Skip to main content
Log in

Penetration of Antibacterials into Bone

Pharmacokinetic, Pharmacodynamic and Bioanalytical Considerations

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Antibacterials play a key role in the treatment of bone infections and appropriate surgical prophylaxis. The rate and extent of penetration of antimicrobials into bone has been assessed and shown to be important for successful treatment in numerous studies. However, no recent review or critical evaluation of the analytical techniques is available. This review compares established and new sample preparation and analytical methods to measure bone concentrations.

We performed a systematic literature search in MEDLINE, EMBASE, conference abstracts and references from published articles on bone penetration of antibacterials. This article focuses on the standardization of drug analysis in bone, the extent and rate of bone penetration of antibacterials, and the design, evaluation and reporting techniques of pharmacokinetic studies of bone penetration. The focus is on studies conducted between 1998 and 2007, since a previous review was published in 1999. WinNonlin® Professional version 5.0.1 software was used for statistics.

Very different methods for sample preparation, drug analysis, data handling and reporting have been employed in bone penetration studies. There is substantial variability in the reported mean bone penetration between drugs and between different studies of the same drug. Quinolones, macrolides and linezolid have mean bone:serum concentration ratios that are commonly between 0.3 and 1.2, and higher ratios have been found for azithromycin (bone concentration in mg/kg of total bone). The ratios are usually between 0.15 and 0.3 for cephalosporins and glycopeptides, and between 0.1 and 0.3 for penicillins. Cephalosporins and penicillins have shown significantly lower (p<0.05) concentration ratios than linezolid. For 20 of 25 different drugs, the ratios were higher for cancellous bone than for cortical bone.

The available data show a larger extent of bone penetration for quinolones, macrolides and linezolid than for β-lactams. The bone penetration of penicillins and cephalosporins was significantly lower than that of linezolid. Guidelines on sample preparation, drug analysis, study design and pharmacokinetic evaluation of bone penetration studies are vitally needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Table I
Table II
Table III
Table IV
Table V

Similar content being viewed by others

References

  1. Lew DP, Waldvogel FA. Osteomyelitis. N Engl J Med 1997 Apr 3; 336(14): 999–1007

    Article  PubMed  CAS  Google Scholar 

  2. Trampuz A, Widmer AF. Infections associated with orthopedic implants. Curr Opin Infect Dis 2006 Aug; 19(4): 349–56

    Article  PubMed  CAS  Google Scholar 

  3. Lew DP, Waldvogel FA. Osteomyelitis. Lancet 2004 Jul 24–30; 364(9431): 369–79

    Article  PubMed  CAS  Google Scholar 

  4. Guyton AC, Hall JE. Textbook of medical physiology. 9th ed. Philadelphia (PA): Saunders, 1996

    Google Scholar 

  5. Cotran RS, Kumar V, Collins T, et al. Robbins pathological basis of disease. Philadelphia: W B Saunders Co, 1994

    Google Scholar 

  6. Mutschler E, Thews G, Vaupel P. Anatomie, Physiologie, Pathophysiologie des Menschen. 5th ed. Stuttgart: Wissenschafliche Verlagsgesellschaft mbH, 1999

    Google Scholar 

  7. Wittmann DH, Kotthaus E. Further methodological improvement in antibiotic bone concentration measurements: penetration of ofloxacin into bone and cartilage. Infection 1986; 14 Suppl. 4: S270–3

    Article  PubMed  CAS  Google Scholar 

  8. Drusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol 2004 Apr; 2(4): 289–300

    Article  PubMed  CAS  Google Scholar 

  9. Boselli E, Allaouchiche B. Diffusion in bone tissue of antibiotics [in French]. Presse Med 1999 Dec 18–25; 28(40): 2265–76

    PubMed  CAS  Google Scholar 

  10. US FDA Center for Drug Evaluation and Research. Guidance for industry: bioanalytical method validation. Rockville (MD): US FDA, 2001 May [online]. Available from URL: http://www.fda.gov/cder/Guidance/4252fnl.pdf [Accessed 2008 Nov 19]

    Google Scholar 

  11. Landersdorfer C, Holzgrabe U, Kinzig-Schippers M, et al. Concept of internal standard used to standardize tissue level measurements and allow valid comparison between agents [abstract]. 44th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2004 Oct 30–Nov 2; Washington, DC

    Google Scholar 

  12. Incavo SJ, Ronchetti PJ, Choi JH, et al. Penetration of piperacillin-tazobactam into cancellous and cortical bone tissues. Antimicrob Agents Chemother 1994 Apr; 38(4): 905–7

    Article  PubMed  CAS  Google Scholar 

  13. Haag R, Hölzlberger R, Rienhoff E, et al. Experimentelle Untersuchungen und Überlegungen zur Verteilung und zur verzögerten Freisetzung von Fosfomycin aus Knochengewebe. ZAC Zeitschrift für antimikrobielle antineoplastische Chemotherapie 1989; 7(1): 3–10

    CAS  Google Scholar 

  14. Weismeier K, Adam D, Heilmann HD, et al. Penetration of amoxycillin/clavulanate into human bone. J Antimicrob Chemother 1989 Nov; 24 Suppl. B: 93–100

    Article  PubMed  CAS  Google Scholar 

  15. Nungu KS, Larsson S, Wallinder L, et al. Bone and wound fluid concentrations of cephalosporins: oral cefadroxil and parenteral cefuroxime compared in 52 patients with a trochanteric fracture. Acta Orthop Scand 1995 Apr; 66(2): 161–5

    Article  PubMed  CAS  Google Scholar 

  16. Vuorisalo S, Pokela R, Satta J, et al. Internal mammary artery harvesting and antibiotic concentrations in sternal bone during coronary artery bypass. Int J Angiol 2000 Mar; 9(2): 78–81

    Article  PubMed  Google Scholar 

  17. Leigh DA. Determination of serum and bone concentrations of cephradine and cefuroxime by HPLC in patients undergoing hip and knee joint replacement surgery. J Antimicrob Chemother 1989 Jun; 23(6): 877–83

    Article  PubMed  CAS  Google Scholar 

  18. Malincarne L, Ghebregzabher M, Moretti MV, et al. Penetration of moxifloxacin into bone in patients undergoing total knee arthroplasty. J Antimicrob Chemother 2006 May; 57(5): 950–4

    Article  PubMed  CAS  Google Scholar 

  19. Bystedt H, Dahlbäck A, Dornbusch K, et al. Concentrations of azidocillin, erythromycin, doxycycline and clindamycin in human mandibular bone. Int J Oral Surg 1978 Oct; 7(5): 442–9

    Article  PubMed  CAS  Google Scholar 

  20. del Piano M, Nicosia R, Sessa R, et al. Study on tissue concentrations of antibiotics: bacampicillin in gingiva and maxillary bones. Chemotherapy 1988; 34(1): 13–7

    Article  PubMed  Google Scholar 

  21. Wilson AP, Taylor B, Treasure T, et al. Antibiotic prophylaxis in cardiac surgery: serum and tissue levels of teicoplanin, flucloxacillin and tobramycin. J Antimicrob Chemother 1988 Feb; 21(2): 201–12

    Article  PubMed  CAS  Google Scholar 

  22. Roth B. Penetration of parenterally administered rifampicin into bone tissue. Chemotherapy 1984; 30(6): 358–65

    Article  PubMed  CAS  Google Scholar 

  23. Djabarouti S, Boselli E, Allaouchiche B, et al. Determination of levofloxacin in plasma, bronchoalveolar lavage and bone tissues by high-performance liquid chromatography with ultraviolet detection using a fully automated extraction method. J Chromatogr B Analyt Technol Biomed Life Sci 2004 Jan 5; 799(1): 165–72

    Article  PubMed  CAS  Google Scholar 

  24. Graziani AL, Lawson LA, Gibson GA, et al. Vancomycin concentrations in infected and noninfected human bone. Antimicrob Agents Chemother 1988 Sep; 32(9): 1320–2

    Article  PubMed  CAS  Google Scholar 

  25. Braga PC, Pozzato C, Cedrini C, et al. Clinical pharmacokinetics of cefotaxime and penetration in sputum, bone, and prostatic tissue. Clin Ther 1982; 5(1): 69–78

    PubMed  CAS  Google Scholar 

  26. Kosmidis J, Stathakis C, Mantopoulos K, et al. Clinical pharmacology of cefotaxime including penetration into bile, sputum, bone and cerebrospinal fluid. J Antimicrob Chemother 1980 Sep; 6 Suppl. A: 147–51

    Article  PubMed  Google Scholar 

  27. Sirot J, Lopitaux R, Dumont C, et al. Penetration of cloxacillin into human bone tissue after oral administration [author’s translation]. Pathol Biol (Paris) 1982 Jun; 30(6): 332–5

    CAS  Google Scholar 

  28. Braga PC, Scaglione F, Villa S, et al. Cefoperazone pharmacokinetics and sputum levels after single/multiple IM injections in bronchopneumopathic patients and bone, pulmonary and prostatic tissue penetration. Int J Clin Pharmacol Res 1983; 3(5): 349–55

    PubMed  CAS  Google Scholar 

  29. Hierholzer G, Knothe H, Rehn J, et al. Fusidic acid concentrations in chronically inflamed tissue: studies of chronic posttraumatic osteomyelitis [in German]. Arzneimittelforschung 1966 Nov; 16(11): 1549–52

    PubMed  CAS  Google Scholar 

  30. Hierholzer G, Knothe H, Rehn J. Penetration of fusidic acid into aseptic bone tissue [in German]. Arzneimittelforschung 1970 Oct; 20(10): 1473–6

    PubMed  CAS  Google Scholar 

  31. Malizia T, Tejada MR, Ghelardi E, et al. Periodontal tissue disposition of azithromycin. J Periodontol 1997 Dec; 68(12): 1206–9

    Article  PubMed  CAS  Google Scholar 

  32. Malizia T, Batoni G, Ghelardi E, et al. Interaction between piroxicam and azithromycin during distribution to human periodontal tissues. J Periodontol 2001 Sep; 72(9): 1151–6

    Article  PubMed  CAS  Google Scholar 

  33. Del Tacca M, Danesi R, Bernardini N, et al. Roxithromycin penetration into gingiva and alveolar bone of odontoiatric patients. Chemotherapy 1990; 36(5): 332–6

    Article  PubMed  Google Scholar 

  34. Kutscha-Lissberg F, Hebler U, Muhr G, et al. Linezolid penetration into bone and joint tissues infected with methicillin-resistant staphylococci. Antimicrob Agents Chemother 2003 Dec; 47(12): 3964–6

    Article  PubMed  CAS  Google Scholar 

  35. Kuehnel TS, Schurr C, Lotter K, et al. Penetration of telithromycin into the nasal mucosa and ethmoid bone of patients undergoing rhino-surgery for chronic sinusitis. J Antimicrob Chemother 2005 Apr; 55(4): 591–4

    Article  PubMed  CAS  Google Scholar 

  36. Tolsdorff P. Penetration of ofloxacin into nasal tissues. Infection 1993 Jan–Feb; 21(1): 66–70

    Article  PubMed  CAS  Google Scholar 

  37. Bottcher S, von Baum H, Hoppe-Tichy T, et al. An HPLC assay and a microbiological assay to determine levofloxacin in soft tissue, bone, bile and serum. J Pharm Biomed Anal 2001 May; 25(2): 197–203

    Article  PubMed  CAS  Google Scholar 

  38. Cady WJ, Wulf BG, O’Neil MT, et al. Ceforanide vs cephalothin concentrations in total joint arthroplasty. Drug Intell Clin Pharm 1983 Sep; 17(9): 645–8

    PubMed  CAS  Google Scholar 

  39. Fong IW, Rittenhouse BR, Simbul M, et al. Bone penetration of enoxacin in patients with and without osteomyelitis. Antimicrob Agents Chemother 1988 Jun; 32(6): 834–7

    Article  PubMed  CAS  Google Scholar 

  40. Fong IW, Ledbetter WH, Vandenbroucke AC, et al. Ciprofloxacin concentrations in bone and muscle after oral dosing. Antimicrob Agents Chemother 1986 Mar; 29(3): 405–8

    Article  PubMed  CAS  Google Scholar 

  41. Weidekamm E, Portmann R. Penetration of fleroxacin into body tissues and fluids. Am J Med 1993 Mar 22; 94(3A): 75S–80S

    PubMed  CAS  Google Scholar 

  42. Kitzes-Cohen R, Farin D, Piva G, et al. Pharmacokinetics of vancomycin administered as prophylaxis before cardiac surgery. Ther Drug Monit 2000 Dec; 22(6): 661–7

    Article  PubMed  CAS  Google Scholar 

  43. de Lalla F, Novelli A, Pellizzer G, et al. Regional and systemic prophylaxis with teicoplanin in monolateral and bilateral total knee replacement procedures: study of pharmacokinetics and tissue penetration. Antimicrob Agents Chemother 1993 Dec; 37(12): 2693–8

    Article  PubMed  Google Scholar 

  44. Fraschini F, Scaglione F, Falchi M, et al. Miokamycin penetration into oral cavity tissues and crevicular fluid. Int J Clin Pharmacol Res 1989; 9(4): 293–6

    PubMed  CAS  Google Scholar 

  45. Warnke JP, Wildfeuer A, Eibel G, et al. Pharmacokinetics of ampicillin/sulbactam in patients undergoing spinal microneurosurgical procedures. Int J Clin Pharmacol Ther 1998 May; 36(5): 253–7

    PubMed  CAS  Google Scholar 

  46. Wildfeuer A, Muller V, Springsklee M, et al. Pharmacokinetics of ampicillin and sulbactam in patients undergoing heart surgery. Antimicrob Agents Chemother 1991 Sep; 35(9): 1772–6

    Article  PubMed  CAS  Google Scholar 

  47. Wildfeuer A, Mall witz J, Gotthardt H, et al. Pharmacokinetics of ampicillin, sulbactam and cefotiam in patients undergoing orthopedic surgery. Infection 1997 Jul–Aug; 25(4): 258–62

    Article  PubMed  CAS  Google Scholar 

  48. Meissner A, Haag R, Rahmanzadeh R. Adjuvant fosfomycin medication in chronic osteomyelitis. Infection 1989 May–Jun; 17(3): 146–51

    Article  PubMed  CAS  Google Scholar 

  49. Adam D, Heilmann HD, Weismeier K. Concentrations of ticarcillin and clavulanic acid in human bone after prophylactic administration of 5.2g of timentin. Antimicrob Agents Chemother 1987 Jun; 31(6): 935–9

    Article  PubMed  CAS  Google Scholar 

  50. Igawa HH, Sugihara T, Yoshida T, et al. Penetration of flomoxef into human maxillary and mandibular bones. Scand J Plast Reconstr Surg Hand Surg 1995 Sep; 29(3): 259–62

    Article  PubMed  CAS  Google Scholar 

  51. Polk R, Hume A, Kline BJ, et al. Penetration of moxalactam and cefazolin into bone following simultaneous bolus or infusion. Clin Orthop Relat Res 1983 Jul–Aug; (177): 216–21

    PubMed  Google Scholar 

  52. Rodvold KA, Gotfried MH, Cwik M, et al. Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose. J Antimicrob Chemother 2006 Dec; 58(6): 1221–9

    Article  PubMed  CAS  Google Scholar 

  53. Kaukonen JP, Tuomainen P, Makijarvi J, et al. Intravenous cefuroxime prophylaxis: tissue levels after one 3-gram dose in 40 cases of hip fracture. Acta Orthop Scand 1995 Feb; 66(1): 14–6

    Article  PubMed  CAS  Google Scholar 

  54. Massias L, Dubois C, de Lentdecker P, et al. Penetration of vancomycin in uninfected sternal bone. Antimicrob Agents Chemother 1992 Nov; 36(11): 2539–41

    Article  PubMed  CAS  Google Scholar 

  55. Martin C, Alaya M, Mallet MN, et al. Penetration of vancomycin into mediastinal and cardiac tissues in humans. Antimicrob Agents Chemother 1994 Feb; 38(2): 396–9

    Article  PubMed  CAS  Google Scholar 

  56. Benoni G, Cuzzolin L, Leone R, et al. Pharmacokinetics and human tissue penetration of flurithromycin. Antimicrob Agents Chemother 1988 Dec; 32(12): 1875–8

    Article  PubMed  CAS  Google Scholar 

  57. Raymakers JT, Schaper NC, van der Heyden JJ, et al. Penetration of ceftazidime into bone from severely ischaemic limbs. J Antimicrob Chemother 1998 Oct; 42(4): 543–5

    Article  PubMed  CAS  Google Scholar 

  58. Fracasso ME, Consolo V, Ferronato G, et al. Aztreonam penetration of bone and soft tissue, after IV infusion and bolus injection. J Antimicrob Chemother 1989 Mar; 23(3): 465–7

    Article  PubMed  CAS  Google Scholar 

  59. On A, Nightingale CH, Quintiliani R, et al. Lomefloxacin concentrations in bone after a single oral dose. Am J Med 1992 Apr 6; 92(4A): 15S–7S

    Article  PubMed  CAS  Google Scholar 

  60. Petitjean O, Tod M, Louchahi K. Influence of methodological aspects on tissue drug concentration estimation. J Pharm Biomed Anal 1995 Jun; 13(7): 817–22

    Article  PubMed  CAS  Google Scholar 

  61. Leigh DA, Marriner J, Nisbet D, et al. Bone concentrations of cefuroxime and cefamandole in the femoral head in 96 patients undergoing total hip replacement surgery. J Antimicrob Chemother 1982 Apr; 9(4): 303–11

    Article  PubMed  CAS  Google Scholar 

  62. Meissner A, Borner K, Koeppe P. Concentrations of ofloxacin in human bone and in cartilage. J Antimicrob Chemother 1990 Nov; 26 Suppl. D: 69–74

    Article  PubMed  Google Scholar 

  63. Raymakers JT, Houben AJ, van der Heyden JJ, et al. The effect of diabetes and severe ischaemia on the penetration of ceftazidime into tissues of the limb. Diabet Med 2001 Mar; 18(3): 229–34

    Article  PubMed  CAS  Google Scholar 

  64. Edmiston CE, Krepel CJ, Seabrook GR, et al. Tissue and fluid penetration of garenoxacin in surgical patients. Surg Infect (Larchmt) 2007 Apr; 8(2): 179–88

    Article  Google Scholar 

  65. von Baum H, Bottcher S, Abel R, et al. Tissue and serum concentrations of levofloxacin in orthopaedic patients. Int J Antimicrob Agents 2001 Oct; 18(4): 335–40

    Article  Google Scholar 

  66. Martin C, Viviand X, Alaya M, et al. Penetration of ceftriaxone (1 or 2 grams intravenously) into mediastinal and cardiac tissues in humans. Antimicrob Agents Chemother 1996 Mar; 40(3): 812–5

    PubMed  CAS  Google Scholar 

  67. Dehne MG, Muhling J, Sablotzki A, et al. Pharmacokinetics of antibiotic prophylaxis in major orthopedic surgery and blood-saving techniques. Orthopedics 2001 Jul; 24(7): 665–9

    PubMed  CAS  Google Scholar 

  68. Adam D, Weismeier K, Sorgel F, et al. Enoxacin concentration in bone tissue [in German]. Infection 1989; 17 Suppl. 1: S25–6

    Article  PubMed  Google Scholar 

  69. Renneberg J, Christensen OM, Thomsen NO, et al. Cefuroxime concentrations in serum, joint fluid and bone in elderly patients undergoing arthroplasty after administration of cefuroxime axetil. J Antimicrob Chemother 1993 Nov; 32(5): 751–5

    Article  PubMed  CAS  Google Scholar 

  70. Dounis E, Tsourvakas S, Kalivas L, et al. Effect of time interval on tissue concentrations of cephalosporins after tourniquet inflation: highest levels achieved by administration 20 minutes before inflation. Acta Orthop Scand 1995 Apr; 66(2): 158–60

    Article  PubMed  CAS  Google Scholar 

  71. Sirot J, Lopitaux R, Dumont C, et al. Diffusion of fosfomycin into bone tissue in man [in French]. Pathol Biol (Paris) 1983 Jun; 31(6): 522–4

    CAS  Google Scholar 

  72. Sorensen TS, Colding H, Schroeder E, et al. The penetration of cefazolin, erythromycin and methicillin into human bone tissue. Acta Orthop Scand 1978 Dec; 49(6): 549–53

    Article  PubMed  CAS  Google Scholar 

  73. Grimer RJ, Karpinski MR, Andrews JM, et al. Penetration of amoxycillin and clavulanic acid into bone. Chemotherapy 1986; 32(3): 185–91

    Article  PubMed  CAS  Google Scholar 

  74. Makiyama T, Asai T. Study on transfer of cefotaxime into bone tissue. Drugs 1988; 35 Suppl. 2: 88–92

    Article  PubMed  Google Scholar 

  75. Adam D, Reichart B, Williams KJ. Penetration of ceftazidime into human tissue in patients undergoing cardiac surgery. J Antimicrob Chemother 1983 Jul; 12 Suppl. A: 269–73

    Article  PubMed  Google Scholar 

  76. Nehrer S, Thalhammer F, Schwameis E, et al. Teicoplanin in the prevention of infection in total hip replacement. Arch Orthop Trauma Surg 1998; 118(1–2): 32–6

    Article  PubMed  CAS  Google Scholar 

  77. Wysocki S. Gewebespiegel verschiedener Antibiotika beim Menschen. Infection 1976; 4 Suppl. 2: S115–9

    Article  Google Scholar 

  78. Gradl W, Adam D. Apalcillinpharmakokinetik in verschiedenen Geweben einschließlich des Knochens bei Patienten mit Totalendoprothese-Operation. FAC Fortschritte der antimikrobiellen und antineoplastischen Chemotherapie 1985; 4-7: 1729–36

    Google Scholar 

  79. Gradl W, Adam D. Gewebekonzentrationen von Mezlocillin und Oxacillin bei Hüftprothesen-Implantationen. ZAC Zeitschrift für antimikrobielle antineoplastische Chemotherapie 1988; 6(4): 107–12

    Google Scholar 

  80. Boselli E, Breilh D, Biot L, et al. Penetration of piperacillin/tazobactam into cancellous and cortical bone tissue. Curr Ther Res 2001 July 2001; 62(7): 538–45

    Article  CAS  Google Scholar 

  81. Plaue R, Müller O, Fabricius K, et al. Untersuchungen über die Diffusionsrate von Fosfomycin in verschiedene menschliche Gewebe. Therapiewoche 1980; 30: 8329–33

    Google Scholar 

  82. Wittmann DH. Chemotherapeutic principles of difficult-to-treat infections in surgery: II. Bone and joint infections. Infection 1980; 8(6): 330–3

    Article  Google Scholar 

  83. Cain TJ, Jones GT, Woods P. Bone levels of cephradine and cefuroxime after intravenous administration in patients undergoing total hip replacement. Int Orthop 1987; 11(1): 61–3

    Article  PubMed  CAS  Google Scholar 

  84. Fitzgerald Jr RH, Kelly PJ, Snyder RJ, et al. Penetration of methicillin, oxacillin, and cephalothin into bone and synovial tissues. Antimicrob Agents Chemother 1978 Nov; 14(5): 723–6

    Article  PubMed  Google Scholar 

  85. Macfarlane JA, Mitchell AA, Walsh JM, et al. Spiramycin the the prevention of postoperative staphylococcal infection. Lancet 1968 Jan 6; 1(7532): 1–4

    Article  PubMed  CAS  Google Scholar 

  86. Rhoten RL, Murphy MA, Kalfas IH, et al. Antibiotic penetration into cervical discs. Neurosurgery 1995 Sep; 37(3): 418–21

    Article  PubMed  CAS  Google Scholar 

  87. Lovering AM, Walsh TR, Bannister GC, et al. The penetration of ceftriaxone and cefamandole into bone, fat and haematoma and relevance of serum protein binding to their penetration into bone. J Antimicrob Chemother 2001 Apr; 47(4): 483–6

    Article  PubMed  CAS  Google Scholar 

  88. Lovering AM, Perez J, Bowker KE, et al. A comparison of the penetration of cefuroxime and cephamandole into bone, fat and haematoma fluid in patients undergoing total hip replacement. J Antimicrob Chemother 1997 Jul; 40(1): 99–104

    Article  PubMed  CAS  Google Scholar 

  89. Scaglione F, De Martini G, Peretto L, et al. Pharmacokinetic study of cefodizime and ceftriaxone in sera and bones of patients undergoing hip arthroplasty. Antimicrob Agents Chemother 1997 Oct; 41(10): 2292–4

    PubMed  CAS  Google Scholar 

  90. Martin C, Bourget P, Alaya M, et al. Teicoplanin in cardiac surgery: intraoperative pharmacokinetics and concentrations in cardiac and mediastinal tissues. Antimicrob Agents Chemother 1997 May; 41(5): 1150–5

    PubMed  CAS  Google Scholar 

  91. Lovering AM, Zhang J, Bannister GC, et al. Penetration of linezolid into bone, fat, muscle and haematoma of patients undergoing routine hip replacement. J Antimicrob Chemother 2002 Jul; 50(1): 73–7

    Article  PubMed  CAS  Google Scholar 

  92. Rana B, Butcher I, Grigoris P, et al. Linezolid penetration into osteo-articular tissues. J Antimicrob Chemother 2002 Nov; 50(5): 747–50

    Article  PubMed  CAS  Google Scholar 

  93. Rimmelé T, Boselli E, Breilh D, et al. Diffusion of levofloxacin into bone and synovial tissues. J Antimicrob Chemother 2004 Mar; 53(3): 533–5

    Article  PubMed  CAS  Google Scholar 

  94. Massias L, Buffe P, Cohen B, et al. Study of the distribution of oral ciprofloxacin into the mucosa of the middle ear and the cortical bone of the mastoid process. Chemotherapy 1994; 40 Suppl. 1: 3–7

    Article  PubMed  CAS  Google Scholar 

  95. Middlehurst RJ, Pedlar J, Barker GR, et al. Cephradine penetration of mandibular bone. J Oral Maxillofac Surg 1989 Jul; 47(7): 672–3

    Article  PubMed  CAS  Google Scholar 

  96. Jacquez JA. Parameter identifiability is required in pooled data methods. J Pharmacokinet Biopharm 1996 Jun; 24(3): 301–5

    PubMed  CAS  Google Scholar 

  97. Hashimoto Y, Ozaki J, Koue T, et al. Simulation for the analysis of distorted pharmacodynamic data. Pharm Res 1994 Apr; 11(4): 545–8

    Article  PubMed  CAS  Google Scholar 

  98. Sheiner LB. The population approach to pharmacokinetic data analysis: rationale and standard data analysis methods. Drug Metab Rev 1984; 15(1–2): 153–71

    Article  PubMed  CAS  Google Scholar 

  99. Drusano GL, Preston SL, Van Guilder M, et al. A population pharmacokinetic analysis of the penetration of the prostate by levofloxacin. Antimicrob Agents Chemother 2000 Aug; 44(8): 2046–51

    Article  PubMed  CAS  Google Scholar 

  100. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn 2001 Oct; 28(5): 481–504

    Article  PubMed  CAS  Google Scholar 

  101. Jacqmin-Gadda H, Thiebaut R, Chene G, et al. Analysis of left-censored longitudinal data with application to viral load in HIV infection. Biostatistics 2000 Dec; 1(4): 355–68

    Article  PubMed  CAS  Google Scholar 

  102. Duval V, Karlsson MO. Impact of omission or replacement of data below the limit of quantification on parameter estimates in a two-compartment model. Pharm Res 2002 Dec; 19(12): 1835–40

    Article  PubMed  CAS  Google Scholar 

  103. Lynn HS. Maximum likelihood inference for left-censored HIV RNA data. Stat Med 2001 Jan 15; 20(1): 33–45

    Article  PubMed  CAS  Google Scholar 

  104. Hing JP, Woolfrey SG, Greenslade D, et al. Analysis of toxicokinetic data using NONMEM: impact of quantification limit and replacement strategies for censored data. J Pharmacokinet Pharmacodyn 2001 Oct; 28(5): 465–79

    Article  PubMed  CAS  Google Scholar 

  105. Thiebaut R, Guedj J, Jacqmin-Gadda H, et al. Estimation of dynamical model parameters taking into account undetectable marker values. BMC Med Res Methodol 2006; 6: 38

    Article  PubMed  Google Scholar 

  106. Asselineau J, Thiebaut R, Perez P, et al. Analysis of left-censored quantitative outcome: example of procalcitonin level [in French]. Rev Epidemiol Sante Publique 2007 Jun; 55(3): 213–20

    Article  PubMed  CAS  Google Scholar 

  107. Hennig S, Waterhouse TH, Bell SC, et al. A d-optimal designed population pharmacokinetic study of oral itraconazole in adult cystic fibrosis patients. Br J Clin Pharmacol 2007 Apr; 63(4): 438–50

    Article  PubMed  CAS  Google Scholar 

  108. Schurman DJ, Johnson Jr BL, Finerman G, et al. Antibiotic bone penetration: concentrations of methicillin and clindamycin phosphate in human bone taken during total hip replacement. Clin Orthop Relat Res 1975 Sep; (111): 142–6

    Article  PubMed  Google Scholar 

  109. Gnarpe H, Dornbusch K, Hagg O. Doxycycline concentration levels in bone, soft tissue and serum after intravenous infusion of doxycycline: a clinical study. Scand J Infect Dis Suppl 1976; (9): 54–7

    PubMed  Google Scholar 

  110. Dornbusch K. The detection of doxycycline activity in human bone. Scand J Infect Dis Suppl. 1976; (9): 47–53

    PubMed  Google Scholar 

  111. Wittmann DH, Kuipers TH, Fock R, et al. Bone concentrations of imipenem after a dose of imipenem/cilastatin [in German]. Infection 1986; 14 Suppl. 2: S130–7

    Article  PubMed  Google Scholar 

  112. Smilack JD, Flittie WH, Williams Jr TW. Bone concentrations of antimicrobial agents after parenteral administration. Antimicrob Agents Chemother 1976 Jan; 9(1): 169–71

    Article  PubMed  CAS  Google Scholar 

  113. Mouton JW, Theuretzbacher U, Craig WA, et al. Tissue concentrations: do we ever learn? J Antimicrob Chemother 2008 Feb; 61(2): 235–7

    Article  PubMed  CAS  Google Scholar 

  114. Theuretzbacher U. Tissue penetration of antibacterial agents: how should this be incorporated into pharmacodynamic analyses? Curr Opin Pharmacol 2007 Oct; 7(5): 498–504

    Article  PubMed  CAS  Google Scholar 

  115. Blumer JL, Reed MD, Kaplan EL, et al. Explaining the poor bacteriologic eradication rate of single-dose ceftriaxone in group a streptococcal ton-sillopharyngitis: a reverse engineering solution using pharmacodynamic modeling. Pediatrics 2005 Oct; 116(4): 927–32

    Article  PubMed  Google Scholar 

  116. Ryan DM, Cars O. Antibiotic assays in muscle: are conventional tissue levels misleading as indicator of the antibacterial activity? Scand J Infect Dis 1980; 12(4): 307–9

    PubMed  CAS  Google Scholar 

  117. Breilh D, Boselli E, Bel JC, et al. Diffusion of cefepime into cancellous and cortical bone tissue. J Chemother 2003 Apr; 15(2): 134–8

    PubMed  CAS  Google Scholar 

  118. Boselli E, Breilh D, Bel JC, et al. Diffusion of isepamicin into cancellous and cortical bone tissue. J Chemother 2002 Aug; 14(4): 361–5

    PubMed  CAS  Google Scholar 

  119. MacGregor RR, Gibson GA, Bland JA. Imipenem pharmacokinetics and body fluid concentrations in patients receiving high-dose treatment for serious infections. Antimicrob Agents Chemother 1986 Feb; 29(2): 188–92

    Article  PubMed  CAS  Google Scholar 

  120. Bauernfeind A, Wittmann DH. Retention von Fosfomycin im anorganischen Knochen-Hydroxyapatit [abstract]. In: Spitzy KH, Adam D, editors. International Symposium: Fosfomycin — ein neuartiges Antibiotikum; 1982 Apr 23–24; Salzburg

    Google Scholar 

  121. Lazzarini L, Novelli A, Marzano N, et al. Regional and systemic prophylaxis with teicoplanin in total knee arthroplasty: a tissue penetration study. J Arthroplasty 2003 Apr; 18(3): 342–6

    Article  PubMed  Google Scholar 

  122. D’Argenio DZ. Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments. Math Biosci 1990 Apr; 99(1): 105–18

    Article  PubMed  Google Scholar 

  123. D’Argenio DZ. Optimal sampling times for pharmacokinetic experiments. J Pharmacokinet Biopharm 1981 Dec; 9(6): 739–56

    PubMed  Google Scholar 

  124. Tod M, Mentré F, Merle Y, et al. Robust optimal design for the estimation of hyperparameters in population pharmacokinetics. J Pharmacokinet Biopharm 1998 Dec; 26(6): 689–716

    PubMed  CAS  Google Scholar 

  125. Retout S, Mentré F, Bruno R. Fisher information matrix for non-linear mixed-effects models: evaluation and application for optimal design of enoxaparin population pharmacokinetics. Stat Med 2002 Sep 30; 21(18): 2623–39

    Article  PubMed  Google Scholar 

  126. Graham G, Gueorguieva I, Dickens K. A program for the optimum design of pharmacokinetic, pharmacodynamic, drug metabolism and drug-drug interaction models. Comput Methods Programs Biomed 2005 Jun; 78(3): 237–49

    Article  PubMed  Google Scholar 

  127. Nestorov I, Graham G, Duffull S, et al. Modeling and stimulation for clinical trial design involving a categorical response: a phase II case study with naratriptan. Pharm Res 2001 Aug; 18(8): 1210–9

    Article  PubMed  CAS  Google Scholar 

  128. Waterhouse TH, Redmann S, Duffull SB, et al. Optimal design for model discrimination and parameter estimation for itraconazole population pharmacokinetics in cystic fibrosis patients. J Pharmacokinet Pharmacodyn 2005 Aug 2005; 32(3–4): 521–45

    Article  PubMed  CAS  Google Scholar 

  129. Green B, Duffull SB. Prospective evaluation of a D-optimal designed population pharmacokinetic study. J Pharmacokinet Pharmacodyn 2003 Apr; 30(2): 145–61

    Article  PubMed  CAS  Google Scholar 

  130. Duffull SB, Mentre F, Aarons L. Optimal design of a population pharmacodynamic experiment for ivabradine. Pharm Res 2001 Jan; 18(1): 83–9

    Article  PubMed  CAS  Google Scholar 

  131. Duffull SB, Retout S, Mentre F. The use of simulated annealing for finding optimal population designs. Comput Methods Programs Biomed 2002 Jul; 69(1): 25–35

    Article  PubMed  Google Scholar 

  132. Tam VH, Preston SL, Drusano GL. Optimal sampling schedule design for populations of patients. Antimicrob Agents Chemother 2003 Sep; 47(9): 2888–91

    Article  PubMed  CAS  Google Scholar 

  133. Drusano GL. Optimal sampling theory and population modelling: application to determination of the influence of the microgravity environment on drug distribution and elimination. J Clin Pharmacol 1991 Oct; 31(10): 962–7

    PubMed  CAS  Google Scholar 

  134. Lunke RJ, Fitzgerald Jr RH, Washington II JA. Pharmacokinetics of cefamandole in osseous tissue. Antimicrob Agents Chemother 1981 May; 19(5): 851–8

    Article  PubMed  CAS  Google Scholar 

  135. Ahmed S, Meghji S, Williams RJ, et al. Staphylococcus aureus fibronectin binding proteins are essential for internalization by osteoblasts but do not account for differences in intracellular levels of bacteria. Infect Immun 2001 May; 69(5): 2872–7

    Article  PubMed  CAS  Google Scholar 

  136. Ambrose PG, Bhavnani SM, Rubino CM, et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 2007 Jan 1; 44(1): 79–86

    Article  PubMed  CAS  Google Scholar 

  137. Zeitlinger M, Muller M, Joukhadar C. Lung microdialysis — a powerful tool for the determination of exogenous and endogenous compounds in the lower respiratory tract (mini-review). AAPS J 2005; 7(3): E600–8

    Article  PubMed  CAS  Google Scholar 

  138. Joukhadar C, Muller M. Microdialysis: current applications in clinical pharmacokinetic studies and its potential role in the future. Clin Pharmacokinet 2005; 44(9): 895–913

    Article  PubMed  CAS  Google Scholar 

  139. Stolle LB, Arpi M, Jorgensen PH, et al. In situ gentamicin concentrations in cortical bone: an experimental study using microdialysis in bone. Acta Orthop Scand 2003 Oct; 74(5): 611–6

    Article  PubMed  Google Scholar 

  140. Stolle LB, Arpi M, Holmberg-Jorgensen P, et al. Application of microdialysis to cancellous bone tissue for measurement of gentamicin levels. J Antimicrob Chemother 2004 Jul; 54(1): 263–5

    Article  PubMed  CAS  Google Scholar 

  141. Stolle LB, Plock N, Joukhadar C, et al. Microdialysis in bone tissue: pharmacokinetics of linezolid [abstract]. 45th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2005 Dec 16–19; Washington, DC

    Google Scholar 

  142. Thorsen K, Kristoffersson AO, Lerner UH, et al. In situ microdialysis in bone tissue: stimulation of prostaglandin E2 release by weight-bearing mechanical loading. J Clin Invest 1996 Dec 1; 98(11): 2446–9

    Article  PubMed  CAS  Google Scholar 

  143. Fischman AJ, Babich JW, Bonab AA, et al. Pharmacokinetics of [18F]trova-floxacin in healthy human subjects studied with positron emission tomography. Antimicrob Agents Chemother 1998 Aug; 42(8): 2048–54

    PubMed  CAS  Google Scholar 

  144. Fischman AJ, Livni E, Babich J, et al. Pharmacokinetics of [18F]fleroxacin in healthy human subjects studied by using positron emission tomography. Antimicrob Agents Chemother 1993 Oct; 37(10): 2144–52

    Article  PubMed  CAS  Google Scholar 

  145. Cremieux AC, Mghir AS, Bleton R, et al. Efficacy of sparfloxacin and autoradiographic diffusion pattern of [14C]sparfloxacin in experimental Staphylococcus aureus joint prosthesis infection. Antimicrob Agents Chemother 1996 Sep; 40(9): 2111–6

    PubMed  CAS  Google Scholar 

  146. Lew DP, Waldvogel FA. Use of quinolones in osteomyelitis and infected orthopaedic prosthesis. Drugs 1999; 58 Suppl. 2: 85–91

    Article  PubMed  CAS  Google Scholar 

  147. Jevon M, Guo C, Ma B, et al. Mechanisms of internalization of Staphylococcus aureus by cultured human osteoblasts. Infect Immun 1999 May; 67(5): 2677–81

    PubMed  CAS  Google Scholar 

  148. Hudson MC, Ramp WK, Nicholson NC, et al. Internalization of Staphylococcus aureus by cultured osteoblasts. Microb Pathog 1995 Dec; 19(6): 409–19

    Article  PubMed  CAS  Google Scholar 

  149. Tolsdorff P. Tissue and serum concentrations of ofloxacin in the ear region following a single daily oral dose of 400mg. Infection 1993 Jan-Feb; 21(1): 63–5

    Article  PubMed  CAS  Google Scholar 

  150. Etesse-Carsenti H, Giaume F, Barbarin A, et al. Kinetics of bone diffusion of ofloxacin after a single six milligram/kilogram dose infusion [abstract]. 3rd International Symposium on New Quinolones; 1990 Jul 12–14; Vancouver (BC)

    Google Scholar 

  151. Leone M, Sampol-Manos E, Santelli D, et al. Brain tissue penetration of ciprofloxacin following a single intravenous dose. J Antimicrob Chemother 2002 Oct; 50(4): 607–9

    Article  PubMed  CAS  Google Scholar 

  152. Kitzes-Cohen R, Erde M, Sharvit E, et al. Ciprofloxacin levels in malperfused tissues of patients with arterial occlusive diseases [abstract]. 3rd International Symposium on New Quinolones; 1990 Jul 12–14; Vancouver (BC)

    Google Scholar 

  153. Sunder-Plassmann I, Refior H, Seelmann R, et al. Penetration of temafloxacin into bone tissue [abstract]. 3rd International Symposium on New Quinolones; 1990 Jul 12–14; Vancouver (BC)

    Google Scholar 

  154. Sorgel F. Penetration of temafloxacin into body tissues and fluids. Clin Pharmacokinet 1992; 22 Suppl. 1: 57–63

    Article  PubMed  Google Scholar 

  155. Portmann R, Weidekamm E. Penetration of fleroxacin into human and animal tissues. Chemotherapy 1992; 38(3): 145–9

    Article  PubMed  CAS  Google Scholar 

  156. Miglioli PA, Kafka R, Bonatti H, et al. Fleroxacin uptake in ischaemic limb tissue. Acta Microbiol Immunol Hung 2001; 48(1): 11–5

    Article  PubMed  CAS  Google Scholar 

  157. Metallidis S, Charokopos N, Nikolaidis J, et al. Penetration of moxifloxacin into sternal bone of patients undergoing routine cardiopulmonary bypass surgery. Int J Antimicrob Agents 2006 Nov; 28(5): 428–32

    Article  PubMed  CAS  Google Scholar 

  158. Metallidis S, Topsis D, Nikolaidis J, et al. Penetration of moxifloxacin and levofloxacin into cancellous and cortical bone in patients undergoing total hip arthroplasty. J Chemother 2007 Dec; 19(6): 682–7

    PubMed  CAS  Google Scholar 

  159. Dornbusch K, Carlstrom A, Hugo H, et al. Antibacterial activity of clindamycin and lincomycin in human bone. J Antimicrob Chemother 1977 Mar; 3(2): 153–60

    Article  PubMed  CAS  Google Scholar 

  160. Nicholas P, Meyers BR, Levy RN, et al. Concentration of clindamycin in human bone. Antimicrob Agents Chemother 1975 Aug; 8(2): 220–1

    Article  PubMed  CAS  Google Scholar 

  161. Cluzel RA, Lopitaux R, Sirot J, et al. Rifampicin in the treatment of osteoarticular infections due to staphylococci. J Antimicrob Chemother 1984 Jun; 13 Suppl. C: 23–9

    Article  PubMed  Google Scholar 

  162. Sirot J, Lopitaux R, Cluzel R, et al. Rifampicin diffusion in non-infected human bone [author’s translation]. Ann Microbiol (Paris) 1977 Aug–Sep; 128(2): 229–36

    CAS  Google Scholar 

  163. Sirot J, Prive L, Lopitaux R, et al. Diffusion of rifampicin into spongy and compact bone tissue during total hip prosthesis operation [in French]. Pathol Biol (Paris) 1983 May; 31(5): 438–41

    CAS  Google Scholar 

  164. Ji AJ, Saunders JP, Amorusi P, et al. A sensitive human bone assay for quantitation of tigecycline using LC/MS/MS [abstract]. Interscience Conference on Antimicrobial Agents and Chemotherapy: 2006 Sep 27–30; Washington, DC

    Google Scholar 

  165. Darley ES, MacGowan AP. Antibiotic treatment of Gram-positive bone and joint infections. J Antimicrob Chemother 2004 Jun; 53(6): 928–35

    Article  PubMed  CAS  Google Scholar 

  166. Mader JT, Adams K, Morrison L. Comparative evaluation of cefazolin and clindamycin in the treatment of experimental Staphylococcus aureus osteomyelitis in rabbits. Antimicrob Agents Chemother 1989 Oct; 33(10): 1760–4

    Article  PubMed  CAS  Google Scholar 

  167. Mueller SC, Henkel KO, Neumann J, et al. Perioperative antibiotic prophylaxis in maxillofacial surgery: penetration of clindamycin into various tissues. J Craniomaxillofac Surg 1999 Jun; 27(3): 172–6

    Article  PubMed  CAS  Google Scholar 

  168. Troy S. Tissue distribution of tigecycline in rats. Pearl River (NY): Wyeth-Ayerst Research, 2004. (Data on file)

    Google Scholar 

  169. Rayner CR, Baddour LM, Birmingham MC, et al. Linezolid in the treatment of osteomyelitis: results of compassionate use experience. Infection 2004 Feb; 32(1): 8–14

    Article  PubMed  CAS  Google Scholar 

  170. Borner K, Hahn F, Koeppe P. Concentrations of vancomycin in human bone. J Chemother 1989 Jul; 1 (4 Suppl.): 588–9

    PubMed  CAS  Google Scholar 

  171. Wilson AP. Clinical pharmacokinetics of teicoplanin. Clin Pharmacokinet 2000 Sep; 39(3): 167–83

    Article  PubMed  CAS  Google Scholar 

  172. Lenders H, Walliser D, Schumann K. Teicoplaninspiegel in Tonsillen-, Schleimhaut-, Knorpel- und Knochengewebe. Fortschr Antimikrob Antineoplast Chemother 1991; 10–2: 119–21

    Google Scholar 

  173. Chater EH, Flynn J, Wilson AL. Fucidin levels in osteomyelitis. J Ir Med Assoc 1972 Oct 21; 65(20): 506–8

    PubMed  CAS  Google Scholar 

  174. Turnidge J. Fusidic acid pharmacology, pharmacokinetics and pharmacodynamics. Int J Antimicrob Agents 1999 Aug; 12 Suppl. 2: S23–34

    Article  PubMed  CAS  Google Scholar 

  175. Akimoto Y, Kaneko K, Tamura T. Amoxicillin concentrations in serum, jaw cyst, and jawbone following a single oral administration. J Oral Maxillofac Surg 1982 May; 40(5): 287–93

    Article  PubMed  CAS  Google Scholar 

  176. Unsworth PF, Heatley FW, Phillips I. Flucloxacillin in bone. J Clin Pathol 1978 Aug; 31(8): 705–11

    Article  PubMed  CAS  Google Scholar 

  177. Kondell PA, Nord CE, Nordenram A. Concentrations of cloxacillin, dicloxacillin and flucloxacillin in dental alveolar serum and mandibular bone. Int J Oral Surg 1982 Feb; 11(1): 40–3

    Article  PubMed  CAS  Google Scholar 

  178. Boselli E, Breilh D, Djabarouti S, et al. Diffusion of ertapenem into bone and synovial tissues. J Antimicrob Chemother 2007 Aug 17

  179. Kropec A, Daschner FD. Penetration into tissues of various drugs active against Gram-positive bacteria. J Antimicrob Chemother 1991 Apr; 27 Suppl. B: 9–15

    Article  PubMed  CAS  Google Scholar 

  180. Ketterl R, Wittwer W. Possibilities for the use of the basic cephalosporin cefuroxime in bone surgery: tissue levels, effectiveness and tolerance [in German]. Infection 1993; 21 Suppl. 1: S21–7

    Article  PubMed  Google Scholar 

  181. Quintiliani R. A review of the penetration of cefadroxil into human tissue. J Antimicrob Chemother 1982 Sep; 10 Suppl. B: 33–8

    Article  PubMed  CAS  Google Scholar 

  182. Brockmeier D, Dagrosa EE. Pharmacokinetic profile of cefodizime. Infection 1992; 20 Suppl. 1: S14–7

    Article  PubMed  CAS  Google Scholar 

  183. Wittmann DH, Schassan HH, Welter J, et al. Availability of cefotaxime. pharmacokinetic studies on the distribution in central and various peripheral compartments [author’s translation]. MMW Munch Med Wochenschr 1980 Apr 25; 122(17): 637–41

    PubMed  CAS  Google Scholar 

  184. Handa N, Kawakami T, Kitaoka K, et al. The clinical efficacy of imipenem/cilastatin sodium in orthopedic infections and drug levels in the bone tissue [in Japanese]. Jpn J Antibiot 1997 Jul; 50(7): 622–7

    PubMed  CAS  Google Scholar 

  185. Sano T, Sakurai M, Dohi S, et al. Investigation of meropenem levels in the human bone marrow blood, bone, joint fluid and joint tissues [in Japanese]. Jpn J Antibiot 1993 Feb; 46(2): 159–63

    PubMed  CAS  Google Scholar 

  186. Kurata K. Investigation of panipenem/betamipron levels in sera and various tissues in patients of orthopedic surgery [in Japanese]. Jpn J Antibiot 1992 Feb; 45(2): 155–9

    PubMed  CAS  Google Scholar 

  187. Hughes SP, Anderson FM. Penetration of antibiotics into bone. J Antimicrob Chemother 1985 May; 15(5): 517–9

    Article  PubMed  CAS  Google Scholar 

  188. Borodin IuN. Benzylpenicillin levels in the serum and bone tissue of the lower jaw in patients with chronic traumatic osteomyelitis after intraosseous and intramuscular administration [in Russian]. Antibiot Khimioter 1988 Sep; 33(9): 694–6

    PubMed  Google Scholar 

  189. Wilson KJ, Mader JT. Concentrations of vancomycin in bone and serum of normal rabbits and those with osteomyelitis. Antimicrob Agents Chemother 1984 Jan; 25(1): 140–1

    Article  PubMed  CAS  Google Scholar 

  190. Trampuz A, Zimmerli W. Antimicrobial agents in orthopaedic surgery: prophylaxis and treatment. Drugs 2006; 66(8): 1089–105

    Article  PubMed  CAS  Google Scholar 

  191. Classen DC, Evans RS, Pestotnik SL, et al. The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med 1992 Jan 30; 326(5): 281–6

    Article  PubMed  CAS  Google Scholar 

  192. Larsen RA, Evans RS, Burke JP, et al. Improved perioperative antibiotic use and reduced surgical wound infections through use of computer decision analysis. Infect Control Hosp Epidemiol 1989 Jul; 10(7): 316–20

    Article  PubMed  CAS  Google Scholar 

  193. Garey KW, Dao T, Chen H, et al. Timing of vancomycin prophylaxis for cardiac surgery patients and the risk of surgical site infections. J Antimicrob Chemother 2006 Sep; 58(3): 645–50

    Article  PubMed  CAS  Google Scholar 

  194. Van Vlem B, Vanholder R, De Paepe P, et al. Immunomodulating effects of antibiotics: literature review. Infection 1996 Jul–Aug; 24(4): 275–91

    Article  PubMed  Google Scholar 

  195. Stevens DL. Streptococcal toxic shock syndrome associated with necrotizing fasciitis. Annu Rev Med 2000; 51: 271–88

    Article  PubMed  CAS  Google Scholar 

  196. Razonable RR, Osmon DR, Steckelberg JM. Linezolid therapy for orthopedic infections. Mayo Clin Proc 2004 Sep; 79(9): 1137–44

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Drs Cornelia Landersdorfer and Jürgen Bulitta now work at the Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Sörgel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landersdorfer, C.B., Bulitta, J.B., Kinzig, M. et al. Penetration of Antibacterials into Bone. Clin Pharmacokinet 48, 89–124 (2009). https://doi.org/10.2165/00003088-200948020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200948020-00002

Keywords

Navigation