Skip to main content
Log in

Drug-Resistant Tuberculosis

What Do We Do Now?

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Drug-resistant tuberculosis (TB) represents a threat to TB control programmes. Erratic and inappropriate use of currently available medications, HIV-TB coinfection, and concern about transmission of drug-resistant strains in the general population all contribute to a worrying picture. What do we do now? In the last few years, there has been considerable progress in the understanding of mechanisms of action and resistance to antituberculosis agents, and in establishing the value of directly observed therapy in preventing treatment failure. However, a limited effort has been devoted to the development of new active compounds or of rapid diagnostic tests, and their relevance to global tuberculosis control has been questioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Pablos-Mendez A, Raviglione MC, Laszlo A, et al. Global surveillance for antituberculosis-drug resistance, 1994–1997. World Health Organization-International Union Against Tuberculosis and Lung Disease Working Group on Anti-Tuberculosis Drug Resistance Surveillance [published erratum appears in N Engl J Med 1998 Jul 9; 339 (2): 139]. N Engl J Med 1998; 338: 1641–9

    Article  PubMed  CAS  Google Scholar 

  2. World Health Organization. WHO/IUATLD global project on anti-tuberculosis drug resistance surveillance. Anti-tuberculosis drug resistance in the world. Geneva: World Health Organization, 1997. Also available from: URL: http://www.who.int

  3. David HL. Basis for lack of drug susceptibility of atypical mycobacteria. Rev Infect Dis 1981; 3: 878–84

    Article  PubMed  CAS  Google Scholar 

  4. Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 393: 537–44

    Article  PubMed  CAS  Google Scholar 

  5. Ainsa JA, Perez E, Pelicic V, et al. Aminoglycoside 2′-N-acetyltransferase genes are universally present in mycobacteria: characterization of the aac(2′)-Ic gene from Mycobacterium tuberculosis and the aac(2′)-Id gene from Mycobacterium smegmatis. Mol Microbiol 1997; 24: 431–41

    Article  PubMed  CAS  Google Scholar 

  6. Kwon HH, Tomioka H, Saito H. Distribution and characterization of β-lactamases of mycobacteria and related organisms. Tuber Lung Dis 1995; 76: 141–8

    Article  PubMed  CAS  Google Scholar 

  7. Heym B, Honoré N, Truffot-Pernot C, et al. Implications of multidrug resistance for the future of short course chemotherapy of tuberculosis: a molecular study. Lancet 1994; 344: 293–8

    Article  PubMed  CAS  Google Scholar 

  8. Telenti A. Genetics of drug resistant tuberculosis. Thorax 1998; 53: 793–7

    Article  PubMed  CAS  Google Scholar 

  9. Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis 1998; 79: 3–29

    Article  PubMed  CAS  Google Scholar 

  10. Zhang Y, Telenti A. Genetics of drug resistance in Mycobacterium tuberculosis. In: Hatfull G, Jr Jacobs WR, editors. Molecular genetics of the mycobacteria. Washington: American Society for Microbiology, 2000. In press

  11. Telenti A, Persing DH. Novel strategies for the detection of drug resistance in Mycobacterium tuberculosis. Res Microbiol 1996; 147: 73–9

    Article  PubMed  CAS  Google Scholar 

  12. Head SR, Parikh K, Rogers YH, et al. Solid-phase sequence scanning for drug resistance detection in tuberculosis. Mol Cell Probes 1999; 13: 81–7

    Article  PubMed  CAS  Google Scholar 

  13. Troesch A, Nguyen H, Miyada CG, et al. Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays. J Clin Microbiol 1999; 37: 49–55

    PubMed  CAS  Google Scholar 

  14. Piatek AS, Tygi S, Pol AC, et al. Molecular beacon sequence analysis: a novel approach to the detection of drug resistance in Mycobacterium tuberculosis. Nature Biotech 1998. 16: 359–363

    Article  CAS  Google Scholar 

  15. Telenti A, Imboden P, Marchesi F, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 1993; 341: 647–50

    Article  PubMed  CAS  Google Scholar 

  16. Jacobs Jr WJ, Barletta RG, Udani R, et al. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 1993; 260: 819–22

    Article  PubMed  CAS  Google Scholar 

  17. Wilson SM, Al-Suwaidi Z, McNerney R, et al. Evaluation of a new rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nature Med 1997; 3: 465–8

    Article  PubMed  CAS  Google Scholar 

  18. Riska PF, Su Y, Bardarov S, et al. Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a luciferase reporter phage and the Bronx Box. J Clin Microbiol 1999; 37: 1144–9

    PubMed  CAS  Google Scholar 

  19. Sudre P, Cohn DL. Mycobacterium tuberculosis resistance: a call for action. Int J Tuberculosis Lung Dis 1998; 2: 609–11

    CAS  Google Scholar 

  20. Lazlo A, Rahman M, Raviglione M, et al. Quality assurance programme for drug susceptibility testing for Mycobacterium tuberculosis in the WHO/IUTLD supranational laboratory network: first round of proficiency testing. Int J Tuberculosis Lung Dis 1997; 1: 231–8

    Google Scholar 

  21. van Embden JDA. Molecular epidemiology of tuberculosis [lecture]. American Society of Microbiology (ASM) Conference on Tuberculosis: past, present and future; State of the Art: 1997 July; Coppermountain (CO)

  22. Ordway DJ, Sonnenberg MG, Donahue SA, et al. Drug-resistant strains of Mycobacterium tuberculosis exhibit a range of virulence for mice. Infect Immun 1995; 63: 741–3

    PubMed  CAS  Google Scholar 

  23. Meissner G. The bacteriology of the tubercle bacillus. In: Barry VC, editor. Chemotherapy of tuberculosis. London: Butter-worths, 1964

    Google Scholar 

  24. Wilson TM, de Lisle GW, Collins DM. Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol Microbiol 1995; 15: 1009–15

    Article  PubMed  CAS  Google Scholar 

  25. Heym B, Stavropoulos E, Honore N, et al. Effects of over-expression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis. Infect Immun 1997; 65: 1395–1401

    PubMed  CAS  Google Scholar 

  26. Billington O, McHugh T, Gillespie S. The physiological cost of rifampicin resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob Agents Chemother 1999; 43: 1866–9

    PubMed  CAS  Google Scholar 

  27. Bifani PJ, Plikaytis BB, Kapur V, et al. Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family. JAMA 1996; 275: 452–7

    Article  PubMed  CAS  Google Scholar 

  28. Agerton T, Valway SE, Blinkhorn RJ, et al. Spread of strain W, a highly drug-resistant strain of Mycobacterium tuberculosis, across the United States. Clin Infect Dis 1999; 29: 85–92

    Article  PubMed  CAS  Google Scholar 

  29. Telzak EE, Fazal BA, Pollard CL, et al. Factors influencing time to sputum conversion among patients with smear positive pulmonary tuberculosis. Clin Infect Dis 1997; 25: 666–70

    Article  PubMed  CAS  Google Scholar 

  30. Mitchison D, Nunn P. Influence of initial drug resistance on the response to short-course chemotherapy of pulmonary tuberculosis. Am Rev Resp Dis 1986; 133: 423–30

    PubMed  CAS  Google Scholar 

  31. Hong Kong Chest Service, British Medical Research Council. Controlled trial of 6-month and 9-month regimens of daily and intermittent streptomycin plus isoniazid plus pyrazinamide for pulmonary tuberculosis in Hong Kong. Am Rev Respir Dis 1977; 115: 727–35

    Google Scholar 

  32. Crofton JO, Chaulet P, Maher D. Guidelines for the management of drug resistant tuberculosis. Geneva: World Health Organization, 1997. Also available from: URL: http://www.who.int

  33. Iseman MD. Treatment of multidrug-resistant tuberculosis. N Engl J Med 1993; 329: 784–91

    Article  PubMed  CAS  Google Scholar 

  34. Goble M, Iseman MD, Madsen LA, et al. Treatment of 171 patients with pulmonary tuberculosis resistant to isoniazid and rifampin. N Engl J Med 1993; 328: 527–32

    Article  PubMed  CAS  Google Scholar 

  35. Alangaden GJ, Lerner SA. The clinical use of fluoroquinolones for the treatment of mycobacterial infections. Clin Infect Dis 1997; 25: 1213–21

    Article  PubMed  CAS  Google Scholar 

  36. Ji B, Lounis N, Maslo C, et al. In vitro and in vivo activities of moxifloxacin and clinafloxaxin against Mycobacterium tuberculosis. Antimicrob Agents Chemother 1998; 42: 2066–9

    PubMed  CAS  Google Scholar 

  37. Herbert D, Paramasivan CN, Venkatesan P, et al. Bactericidal action of ofloxacin, sulbactam-ampicillin, rifampin, and isoniazid on logarithmic- and stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob Agents Chemother 1996; 40: 2296–9

    PubMed  CAS  Google Scholar 

  38. Hackbarth CJ, Unsal I, Chambers HF. Cloning and sequence analysis of a class A beta-lactamase from Mycobacterium tuberculosis. Antimicrob Agents Chemother 1997; 41: 1182–5

    PubMed  CAS  Google Scholar 

  39. Chambers HF, Kocagoz S, Sipit T, et al. Activity of amoxicillin-clavulanate in patients with tuberculosis. Clin Infect Dis 1998; 26: 874–7

    Article  PubMed  CAS  Google Scholar 

  40. Segura C, Salvado M, Collado I, et al. Contribution of beta-lactam susceptibilities of susceptible and multidrug-resistant M tuberculosis clinical isolates. Antimicrob Agents Chemother 1998; 42: 1524–6

    PubMed  CAS  Google Scholar 

  41. Chambers HF, Moreau D, Yajko D, et al. Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis? Antimicrob Agents Chemother 1995; 39: 2620–4

    Article  PubMed  CAS  Google Scholar 

  42. Barbachyn MR, Hutchinson DK, Brickner SJ, et al. Identification of a novel oxazolidinone (U-100480) with potent anti-mycobacterial activity. J Med Chem 1996; 39: 680–5

    Article  PubMed  CAS  Google Scholar 

  43. Zurenko GE, Yagi BH, Schaadt RD, et al. In vitro activities of U-100592 and U-100766, novel osazolidinone antibacterial agents. Antimicrob Agents Chemother 1996; 40: 839–45

    PubMed  CAS  Google Scholar 

  44. Eustice DC, Feldmann GM, Zajac I, et al. Mechanism of action of DuP 721: inhibition of an early event during initiation of protein synthesis. Antimicrob Agents Chemother 1988; 32: 1218–22

    Article  PubMed  CAS  Google Scholar 

  45. Cynamon M, Klemens SP, Sharpe CA, et al. Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model. Antimicrob Agents Chemother 1999; 43: 1189–91

    PubMed  CAS  Google Scholar 

  46. Bryskier A. Novelties in the field of anti-infectives in 1997. Clin Infect Dis 1998; 27: 865–83

    Article  PubMed  CAS  Google Scholar 

  47. Slayden RA, Lee RE, Armour JW, et al. Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis. Antimicrob Agents Chemother 1996; 40: 2813–19

    PubMed  CAS  Google Scholar 

  48. Phetsuksiri B, Baulard AR, Cooper AM, et al. Antimycobacterial activities of isoxyl and new derivatives through the inhibition of mycolic acid synthesis. Antimicrob Agents Chemother 1999; 43: 1042–51

    PubMed  CAS  Google Scholar 

  49. Rastogi N, Seng Goh K, David HL. Enhancement of drug susceptibility of Mycobacterium avium by inhibitors of cell envelope synthesis. Antimicrob Agents Chemother 1990; 34: 759–64

    Article  PubMed  CAS  Google Scholar 

  50. Khoo KH, Douglas E, Azadi P, et al. Truncated structural variants of lipoarabinomannan in ethambutol drug-resistant strains of Mycobacterium smegmatis: inhibition of arabinan biosynthesis by ethambutol. J Biol Chem 1996; 271: 28682–90

    Article  PubMed  CAS  Google Scholar 

  51. Bodmer T, Zürcher G, Imboden I, et al. Molecular basis of rifabutin susceptibility in rifampicin resistant M tuberculosis. J Antimicrob Chemother 1995; 35: 345–8

    Article  PubMed  CAS  Google Scholar 

  52. Moghazeh SL, Pan X, Arain T, et al. Comparative antimycobacterial activities of rifampin, rifapentine, and KRM-1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob Agents Chemother 1996; 40: 2655–7

    PubMed  CAS  Google Scholar 

  53. World Health Organization (WHO). Global tuberculosis control: WHO report. Geneva: WHO, 1999

    Google Scholar 

  54. Mushtaque A, Chowdhury R. Success with the DOTS strategy. Lancet 1999; 353: 1003–4

    Article  PubMed  CAS  Google Scholar 

  55. Iseman MD. MDR-TB and the developing world — a problem no longer to be ignored: the WHO announces DOTS-plus strategy. Int J Tuberculosis Lung Dis 1998; 2: 867

    CAS  Google Scholar 

  56. Frieden TR, Sherman DR, Maw K, et al. A multi-institutional outbreak of highly resistant tuberculosis: epidemiology and clinical outcomes. JAMA 1996; 276: 1229–35

    Article  PubMed  CAS  Google Scholar 

  57. Fennelly K, Nardell E. The relative efficacy of respirators and room ventilation in preventing occupational tuberculosis. Inf Control Hosp Epidemiol 1998; 19: 754–9

    Article  CAS  Google Scholar 

  58. Rose DN. Short course prophylaxis against tuberculosis in HIV-infected persons: a decision and cost-effective analysis. Ann Intern Med 1998; 129: 779–86

    PubMed  CAS  Google Scholar 

  59. Fang Z, Doig C, Rayner A, et al. Molecular evidence for heterogeneity of the multiple-drug-resistant Mycobacterium tuberculosis population in Scotland (1990 to 1997). J Clin Microbiol 1999; 37: 998–1003

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Schweizerischer Nationalfonds grant 31-47251.96.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalio Telenti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Telenti, A., Iseman, M. Drug-Resistant Tuberculosis. Drugs 59, 171–179 (2000). https://doi.org/10.2165/00003495-200059020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200059020-00002

Keywords

Navigation