for first-line treatment of metastatic breast cancer [abstract]. Proc Am Soc Clin Oncol (ASCO) 2002; 177

  18. Muggia FM. Liposomal encapsulated anthracyclines: new therapeutic horizons. Curr Oncol Rep 2001; 3: 156–62

    Article  PubMed  CAS  Google Scholar 

  19. Sharpe M, Easthope SE, Keating GM, et al. Polyethylene glycol-liposomal doxorubicin: a review of its use in the management of solid and haematological malignancies and AIDS related Kaposi’s sarcoma. Drugs 2002; 62: 2089–126

    Article  PubMed  CAS  Google Scholar 

  20. Working PK, Dayan AD. Pharmacological-toxicological expert report. CAELYX. (Stealth liposomal doxorubicin HC1). Hum Exp Toxicol 1996; 15: 751–85

    PubMed  CAS  Google Scholar 

  21. Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 1998; 95: 4607–12

    Article  PubMed  CAS  Google Scholar 

  22. Hashizume H, Baluk P, Morikawa S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000; 156: 1363–80

    Article  PubMed  CAS  Google Scholar 

  23. Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 1995; 55: 3752–6

    PubMed  CAS  Google Scholar 

  24. Lichtenberg D, Barenholz Y. Liposomes: preparation, characterization, and preservation. Vol 33. Glick D, editor. New York: Wiley, 1988

    Google Scholar 

  25. Grant GJ, Barenholz Y, Piskoun B, et al. DRV liposomal bupivacaine: preparation, characterization, and in vivo evaluation in mice. Pharm Res 2001; 18: 336–43

    Article  PubMed  CAS  Google Scholar 

  26. Lasic DD, Frederik PM, Stuart MC, et al. Gelation of liposome interior: a novel method for drug encapsulation. FEBS Lett 1992; 312: 255–8

    Article  PubMed  CAS  Google Scholar 

  27. Lasic DD, Ceh B, Stuart MC, et al. Transmembrane gradient driven phase transitions within vesicles: lessons for drug delivery. Biochim Biophys Acta 1995; 1239: 145–56

    Article  PubMed  Google Scholar 

  28. Haran G, Cohen R, Bar LK, et al. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta 1993; 1151: 201–15

    Article  PubMed  CAS  Google Scholar 

  29. Bolotin EM, Cohen R, Bar LK, et al. Ammonium sulfate gradients for efficient and stable remote loading of amphipathic weak bases into liposomes and ligandoliposomes. J Liposome Res 1994; 4: 455–79

    Article  Google Scholar 

  30. Horowitz AT, Barenholz Y, Gabizon AA. In vitro cytotoxicity of liposome-encapsulated doxorubicin: dependence on liposome composition and drug release. Biochim Biophys Acta 1992; 1109: 203–9

    Article  PubMed  CAS  Google Scholar 

  31. Gabizon AA. Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Adv Drug Deliv Rev 1995; 16: 285–94

    Article  CAS  Google Scholar 

  32. Bandak S, Goren D, Horowitz A, et al. Pharmacological studies of cisplatin encapsulated in long-circulating liposomes in mouse tumor models. Anticancer Drugs 1999; 10: 911–20

    Article  PubMed  CAS  Google Scholar 

  33. Siegal T, Horowitz A, Gabizon A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J Neurosurg 1995; 83: 1029–37

    Article  PubMed  CAS  Google Scholar 

  34. Gabizon AA, Barenholz Y, Bialer M. Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid: pharmacokinetic studies in rodents and dogs. Pharm Res 1993; 10: 703–8

    Article  PubMed  CAS  Google Scholar 

  35. Amantea M, Newman MS, Sullivan TM, et al. Relationship of dose intensity to the induction of palmar-plantar erythrodysesthia by pegylated liposomal doxorubicin in dogs. Hum Exp Toxicol 1999; 18: 17–26

    Article  PubMed  CAS  Google Scholar 

  36. Allen TM, Hansen C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta 1991; 1068: 133–41

    Article  PubMed  CAS  Google Scholar 

  37. Gabizon A, Tzemach D, Mak L, et al. Dose dependency of pharmacokinetics and therapeutic efficacy of pegylated liposomal doxorubicin (DOXIL) in murine models. J Drug Target 2002; 10: 539–48

    Article  PubMed  CAS  Google Scholar 

  38. Gabizon AA, Pappo O, Goren D, et al. Preclinical studies with doxorubicin encapsulated in polyethyleneglycol-coated liposomes. J Liposome Res 1993; 3: 517–28

    Article  CAS  Google Scholar 

  39. Riggs Jr ER, Bachur R. Clinical pharmacokinetics of anthracycline antibiotics. In: Ames MM, Powis G, Kovach JS, editors. Pharmacokinetics of anticancer agents in humans. Amsterdam: Elsevier, 1983: 229–278

    Google Scholar 

  40. Papahadjopoulos D, Allen TM, Gabizon A, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 1991; 88: 11460–4

    Article  PubMed  CAS  Google Scholar 

  41. Gabizon A, Martin F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin: rationale for use in solid tumours. Drugs 1997; 54: 15–21

    Article  PubMed  CAS  Google Scholar 

  42. Working PK, Newman MS, Huang SK, et al. Pharmacokinetics, biodistribution and therapeutic efficacy of doxorubicin encapsulated in Stealth liposomes (Doxil®). J Liposome Res 1994; 4: 667–87

    Article  Google Scholar 

  43. Vaage J, Donovan D, Uster P, et al. Tumor uptake of doxorubicin in polyethylene glycol-coated liposomes and therapeutic effect against a xenografted human pancreatic carcinoma. Br J Cancer 1997; 75: 482–6

    Article  PubMed  CAS  Google Scholar 

  44. Vaage J, Barbera-Guillem E, Abra R, et al. Tissue distribution and therapeutic effect of intravenous free or encapsulated liposomal doxorubicin on human prostate carcinoma xenografts. Cancer 1994; 73: 1478–84

    Article  PubMed  CAS  Google Scholar 

  45. Vaage J, Donovan D, Uster P, et al. Tumour uptake of doxorubicin in polyethylene glycol-coated liposomes and therapeutic effect against a xenografted human pancreatic carcinoma. Br J Cancer 1997; 75: 482–6

    Article  PubMed  CAS  Google Scholar 

  46. Huang SK, Lee KD, Hong K, et al. Microscopic localization of sterically stabilized liposomes in colon carcinoma-bearing mice. Cancer Res 1992; 52: 5135–43

    PubMed  CAS  Google Scholar 

  47. Yuan F, Leunig M, Huang SK, et al. Microvascular permeability and interstitial penetration of sterically stabilized (Stealth) liposomes in a human tumor xenograft. Cancer Res 1994; 54: 3352–6

    PubMed  CAS  Google Scholar 

  48. Gabizon AA. Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes. Cancer Res 1992; 52: 891–6

    PubMed  CAS  Google Scholar 

  49. Bally MB, Masin D, Nayar R, et al. Transfer of liposomal drug carriers from the blood to the peritoneal cavity of normal and ascitic tumor-bearing mice. Cancer Chemother Pharmacol 1994; 34: 137–46

    Article  PubMed  CAS  Google Scholar 

  50. Gabizon A, Chemla M, Tzemach D, et al. Liposome longevity and stability in circulation: effects on the in vivo delivery to tumors and therapeutic efficacy of encapsulated anthracyclines. J Drug Target 1996; 3: 391–8

    Article  PubMed  CAS  Google Scholar 

  51. Hong RL, Huang CJ, Tseng YL, et al. Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: is surface coating with polyethylene glycol beneficial? Clin Cancer Res 1999; 5: 3645–52

    PubMed  CAS  Google Scholar 

  52. Colbern GT, Hiller AJ, Musterer RS, et al. Significant increase in antitumor potency of doxorubicin HC1 by its encapsulation in pegylated liposomes. J Liposome Res 1999; 9: 523–38

    Article  CAS  Google Scholar 

  53. Uziely B, Jeffers S, Isacson R, et al. Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. J Clin Oncol 1995; 13: 1777–85

    PubMed  CAS  Google Scholar 

  54. Vail DM, Chun R, Thamm DH, et al. Efficacy of pyridoxine to ameliorate the cutaneous toxicity associated with doxorubicin containing pegylated (Stealth) liposomes: a randomized, double-blind clinical trial using a canine model. Clin Cancer Res 1998; 4: 1567–71

    PubMed  CAS  Google Scholar 

  55. Working PK, Newman MS, Sullivan T, et al. Reduction of the cardiotoxicity of doxorubicin in rabbits and dogs by encapsulation in long-circulating, pegylated liposomes. J Pharmacol Exp Ther 1999; 289: 1128–33

    PubMed  CAS  Google Scholar 

  56. Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 1994; 54: 987–92

    PubMed  CAS  Google Scholar 

  57. Marina NM, Cochrane D, Harney E, et al. Dose escalation and pharmacokinetics of pegylated liposomal doxorubicin (Doxil®) in children with solid tumors: a pediatric oncology group study. Clin Cancer Res 2002; 8: 413–8

    PubMed  CAS  Google Scholar 

  58. Hong RL, Tseng YL. Phase I and pharmacokinetic study of a stable, polyethylene-glycolated liposomal doxorubicin in patients with solid tumors: the relation between pharmacokinetic property and toxicity. Cancer 2001; 91: 1826–33

    Article  PubMed  CAS  Google Scholar 

  59. Lyass O, Uziely B, Ben-Yosef R, et al. Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil®) in metastatic breast carcinoma. Cancer 2000; 89: 1037–47

    Article  PubMed  CAS  Google Scholar 

  60. Hamilton A, Biganzoli L, Coleman R, et al. EORTC 10968: a phase I clinical and pharmacokinetic study of polyethylene glycol liposomal doxorubicin (Caelyx®, Doxil®) at a 6-week interval in patients with metastatic breast cancer. European Organization for Research and Treatment of Cancer. Ann Oncol 2002; 13: 910–8

    Article  PubMed  CAS  Google Scholar 

  61. Hubert A, Lyass O, Pode D, et al. Doxil® (Caelyx®): an exploratory study with pharmacokinetics in patients with hormone-refractory prostate cancer. Anticancer Drugs 2000; 11: 123–7

    Article  PubMed  CAS  Google Scholar 

  62. Amantea MA, Forrest A, Northfelt DW, et al. Population pharmacokinetics and pharmacodynamics of pegylated-li-posomal doxorubicin in patients with AIDS-related Kaposi’s sarcoma. Clin Pharmacol Ther 1997; 61: 301–11

    Article  PubMed  CAS  Google Scholar 

  63. Northfelt DW, Martin FJ, Working P, et al. Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma. J Clin Pharmacol 1996; 36: 55–63

    PubMed  CAS  Google Scholar 

  64. Legha SS, Benjamin RS, Mackay B, et al. Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann Intern Med 1982; 96: 133–9

    PubMed  CAS  Google Scholar 

  65. Gabizon A, Huang A, Martin F, et al. Doxorubicin encapsulated in polyethylene glycol-coated liposomes: initial clinical-pharmacokinetic studies in solid tumors. In: Lasic DD, Martin FJ, editors. Stealth liposomes. Boca Raton: CRC Press, 1995: 251–61

    Google Scholar 

  66. Ranson MR, Carmichael J, O’Byrne K, et al. Treatment of advanced breast cancer with sterically stabilized liposomal doxorubicin: results of a multicenter phase II trial. J Clin Oncol 1997; 15: 3185–91

    PubMed  CAS  Google Scholar 

  67. Toma S, Tucci A, Villani G, et al. Liposomal doxorubicin (Caelyx) in advanced pretreated soft tissue sarcomas: a phase II study of the Italian Sarcoma Group (ISG). Anticancer Res 2000; 20: 485–91

    PubMed  CAS  Google Scholar 

  68. Garcia AA, Kempf RA, Rogers M, et al. A phase II study of Doxil® (liposomal doxorubicin): lack of activity in poor prognosis soft tissue sarcomas. Ann Oncol 1998; 9: 1131–3

    Article  PubMed  CAS  Google Scholar 

  69. Gabizon AA, Muggia FM. Initial clinical evaluation of pegylated liposomal doxorubicin in solid tumors. In: Woodle M, Storm G, editors. Long-circulating liposomes: old drugs, new therapeutics. Austin: Landes Bioscience, 1998: 165–74

    Google Scholar 

  70. Lyass O, Hubert A, Gabizon AA. Phase I study of doxilcisplatin combination chemotherapy in patients with advanced malignancies. Clin Cancer Res 2001; 7: 3040–6

    PubMed  CAS  Google Scholar 

  71. Northfelt DW. Liposomal anthracycline chemotherapy in the treatment of AIDS-related Kaposi’s sarcoma. Oncology 1997; 11: 21–32

    Google Scholar 

  72. Symon Z, Peyser A, Tzemach D, et al. Selective delivery of doxorubicin to patients with breast carcinoma metastases by stealth liposomes. Cancer 1999; 86: 72–8

    Article  PubMed  CAS  Google Scholar 

  73. Harrington KJ, Mohammadtaghi S, Uster PS, et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 2001; 7: 243–54

    PubMed  CAS  Google Scholar 

  74. Safra T, Groshen S, Jeffers S, et al. Treatment of patients with ovarian carcinoma with pegylated liposomal doxorubicin: analysis of toxicities and predictors of outcome. Cancer 2001; 91: 90–100

    Article  PubMed  CAS  Google Scholar 

  75. Koukourakis MI, Koukouraki S, Giatromanolaki A, et al. Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J Clin Oncol 1999; 17: 3512–21

    PubMed  CAS  Google Scholar 

  76. Koukourakis MI, Koukouraki S, Fezoulidis I, et al. High intratumoural accumulation of stealth liposomal doxorubicin (Caelyx) in glioblastomas and in metastatic brain tumours. Br J Cancer 2000; 83: 1281–6

    Article  PubMed  CAS  Google Scholar 

  77. Koukourakis MI, Koukouraki S, Giatromanolaki A, et al. High intratumoral accumulation of stealth liposomal doxorubicin in sarcomasrationale for combination with radiotherapy. Acta Oncol 2000; 39: 207–11

    Article  PubMed  CAS  Google Scholar 

  78. Safra T, Muggia F, Jeffers S, et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol 2000; 11: 1029–33

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

A. Gabizon and Y. Barenholz received grant support from ALZA Corp., Mountain View, CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Gabizon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabizon, A., Shmeeda, H. & Barenholz, Y. Pharmacokinetics of Pegylated Liposomal Doxorubicin. Clin Pharmacokinet 42, 419–436 (2003). https://doi.org/10.2165/00003088-200342050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200342050-00002

Keywords

Navigation