Skip to main content
Log in

Muscle Damage and Endurance Events

  • Research Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Intensive training for and competition in endurance events like the marathon are accompanied by injury to fibres in the active skeletal muscles. Evidence for the injury comes from the increases in intramuscular enzymes and myoglobin found in the blood following the exercise, from the subjective sensation of soreness in the muscles in the post-exercise period, and from direct histological examination of samples of the damaged muscles. Histological studies demonstrate that some muscle fibres undergo degenerative changes following the exercise; the necrosis is accomplished by macrophages and other phagocytic cells that invade the injured cells and the adjacent interstitium. Following the degeneration the fibres appear to be regenerated so that there is not a net loss of fibres. Precisely what initiates the cellular damage is not known, but hypotheses suggested include, ‘metabolic overload’ and ‘mechanical strain’. Eccentric contractions are known to cause the greater amount of damage in muscles, which suggests that high local tensions in fibres may be more important than metabolic considerations in the aetiology of the injury. Training reduces the magnitude of the damage that occurs in response to a given exercise task, although competitors in endurance events may demonstrate chronic muscle injury because of increasing training intensities. Other than training, there is no compelling evidence that any drug treatment or preventative measures will lessen this form of injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott BC. Bigland B. Ritchie JM. The physiological cost of negative work. Journal of Physiology 117: 380–390. 1952

    PubMed  CAS  Google Scholar 

  • Abraham WM. Factors in delayed muscle soreness. Medicine and Science in Sports 9: 11–20. 1977

    PubMed  CAS  Google Scholar 

  • Allbrook D. Skeletal muscle regeneration. Muscle and Nerve 4: 234–245. 1981

    Article  PubMed  CAS  Google Scholar 

  • Altland PD, Highman B. Effects of exercise on serum enzyme values and tissues of rats. American Journal of Physiology 201: 393–395, 1961

    PubMed  CAS  Google Scholar 

  • Apple FS, Rogers MA, Casal DC, Sherman WM, Ivy JL. Creatine kinase-MB isoenzyme adaptations in stressed human skeletal muscle of marathon runners. Journal of Applied Physiology 58: 149–153, 1985

    Article  Google Scholar 

  • Armstrong RB. Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Medicine and Science in Sports and Exercise 16: 529–538, 1984

    PubMed  CAS  Google Scholar 

  • Armstrong RB, Ogilvie RW, Schwane JA. Eccentric exercise-induced injury to rat skeletal muscle. Journal of Applied Physiology 54: 80–93, 1983

    PubMed  CAS  Google Scholar 

  • Asmussen E. Observations on experimental muscular soreness. Acta Rheumatica Scandinavica 2: 109–116, 1956

    CAS  Google Scholar 

  • Bartsch RC, McConnell EE, Inus GD, Schmidt JM. A review of exertional rhabdomyolysis in wild and domestic animals and man. Veterinary Pathology 14: 314–324, 1977

    PubMed  CAS  Google Scholar 

  • Berg A, Haralambie G. Changes in serum creatine kinase and hexose phosphate isomerase activity with exercise duration. European Journal of Applied Physiology 39: 191–201, 1978

    Article  CAS  Google Scholar 

  • Bertorini T, Palmieri G, Bhattacharya S. Beneficial effects of dantrolene sodium in exercise-induced muscle pains: calcium mediated? Lancet 1: 616–617, 1982

    Article  PubMed  CAS  Google Scholar 

  • Bigland BA, Lippold OCJ. The relation between force, velocity and integrated electrical activity in human muscles. Journal of Physiology 123: 214–224, 1954

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Woods JJ. Integrated electromyogram and oxygen uptake during positive and negative work. Journal of Physiology (London) 260: 267–277, 1976

    CAS  Google Scholar 

  • Bond-Peterson F, Knuttgen HG, Henriksson J. Muscle metabolism during exercise with concentric and eccentric contractions. Journal of Applied Physiology 33: 792–795, 1972

    Google Scholar 

  • Bonner HW, Leslie SW, Combs AB, Tate CA. Effects of exercise training and exhaustion on 45Ca uptake by rat skeletal muscle mitochondria and sarcoplasmic reticulum. Research Communications in Chemical Pathology and Pharmacology 14: 767–770, 1976

    PubMed  CAS  Google Scholar 

  • Bowers WD, Hubbard RW, Smoake JA, Daum RC, Nilson E. Effects of exercise on the ultrastructure of skeletal muscle. American Journal of Physiology 227: 313–316, 1974

    PubMed  Google Scholar 

  • Brooke MH, Carroll JE, Davis JE, Hagberg JM. The prolonged exercise test. Neurology 29: 636–643, 1979

    Article  PubMed  CAS  Google Scholar 

  • Busch WA, Stromer MH, Goll PE, Suzuki A. Ca2+-specific removal of Z lines from rabbit skeletal muscle. Journal of Cell Biology 52: 367–381, 1972

    Article  PubMed  CAS  Google Scholar 

  • Carlson BM. The regeneration of skeletal muscle: a review. American Journal of Anatomy 137: 119–150, 1983

    Article  Google Scholar 

  • Carlson BM, Faulkner JA. The regeneration of skeletal muscle fibers following injury: a review. Medicine and Science in Sports and Exercise 15: 187–198, 1983

    Article  PubMed  CAS  Google Scholar 

  • Cobb CR, deVries HA, Urban RT, Luekens CA, Bagg RH. Electrical activity in muscle pain. American Journal of Physical Medicine 54: 80–87, 1975

    PubMed  CAS  Google Scholar 

  • Cullen MJ, Appleyard ST, Bindoff L. Morphologic aspects of muscle breakdown and lysosomal activation. Annals of the New York Academy of Sciences 317: 440–464, 1979

    PubMed  CAS  Google Scholar 

  • Cullen MJ, Fulthorpe JJ. Phagocytosis of the A band following Z line and I band loss: its significance in skeletal muscle breakdown. Pathology 138: 129–143, 1982

    Article  CAS  Google Scholar 

  • Davies CTM, White MJ. Muscle weakness following eccentric work in man. Pflügers Archiv 392: 168–171, 1981

    Article  PubMed  CAS  Google Scholar 

  • Dayton WR, Reville WJ, Goll DE, Stromer MH. A Ca2+-activated protease possibly involved in myofibrillar protein turnover: partial characterization of the purified enzyme. Biochemistry 15: 2159–2167, 1976

    Article  PubMed  CAS  Google Scholar 

  • Demos MA, Gitin EL, Kagen LJ. Exercise myoglobinemia and acute exertional rhabdomyolysis. Archives of Internal Medicine 134: 669–673, 1974

    Article  PubMed  CAS  Google Scholar 

  • deVries HA. Prevention of muscular distress after exercise. Research Quarterly 32: 177–185, 1960

    Google Scholar 

  • deVries HA. Quantitative electromyographic investigation of the spasm theory of muscle pain. American Journal of Physical Medicine 45: 119–134, 1966

    PubMed  Google Scholar 

  • Dohm GL, Barakat H, Stephenson TP, Pennington SM, Tapscott EB. Changes in muscle mitochondrial lipid composition resulting from training and exhaustive exercise. Life Sciences 17: 1075–1080, 1975

    Article  PubMed  CAS  Google Scholar 

  • Edington DW, Edgerton VR. The biology of physical activity, p. 282, Houghton-Mifflin Co., Boston, 1976

    Google Scholar 

  • Fowler W, Gardner G, Kazerunin H, Lauvstad W. The effect of exercise on serum enzymes. Archives of Physical Medicine 49: 554–565, 1968

    Google Scholar 

  • Friden J, Sjostrom M, Ekblom B. A morphological study of delayed muscle soreness. Experientia 37: 506–507, 1981

    Article  PubMed  CAS  Google Scholar 

  • Friden J, Seger J, Sjostrom M, Ekblom B. Adaptive response in human skeletal muscle subjected to prolonged eccentric training. International Journal of Sports Medicine 4: 177–183, 1983a

    Article  PubMed  CAS  Google Scholar 

  • Friden J, Sjostrom M, Ekblom B. Myofibrillar damage following intense eccentric exercise in man. International Journal of Sports Medicine 4: 170–176, 1983b

    Article  PubMed  CAS  Google Scholar 

  • Geller SA. Extreme exertion rhabdomyolysis. Human Pathology 4: 241–250, 1973

    Article  PubMed  CAS  Google Scholar 

  • Giddings CJ, Neaves WB, Gonyea WJ. Muscle fiber necrosis and regeneration induced by prolonged weight-lifting exercise in the cat. Anatomical Record 211: 133–141, 1985

    Article  PubMed  CAS  Google Scholar 

  • Gollnick PD, King DW. Effect of exercise and training on mitochondria of rat skeletal muscle. American Journal of Physiology 216: 1502–1509, 1969

    PubMed  CAS  Google Scholar 

  • Greenberg J, Arneson L. Exertional rhabdomyolysis with myoglobinuria in a large group of military trainees. Neurology 17: 216–222, 1967

    Article  PubMed  CAS  Google Scholar 

  • Hansen KN, Knudsen B, Brodthagen U, Jordal R, Paule PE. Muscle cell leakage due to long distance training. European Journal of Applied Physiology 48: 177–188, 1982

    Article  CAS  Google Scholar 

  • Hecht A, Schumann JH, Kunde D. Histologische und enzymhistochemische befunde am skelettmuskel der untrainierten ratte nach intensiver physischer belastung. Medizin und Sport (Berl) 15: 270–274, 1975

    Google Scholar 

  • Highman B, Altland PD. Effects of exercise and training on serum enzyme and tissue changes in rats. American Journal of Physiology 205: 162–166, 1963

    PubMed  CAS  Google Scholar 

  • Hikida RS, Staron RS, Hagerman FC, Sherman WM, Costill DL. Muscle fiber necrosis associated with human marathon runners. Journal of Neurological Science 59: 185–203, 1983

    Article  CAS  Google Scholar 

  • Hough T. Ergographic studies in muscular soreness. American Journal of Physiology 7: 76–92, 1902

    Google Scholar 

  • Howenstine JA. Exertion-induced myoglobinuria and hemoglobinuria. Journal of the American Medical Association 173: 493–499, 1960

    Article  PubMed  CAS  Google Scholar 

  • Ishiura S, Sugita H, Nonaka I, Imakori K. Calcium-activated neutral protease: its localization in the myofibril, especially at the Z-band. Journal of Biochemistry 87: 343–346, 1980

    PubMed  CAS  Google Scholar 

  • Jones DA, Newham DJ. The effect of training on human muscle pain and damage. Journal of Physiology 365: 10P, 1985

    Google Scholar 

  • Jones DA, Newham DJ, Round JM, Tolfree SEJ. Experimental human muscle damage: morphological changes in relation to other indices of damage. Journal of Physiology, in press, 1986

  • Karpati G, Carpenter S, Melmed C, Eisen AA. Experimental ischemic myopathy. Journal of Neurological Science 23: 129–161, 1974

    Article  CAS  Google Scholar 

  • Kasperek GJ, Snider RD. Increased protein degradation after eccentric exercise. European Journal of Applied Physiology 54: 30–34, 1985

    Article  CAS  Google Scholar 

  • Knochel JP. Rhabdomyolysis and myoglobinuria. Annual Review of Medicine 33: 435–443, 1982

    Article  PubMed  CAS  Google Scholar 

  • Komi PV, Buskirk ER. Effect of eccentric and concentric muscle conditioning on tension and electrical activity of human muscle. Ergonomics 15: 417–434, 1972

    Article  PubMed  CAS  Google Scholar 

  • Kuipers H, Drukker J, Frederik PM, Geurten P, Kranenburg Gv. Muscle degeneration after exercise in rats. International Journal of Sports Medicine 4: 45–51, 1983

    Article  PubMed  CAS  Google Scholar 

  • Lindholm A, Johansson HE, Kjaersgaard P. Acute rhabdomyolysis (’tying-up’) in standardbred horses. Acta Veterinarica Scandinavica 15: 325–339, 1974

    CAS  Google Scholar 

  • Makitie J, Teravainen H. Histochemical studies of striated muscle after temporary ischemia in the rat. Acta Neuropathologica 37: 101–109, 1977

    Article  PubMed  CAS  Google Scholar 

  • Millar AP, Salmon J. Muscle tears. Australian Journal of Sports Medicine 2: 435–438, 1967

    Google Scholar 

  • Newham DH, Mills KR, Quigley R, Edwards RHT. Muscle pain and tenderness after exercise. Australian Journal of Sports Medicine 14: 129–131, 1982

    Google Scholar 

  • Newham DH, Jones DA, Edwards RHT. Large delayed plasma creatine kinase changes after stepping exercise. Muscle and Nerve 6: 380–385, 1983a

    Article  PubMed  CAS  Google Scholar 

  • Newham DH, McPhail G, Mills KR, Edwards RHT. Ultrastructural changes after concentric and eccentric contractions of human muscle. Journal of Neurological Science 61: 109–122, 1983b

    Article  CAS  Google Scholar 

  • Newham DJ, Mills KR, Quigley BM, Edwards RHT. Pain and fatigue after concentric and eccentric muscle contractions. Clinical Science 64: 45–52, 1983c

    Google Scholar 

  • Nimmo MA, Snow DH. Time course of ultrastructural changes in skeletal muscle after two types of exercise. Journal of Applied Physiology 52: 910–913, 1982

    PubMed  CAS  Google Scholar 

  • Oberc MA, Engel WK. Ultrastructural localization of calcium in normal and abnormal skeletal muscle. Laboratory Investigations 566-577, 1977

  • Oberholzer F, Claassen H, Moesch H, Howald H. Ultrastrukturelle, biochemische und energetische analyse liner extremen daverleistung (100 km-lauf). Schweizerische Zeitschrift fur Sportsmedizin 24: 71–98, 1976

    CAS  Google Scholar 

  • Ogilvie RW, Hoppeler H, Armstrong RB. Decreased muscle function following eccentric exercise in the rat. Medicine and Science in Sports and Exercise 17: 195, 1985

    Google Scholar 

  • Ryan AJ. Quadriceps strain, rupture and charlie horse. Medicine and Science in Sports 1: 106–111, 1969

    Google Scholar 

  • Salminen A. Lysosomal changes in skeletal muscles during the repair of exercise injuries in muscle fibers. Acta Physiologica Scandinavica 124: 539, 1985

    Google Scholar 

  • Salminen A, Vihko V. Susceptibility of mouse skeletal muscles to exercise injuries. Muscle and Nerve 6: 596–601, 1983

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Hongisto K, Vihko V. Lysosomal changes related to exercise injuries and training-induced protection in mouse skeletal muscle. Acta Physiologica Scandinavica 120: 15–19, 1984

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Vihko V. Autophagic response to strenuous exercise in mouse skeletal muscle fibers. Virchows Archiv 45: 97–106, 1984

    Article  PubMed  CAS  Google Scholar 

  • Saltin B, Gollnick PD. Skeletal muscle adaptability: significance for metabolism and performance. Handbook of Physiology 10(19): 555–631, 1983

    Google Scholar 

  • Schrier RW, Hano J, Keller HI, et al. Renal, metabolic and circulatory responses to heat and exercise. Annals of Internal Medicine 73: 213–223, 1970

    PubMed  CAS  Google Scholar 

  • Schumann HJ. Uberlastungsnekrosen der Skelettmuskulatur nach experimentellum laufzwany. Zentralblatt fur Allgemeine Pathologie und Pathologische Anatomie 116: 181–190, 1972

    PubMed  CAS  Google Scholar 

  • Schwane JA, Armstong RB. Effect of training on skeletal muscle injury from downhill running in rats. Journal of Applied Physiology 55: 969–975, 1983

    PubMed  CAS  Google Scholar 

  • Schwane JA, Watrous BG, Johnson SR, Armstrong RB. Is lactic acid related to delayed-onset muscle soreness? Physician and Sportsmedicine 11(3): 124–131, 1983

    Google Scholar 

  • Shannon AD, Adams EP, Courtice FC. The lysosomal enzymes acid phosphatase and -glucuronidase in muscle following a period of ischaemia. Australian Journal of Experimental Biology and Medical Science 52: 157–171, 1974

    Article  PubMed  CAS  Google Scholar 

  • Siegel AJ, Silverman LM, Holman BL. Elevated creatine kinase MB isoenzyme levels in marathon runners. Journal of the American Medical Association 246: 2049–2051, 1981

    Article  PubMed  CAS  Google Scholar 

  • Stenger RJ, Spiro D, Scully RE, Shannon JM. Ultrastructural and physiologic alterations in ischemic skeletal muscle. American Journal of Pathology 40: 1–20, 1962

    PubMed  CAS  Google Scholar 

  • Tate CA, Bonner HW, Leslie SW. Calcium uptake in skeletal muscle mitochondria. II. The effects of long-term chronic and acute exercise. European Journal of Applied Physiology 39: 117–122, 1978

    Article  CAS  Google Scholar 

  • Tiidus PM, Ianuzzo CD. Effects of intensity and duration of muscular exercise on delayed soreness and serum enzyme activities. Medicine and Science in Sports and Exercise 15: 461–465, 1983

    PubMed  CAS  Google Scholar 

  • Travell J, Rinzler S, Herman M. Pain and disability of the shoulder and arm. Journal of the American Medical Association 120: 417–422, 1942

    Article  Google Scholar 

  • van Linge B. The response of muscle to strenuous exercise. Journal of Bone and Joint Surgery 44B: 711–721, 1962

    Google Scholar 

  • Vertel RM, Knochel JP. Acute renal failure due to heat injury. American Journal of Medicine 43: 435–451, 1967

    Article  PubMed  CAS  Google Scholar 

  • Vihko V, Rantamaki J, Salminen A. Exhaustive physical exercise and acid hydrolase activity in mouse skeletal muscle. Histochemistry 57: 237–249, 1978b

    Article  PubMed  CAS  Google Scholar 

  • Vihko V, Salminen A, Rantamaki J. Acid hydrolase activity in red and white skeletal muscle of mice during a two-week period following exhausting exercise. Pflugers Archiv 378: 99–106, 1978b

    Article  PubMed  CAS  Google Scholar 

  • Vihko V, Salminen A, Rantamaki J. Exhaustive exercise, endurance training, and acid hydrolase activity in skeletal muscle. Journal of Applied Physiology 47: 43–50, 1979

    PubMed  CAS  Google Scholar 

  • Walmsley B, Hodgson JA, Burke RE. Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. Journal of Neurophysiology 41: 1203–1216, 1978

    PubMed  CAS  Google Scholar 

  • Walton J. Diffuse exercise-induced muscle pain of undetermined cause relieved by verapamil. Lancet 1: 993, 1981

    Article  PubMed  CAS  Google Scholar 

  • Wrogemann K, Pena SDJ. Mitochondrial calcium overload: a general mechanism for cell-necrosis in muscle diseases. Lancet 27: 672–673, 1976

    Article  Google Scholar 

  • Zammit VA, Newsholme EA. Effects of calcium ions and adenosine diphosphate on the activities of NAD+-linked isocitrate dehydrogenase from the radular muscles of the whelk and flight muscles of insects. Biochemical Journal 154: 677–687, 1976

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, R.B. Muscle Damage and Endurance Events. Sports Medicine 3, 370–381 (1986). https://doi.org/10.2165/00007256-198603050-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-198603050-00006

Keywords

Navigation