Skip to main content
Log in

Physical Activity and High-Sensitivity C-Reactive Protein

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) remains one of the leading causes of death and disability in developed countries around the world despite the documented success of lifestyle and pharmacological interventions. This illustrates the multifactorial nature of atherosclerosis and the use of novel inflammatory markers as an adjunct to risk factor reduction strategies. As evidence continues to accumulate that inflammation is involved in all stages of the development and progression of atherosclerosis, markers of inflammation such as high-sensitivity C-reactive protein (CRP) may provide additional information regarding the biological status of the atherosclerotic lesion.

Recent investigations suggest that physical activity reduces CRP levels. Higher levels of physical activity and cardiorespiratory fitness are consistently associated with 6–35% lower CRP levels. Longitudinal training studies that have demonstrated reductions in CRP concentrations range from 16% to 41%, an effect that may be independent of baseline levels of CRP, body composition or weight loss. The average change in CRP associated with physical activity appears to be at least as good, if not better, than currently prescribed pharmacological interventions in similar populations. The primary purpose of this review will be to present evidence from both cross-sectional and longitudinal investigations that physical activity lowers CRP levels in a dose-response manner. Finally, this review will examine factors such as body composition, sex, blood sample timing, diet and smoking, which may influence the CRP response to physical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

Similar content being viewed by others

References

  1. Tokmakidis SP, Volaklis KA. Training and detraining effects of a combined-strength and aerobic exercise program on blood lipids in patients with coronary artery disease. J Cardiopulm Rehabil 2003; 23: 193–200

    Article  PubMed  Google Scholar 

  2. Wood PD, Haskell WL, Blair SN, et al. Increased exercise level and plasma lipoprotein concentrations: a one-year, randomized, controlled study in sedentary, middle-aged men. Metabolism 1983; 32: 31–39

    Article  PubMed  CAS  Google Scholar 

  3. Katzmarzyk PT, Janssen I, Ardern CI. Physical inactivity, excess adiposity and premature mortality. Obes Rev 2003; 4: 257–290

    Article  PubMed  CAS  Google Scholar 

  4. Klesges RC, Eck LH, Isbell TR, et al. Physical activity, body composition, and blood pressure: a multimethod approach. Med Sci Sports Exerc 1991; 23: 759–765

    PubMed  CAS  Google Scholar 

  5. Tremblay A, Despres JP, Leblanc C, et al. Effect of intensity of physical activity on body fatness and distribution. Am J Clin Nutr 1990; 51: 153–157

    PubMed  CAS  Google Scholar 

  6. Gilders RM, Voner C, Dudley GA. Endurance training and blood pressure in normotensive and hypertensive adults. Med Sci Sports Exerc 1989; 23: 629–636

    Google Scholar 

  7. Straczkowski M, Kowalska I, Dzienis-Straczkowska S, et al. Changes in tumor necrosis factor-alpha system and insulin sensitivity during an exercise training program in obese women with normal and impaired glucose tolerance. Eur J Endocrinol 2001; 145: 273–280

    Article  PubMed  CAS  Google Scholar 

  8. Durstine JL, Grandjean PW, Davis PG, et al. Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sports Med 2001; 31: 1033–1062

    Article  PubMed  CAS  Google Scholar 

  9. Durstine JL, Grandjean PW, Cox CA, et al. Lipids, lipoproteins, and exercise. J Cardiopulm Rehabil 2002; 22: 385–398

    Article  PubMed  Google Scholar 

  10. Varaday KA, Ebine N, Vanstone CA, et al. Plant sterols and endurance training combine to favorably alter plasma lipid profiles in previously sedentary hypercholesterolemic adults after 8 wk. Am J Clin Nutr 2004; 80: 1159–1166

    Google Scholar 

  11. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med 1999; 340: 115–125

    Article  PubMed  CAS  Google Scholar 

  12. Ridker PM, Rifai N, Rose L, et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002; 347: 1557–1565

    Article  PubMed  CAS  Google Scholar 

  13. Ridker PM, Buring JE, Shih J, et al. Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation 1998; 98: 731–733

    Article  PubMed  CAS  Google Scholar 

  14. Ridker PM, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000; 342: 836–843

    Article  PubMed  CAS  Google Scholar 

  15. Pradhan AD, Manson JE, Rossouw JE, et al. Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: prospective analysis from the Women’s Health Initiative Observational Study. JAMA 2002; 288: 980–987

    Article  PubMed  CAS  Google Scholar 

  16. Ridker PM, Rifai N, Pfeffer MA, et al. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Circulation 1998; 98: 839–844

    Article  PubMed  CAS  Google Scholar 

  17. Ridker PM, Cushman M, Stampfer MJ, et al. Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease. Circulation 1998; 97: 425–428

    Article  PubMed  CAS  Google Scholar 

  18. Ridker PM, Cushman M, Stampfer MJ, et al. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 1997; 336: 973–979

    Article  PubMed  CAS  Google Scholar 

  19. Shah PK. Circulating markers of inflammation for vascular risk prediction: are they ready for prime time? Circulation 2000; 105: 1758–1759

    Article  Google Scholar 

  20. Ockene IS, Matthews CE, Rifai N, et al. Variability and classification accuracy of serial high-sensitivity C-reactive protein measurements in healthy adults. Clin Chem 2001; 47: 444–450

    PubMed  CAS  Google Scholar 

  21. Meier-Ewert HK, Ridker PM, Rifai N. Absence of diurnal variation of C-reactive protein concentrations in healthy human subjects. Clin Chem 2001; 47: 426–430

    PubMed  CAS  Google Scholar 

  22. Blake G J, Ridker PM. Inflammatory bio-markers and cardiovascular risk prediction. J Intern Med 2002; 252: 283–294

    Article  PubMed  CAS  Google Scholar 

  23. Pitsavos C, Chrysohoou C, Panagiotakos D, et al. Association of leisure-time physical activity on inflammation markers (C-reactive protein, white cell count, serum amyloid A, and fibrinogen) in healthy subjects (from the ATTICA study). Am J Cardiol 2003; 91: 369–370

    Google Scholar 

  24. Albert MA, Glynn RJ, Ridker PM. Effect of physical activity on serum C-reactive protein. Am J Cardiol 2004; 93: 221–225

    Article  PubMed  CAS  Google Scholar 

  25. Church TS, Barlow CE, Earnest CP, et al. Associations between cardiorespiratory fitness and C-reactive protein in men. Arteri-oscler Thromb Vase Biol 2002; 22: 1869–1876

    Article  CAS  Google Scholar 

  26. Lamonte MJ, Durstine JL, Yanowitz FG, et al. Cardiorespiratory fitness and C-reactive protein among a tri-ethnic sample of women. Circulation 2002; 106: 403–406

    Article  PubMed  CAS  Google Scholar 

  27. Powers SK, Ji LL, Leeuwenburgh C. Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc 1999; 31: 987–997

    Article  PubMed  CAS  Google Scholar 

  28. You T, Berman DM, Ryan AS, et al. Effects of hypocaloric diet and exercise training on inflammation and adipocyte lipolysis in obese postmenopausal women. J Clin Endocrinol Metab 2004; 89: 1739–1746

    Article  PubMed  CAS  Google Scholar 

  29. Okita K, Nishijima H, Murakami T, et al. Can exercise training with weight loss lower serum C-reactive protein levels? Arteri-oscler Thromb Vase Biol 2004; 24: 1868–1873

    Article  CAS  Google Scholar 

  30. Smith JK, Dykes R, Douglas JE, et al. Long-term exercise and atherogenic activity of blood mononuclear cells in persons at risk of developing ischemic heart disease. JAMA 1999; 281: 1722–1727

    Article  PubMed  CAS  Google Scholar 

  31. Tomaszewski M, Charchar FJ, Przybycin M, et al. Strikingly low circulating CRP concentrations in ultramarathon runners independent of markers of adiposity: how low can you go? Arterioscler Thromb Vase Biol 2003; 23: 1640–1644

    Article  CAS  Google Scholar 

  32. Rawson ES, Freedson PS, Osganian SK, et al. Body mass index, but not physical activity, is associated with C-reactive protein. Med Sci Sports Exerc 2003; 35: 1160–1166

    Article  PubMed  CAS  Google Scholar 

  33. Manns PJ, Williams DP, Snow CM, et al. Physical activity, body fat, and serum C-reactive protein in postmenopausal women with and without hormone replacement. Am J Hum Biol 2003; 15: 91–100

    Article  PubMed  Google Scholar 

  34. Danesh J, Collins R, Peto R. Chronic infections and coronary heart disease: is there a link? Lancet 1997; 350: 430–436

    Article  PubMed  CAS  Google Scholar 

  35. Navab M, Ananthramaiah GM, Reddy ST, et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res 2004; 45: 993–1007

    Article  PubMed  CAS  Google Scholar 

  36. Smith LL. Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Med Sci Sports Exerc 1999; 32: 317–331

    Google Scholar 

  37. Pasceri V, Willerson JT, Yeh ETH, et al. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000; 102: 2165–2168

    Article  PubMed  CAS  Google Scholar 

  38. Taskinen S, Kovanen PT, Jarva H, et al. Binding of C-reactive protein to modified low-density-lipoprotein particles: identification of cholesterol as a novel ligand for C-reactive protein. Biochem J 2002; 367: 403–412

    Article  PubMed  CAS  Google Scholar 

  39. Smith J. Exercise and atherogenesis. Exerc Sport Sci Rev 2001; 29: 49–53

    Article  PubMed  CAS  Google Scholar 

  40. Abramson JL, Vaccarino V. Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults. Arch Intern Med 2002; 162: 1286–1292

    Article  PubMed  Google Scholar 

  41. Colbert LH, Visser M, Simonsick EM, et al. Physical activity, exercise, and inflammatory markers in older adults: findings from the Health, Aging, and Body Composition Study. J Am Geriatr Soc 2004; 52: 1098–1104

    Article  PubMed  Google Scholar 

  42. Geffken DF, Cushman M, Burke GL, et al. Association between physical activity and markers of inflammation in a healthy elderly population. Am J Epidemiol 2001; 153: 242–250

    Article  PubMed  CAS  Google Scholar 

  43. Pitsavos C, Panagiotakos DB, Chrysohoou C, et al. The association between physical activity, inflammation, and coagulation markers, in people with metabolic syndrome: the ATTICA study. Eur J Cardiovasc Prev Rehabil 2005; 12: 151–158

    Article  PubMed  Google Scholar 

  44. Pischon T, Hankinson SE, Hotamisligil GS, et al. Leisure-time physical activity and reduced plasma levels of obesity-related inflammatory markers. Obes Res 2003; 11: 1055–1064

    Article  PubMed  CAS  Google Scholar 

  45. Reuben DB, Judd-Hamilton L, Harris TB. The associations between physical activity and inflammatory markers in high-functioning older persons: Mac Arthur Studies of Successful Aging. J Am Geriatr Soc 2003; 51: 1125–1130

    Article  PubMed  Google Scholar 

  46. Rothenbacher D, Hoffmeister A, Brenner H, et al. Physical activity, coronary heart disease, and inflammatory response. Arch Intern Med 2003; 163: 1200–1205

    Article  PubMed  Google Scholar 

  47. Verdaet D, Dendale P, De Bacquer D, et al. Association between leisure time physical activity and markers of chronic inflammation related to coronary heart disease. Atherosclerosis 2004; 176: 303–310

    Article  PubMed  CAS  Google Scholar 

  48. Wannamethee SG, Lowe GDO, Whincup PH, et al. Physical activity and hemostatic and inflammatory variables in elderly men. Circulation 2002; 105: 1785–1790

    Article  PubMed  Google Scholar 

  49. Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003; 107: 499–511

    Article  PubMed  Google Scholar 

  50. Rohde T, MacLean DA, Richter EA. Prolonged sub maximal eccentric exercise is associated with increased levels of plasma IL-6. Am J Physiol 1997 Jul; 273 (1 Pt 1): E85–E91

    PubMed  CAS  Google Scholar 

  51. Lippi G, Bassi A, Guidi G, et al. Relation between regular aerobic physical exercise and inflammatory markers. Am J Cardiol 2002; 90: 820

    Article  PubMed  Google Scholar 

  52. McGavock J, Mandic S, Muhll I, et al. Low cardiorespiratory fitness is associated with elevated C-reactive protein levels in women with type 2 diabetes. Diabetes Care 2004; 27: 320–325

    Article  PubMed  CAS  Google Scholar 

  53. Plaisance EP, Taylor JK, Hilson BD, et al. Vascular inflammatory responsese to aerobic exercise. Med Sci Sports Exerc 2005; 37 (5): S378

    Google Scholar 

  54. Dufaux B, Order U, Geyer H, et al. C-reactive protein serum concentrations in well-trained athletes. Int J Sports Med 1984; 5: 102–106

    Article  PubMed  CAS  Google Scholar 

  55. Goldhammer E, Tanchilevitch A, Maor I, et al. Exercise training modulates cytokines activity in coronary heart disease patients. Int J Cardiol 2005; 100: 93–99

    Article  PubMed  Google Scholar 

  56. Hammett CJK, Oxenham HC, Baldi JC, et al. Effect of six months’ exercise training on C-reactive protein levels in healthy elderly subjects. J Am Coll Cardiol 2004; 44: 2411–2413

    Article  PubMed  Google Scholar 

  57. Mattusch F, Dufaux B, Heine O, et al. Reduction of the plasma concentration of C-reactive protein following nine months of endurance training. Int J Sports Med 2000; 21: 21–24

    Article  PubMed  CAS  Google Scholar 

  58. Milani RV, Lavie CJ, Mehra MR. Reduction in C-reactive protein through cardiac rehabilitation and exercise training. J Am Coll Cardiol 2004; 43: 1056–1061

    Article  PubMed  CAS  Google Scholar 

  59. Obisesan TO, Leeuwenburgh C, Phillips T, et al. C-reactive protein genotypes affect baseline, but not exercise training-induced changes, in C-reactive protein levels. Arterioscler Thromb Vase Biol 2004; 24: 1874–1879

    Article  CAS  Google Scholar 

  60. Esposito K, Pontillo A, Di Palo C, et al. Effects of weight loss and lifestyle changes on vascular inflammatory markers in obese women. JAMA 2003; 289: 1799–1804

    Article  PubMed  CAS  Google Scholar 

  61. King DE, Carek P, Mainous AG, et al. Inflammatory markers and exercise: differences related to exercise type. Med Sci Sports Exerc 2003; 35: 575–581

    Article  PubMed  Google Scholar 

  62. Febbraio MA, Pederson BK. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J 2002; 16: 1335–1347

    Article  PubMed  CAS  Google Scholar 

  63. Tanasescu M, Leitzmann MF, Rimm EB, et al. Exercise type and intensity in relation to coronary heart disease in men. JAMA 2002; 288: 1994–2000

    Article  PubMed  Google Scholar 

  64. Grandjean PW, Crouse SF, Rohack JJ. Influence of cholesterol status on blood lipid and lipoprotein enzyme responses to aerobic exercise. J Appl Physiol 2000; 89: 472–480

    PubMed  CAS  Google Scholar 

  65. Thompson PD, Cullinane E, Henderson LO, et al. Acute effects of prolonged exercise on serum lipids. Metabolism 1980; 29: 662–665

    Article  PubMed  CAS  Google Scholar 

  66. Tomaszewski M, Charchar FJ, Crawford L, et al. Serum C-reactive protein and lipids in ultra-marathon runners. Am J Cardiol 2004; 94: 125–126

    Article  PubMed  CAS  Google Scholar 

  67. Ostrowski K, Rohde T, Asp S, et al. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol 1999; 515 (Pt 1): 287–291

    Article  PubMed  CAS  Google Scholar 

  68. Castell LM, Poortmans JR, Leclerq R, et al. Some aspects of the acute phase response after a marathon race, and the effects of glutamine supplementation. Eur J Appl Physiol Occup Physiol 1997; 75: 47–53

    Article  PubMed  CAS  Google Scholar 

  69. Niess AM, Fehrenbach E, Lehmann R, et al. Impact of elevated ambient temperatures on the acute immune response to intensive endurance exercise. Eur J Appl Physiol 2003; 89: 344–351

    Article  PubMed  CAS  Google Scholar 

  70. Drenth JP, Van Uum SH, Van Deuren M. Endurance mn increases circulating IL-6 and IL-lra but downregulates ex vivo TNF-alpha and IL-1 beta production. J Appl Physiol 1995; 79: 1497–503

    PubMed  CAS  Google Scholar 

  71. Papanicolaou DA, Petrides JS, Tsigos C. Exercise stimulates interleukin-6 secretion: inhibition by glucocorticoids and correlation with catecholamines. Am J Physiol Endocrinol Metab 1996; 271: E601–E605

    CAS  Google Scholar 

  72. Ronsen O, Lea T, Bahr R, et al. Enhanced plasma IL-6 and IL-lra responses to repeated vs single bouts of prolonged cycling in elite athletes. J Appl Physiol 2002; 92: 2547–2553

    PubMed  CAS  Google Scholar 

  73. Romijn JA, Coyle EF, Sidossis LS, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 1993 Sep; 265 (3 Pt 1): E380–E391

    PubMed  CAS  Google Scholar 

  74. Pederson BK, Steensberg A, Schjerling P. Muscle-derived interleukin-6: possible biological effects. J Physiol 2000; 536: 329–337

    Article  Google Scholar 

  75. Mazzeo RS, Child A, Butterfield GE et al. Catecholamine response during 12 days of high-altitude exposure (4300 m) in women. J Appl Physiol 1998; 84: 1151–1157

    PubMed  CAS  Google Scholar 

  76. Klausen T, Olsen NV, Poulsen TD, et al. Hypoxemia increases serum interleukin-6 in humans. Eur J Appl Physiol 1997; 76: 480–482

    Article  CAS  Google Scholar 

  77. Nieman DC, Henson DA, Smith LL, et al. Cytokine changes after a marathon race. J Appl Physiol 2001; 91: 109–114

    PubMed  CAS  Google Scholar 

  78. Adamopoulos S, Parissis J, Kroupis C, et al. Physical training reduces peripheral markers of inflammation in patients with chronic heart failure. Eur Heart J 2001; 22: 791–797

    Article  PubMed  CAS  Google Scholar 

  79. Tsujimoto M, Inque K, Nojima S, et al. Purification and characterization of human serum C-reactive protein. J Biochem 1983; 94: 1367–1373

    PubMed  CAS  Google Scholar 

  80. Mohamed-Ali V, Goodrick S, Rawesh A, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha. J Clin Endocrinol Metab 1997; 82: 4196–4200

    Article  PubMed  CAS  Google Scholar 

  81. Visser M, Bouter LM, McQuillan GM, et al. Elevated C-reactive protein levels in overweight and obese adults. JAMA 1999; 282: 2131–2135

    Article  PubMed  CAS  Google Scholar 

  82. Tchernof A, Nolan A, Sites CK, et al. Weight loss reduces C-reactive protein levels in obese postmenopausal women. Circulation 2002; 105: 564–569

    Article  PubMed  Google Scholar 

  83. McLaughlin T, Abbasi F, Lamendola C, et al. Differentiation between obesity and insulin resistance in the association with C-reactive protein. Circulation 2002; 106: 2908–2912

    Article  PubMed  CAS  Google Scholar 

  84. Heilbronn LK, Noakes M, Clifton PM. Energy restriction and weight loss on very-low-fat diets reduce C-reactive protein concentrations in obese, healthy women. Arterioscler Thromb Vase Biol 2001; 21: 968–970

    Article  CAS  Google Scholar 

  85. Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808

    PubMed  CAS  Google Scholar 

  86. Tall A. C-reactive protein reassessed. N Engl J Med 2004; 350: 1450–1451

    Article  PubMed  CAS  Google Scholar 

  87. Chambers JC, Shinichi E, Bassett P. C-reactive protein, insulin resistance, central obesity, and coronary heart disease risk in Indian Asians from the United Kingdom compared with European whites. Circulation 2001; 104: 145–150

    Article  PubMed  CAS  Google Scholar 

  88. Jackson AS, Pollock ML. Practical assessment of body composition. Phys Sportsmed 1985; 13: 76–90

    Google Scholar 

  89. Crouse SF, O’Brien BC, Grandjean PW, et al. Effects of training and a single session of exercise on lipids and apolipoproteins in hypercholesterolemic men. J Appl Physiol 1997; 83: 2019–2028

    PubMed  CAS  Google Scholar 

  90. King DE, Egan BM, Geesey ME, et al. Relation of dietary fat and fiber to elevation of C-reactive protein. Am J Cardiol 2003; 92: 1335–1339

    Article  PubMed  CAS  Google Scholar 

  91. Tillotson JL, Grandits G, Bartsch GE, et al. Relation of dietary fiber to blood lipids in the special intervention and usual care groups in the Multiple Risk Factor Intervention Trial. Am J Clin Nutr 1997; 65 (1 Suppl.): 327S–337S

    PubMed  CAS  Google Scholar 

  92. Glore SR, Treeck DV, Knehans AW, et al. Soluble fiber and serum lipids: a literature review. J Am Diet Assoc 1994; 94: 425–436

    Article  PubMed  CAS  Google Scholar 

  93. Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis. Circulation 2003; 107: 398–404

    Article  PubMed  CAS  Google Scholar 

  94. Liu S, Manson JE, Buring JE, et al. Relation between a diet with a high glycemic load and plasma concentrations of high-sensitivity C-reactive protein in middle-aged women. Am J Clin Nutr 2002; 75: 492–498

    PubMed  CAS  Google Scholar 

  95. Jenkins DJ, Wolever TM, Taylor RH, et al. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 1981; 34: 362–366

    PubMed  CAS  Google Scholar 

  96. Albert MA, Glynn RJ, Ridker PM. Alcohol consumption and plasma concentration of C-reactive protein. Circulation 2003; 107: 433–447

    Google Scholar 

  97. Fuchs C, Stampfer MJ, Colditz GA, et al. Alcohol consumption and mortality among women. N Engl J Med 1995; 332: 1245–1250

    Article  PubMed  CAS  Google Scholar 

  98. Bazzano LA, He J, Muntner P, et al. Relationship between cigarette smoking and novel risk factors for cardiovascular disease in the United States. Ann Intern Med 2003; 138: 891–897

    PubMed  Google Scholar 

  99. Bermudez EA, Rifai N, Buring JE, et al. Relation between markers of systemic vascular inflammation and smoking in women. Am J Cardiol 2002; 89: 1117–1119

    Article  PubMed  Google Scholar 

  100. Das I. Raised C-reactive protein levels in serum from smokers. Clin Chim Acta 1985; 153: 9–13

    Article  PubMed  CAS  Google Scholar 

  101. Rohde LEP, Hennekens CH, Ridker PM. Survey of C-reactive protein and cardiovascular risk factors in apparently healthy men. Am J Cardiol 1999; 84: 1018–1022

    Article  PubMed  CAS  Google Scholar 

  102. Suzuki M, Inaba S, Nagai T, et al. Relation of C-reactive protein and interleukin-6 to culprit coronary artery plaque size in patients with acute myocardial infarction. Am J Cardiol 2003; 91: 331–333

    Article  PubMed  CAS  Google Scholar 

  103. Ridker PM, Rifai N, Clearfield M, et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med 2001; 344: 1959–1965

    Article  PubMed  CAS  Google Scholar 

  104. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003; 107: 363–369

    Article  PubMed  Google Scholar 

  105. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med 2005; 352: 29–38

    Article  PubMed  CAS  Google Scholar 

  106. Ridker PM, Cannon CP, Morrow D, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med 2005; 352: 20–28

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors have no conflicts of interest and have not received funding for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric P. Plaisance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaisance, E.P., Grandjean, P.W. Physical Activity and High-Sensitivity C-Reactive Protein. Sports Med 36, 443–458 (2006). https://doi.org/10.2165/00007256-200636050-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200636050-00006

Keywords

Navigation