Skip to main content
Log in

Therapeutic Potential of Serotonin 5-HT3 Antagonists in Neuropsychiatric Disorders

  • Pharmacology and Pathophysiology
  • Published:
CNS Drugs Aims and scope Submit manuscript

Summary

Serotonin 5-HT3-receptors are the only monoamine neurotransmitter receptors that are a member of the ligand-gated ion channel receptor superfamily, enabling these receptors to modulate fast synaptic transmission.

Over the past 10 years, 5-HT3-receptors have been extensively investigated. Whilst it is generally accepted that 5-HT3-receptor antagonists attenuate emesis induced by a variety of stimuli, an extensive body of evidence indicates that these ligands may also alleviate some of the symptoms associated with various CNS disorders (e.g. psychosis, anxiety, dementia) and also reduce the rewarding properties of and withdrawal symptoms associated with drugs of abuse. In general, however, the clinical potential described for 5-HT3-receptor antagonists has not been substantiated by a number of preclinical and clinical reports.

The further unravelling of the mechanisms underlying the actions of 5-HT3-receptor antagonists, and the reasons why they apparently fail to display efficacy in the hands of some experienced investigators, remain major objectives for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boess FG, Martin IL. Molecular biology of 5-HT receptors. Neuropharmacology 1994; 33: 275–317

    Article  PubMed  CAS  Google Scholar 

  2. Plosker GL, Goa KL. Granisetron: a review of its pharmacological properties and therapeutic uses as an antiemetic. Drugs 1991; 42: 805–24

    Article  PubMed  CAS  Google Scholar 

  3. Russell D, Kenny GNC. 5-HT3 antagonists in postoperative nausea and vomiting. Br J Anaesth 1992; 69Suppl. 1: S63–8

    Article  Google Scholar 

  4. Joslyn AF. Ondansetron, clinical development for postoperative nausea and vomiting - current studies and future directions. Anaesthesia 1994; 49: 34–7

    Article  PubMed  Google Scholar 

  5. Derkach V, Surprenant A, North RA. 5-HT3 receptors are membrane ion channels. Nature 1989; 339: 706–9

    Article  PubMed  CAS  Google Scholar 

  6. Maricq AV, Peterson AS, Brake AJ, et al. Primary structure and functional expression of the 5-HT3 receptor, a serotonin-gated ion channel. Science 1991; 254: 432–7

    Article  PubMed  CAS  Google Scholar 

  7. Cockcroft VB, Osguthorpe DJ, Barnard EA, et al. Ligand-gated ion channels: homology and diversity. Mol Neurobiol 1990; 4: 129–69

    Article  PubMed  CAS  Google Scholar 

  8. Burt DR, Kanatchi GL. GABAA receptor subtypes: from pharmacology to molecular biology. FASEB J 1991; 5: 2916–23

    PubMed  CAS  Google Scholar 

  9. Heinemann S, Boulter J, Connolly J, et al. Brain nicotinic receptor genes. NIDA Res Monogr 1991; 111: 3–23

    PubMed  CAS  Google Scholar 

  10. Barnes JM, Henley JM Molecular characteristics of excitatory amino acid receptors. Prog Neurobiol 1992; 39: 113–33

    Article  PubMed  CAS  Google Scholar 

  11. Hope AG, Downie DL, Sutherland L, et al. Cloning and functional expression of an apparent splice variant of the murine 5-HT3 receptor A subunit. Eur J Pharmacol 1993; 245: 187–92

    Article  PubMed  CAS  Google Scholar 

  12. Johnson DS, Heinemann SF. Cloning and expression of the rat 5HT3 receptor reveals species-specific sensitivity to curare antagonism [abstract]. Soc Neurosci Abstr 1992; 18: 249

    Google Scholar 

  13. Isenberg KE, Ukhun IA, Holstad SG, et al. Partial cDNA cloning and NGF regulation of a rat 5-HT(3) receptor subunit. Neuroreport 1993; 5: 121–4

    Article  PubMed  CAS  Google Scholar 

  14. Peters JA, Malone HM, Lambert JJ. Recent advances in the electrophysiological characterization of 5-HT3 receptors. Trends Pharmacol Sci 1992; 13: 391–7

    Article  PubMed  CAS  Google Scholar 

  15. McKernan RM, Gillard NP, Quirk K, et al. Purification of the 5-hydroxytryptamine 5-HT3 receptor from NCB20 cells. J Biol Chem 1990; 265: 13572–7

    PubMed  CAS  Google Scholar 

  16. Boess FG, Lummis SCR, Martin IL. Molecular properties of 5-hydroxytryptamine3 receptor-type binding sites purified from NG108-15 cells. J Neurochem 1992; 59: 1692–701

    Article  PubMed  CAS  Google Scholar 

  17. Ford DR, Barber PC, Barnes NM. Solubilisation of the human central 5-HT3 receptor. Proceedings of the 3rd IUPHAR Satellite Meeting on Serotonin. 1994 Jul 30-Aug 3: Chicago

  18. Creighton RM, Martin IL, Boess FG. Purification of 5-HT3 receptors from bovine brain [abstract]. Can J Phys Pharmacol 1994; 72: P18.4.11

    Google Scholar 

  19. Kilpatrick GJ, Barnes NM, Cheng CHK, et al. The pharmacological characterisation of 5-HT3 receptor binding sites in rabbit ileum: comparison with those in rat ileum and rat brain. Neurochem Int 1991; 19: 389–96

    Article  CAS  Google Scholar 

  20. Kilpatrick GJ, Tyers MB. Inter-species variants of the 5-HT3 receptor. Biochem Soc Trans 1992; 20: 118–21

    PubMed  CAS  Google Scholar 

  21. Barnes JM, Barnes NM, Costall B, et al. Identification and characterisation of 5-HT3 recognition sites in human brain tissue. J Neurochem 1989; 53: 1787–93

    Article  PubMed  CAS  Google Scholar 

  22. Barnes JM, Barnes NM, Costall B, et al. Identification and distribution of 5-HT3 recognition sites within the human brain stem. Neurosci Lett 1990; 111: 80–6

    Article  PubMed  CAS  Google Scholar 

  23. Abi-Dargham A, Laruelle M, Wong DT, et al. Pharmacological and regional characterisation of [3H]LY278584 binding sites in human brain. J Neurochem 1993; 60: 730–7

    Article  PubMed  CAS  Google Scholar 

  24. Bufton KE, Steward LJ, Barber PC, et al. Distribution and characterisation of the [3H]granisetron-labelled 5-HT3 receptor in the human forebrain. Neuropharmacology 1993; 32: 1325–32

    Article  PubMed  CAS  Google Scholar 

  25. Newberry NR, Cheshire SH, Gilbert MJ. Evidence that the 5-HT3 receptors of the rat, mouse and guinea-pig superior cervical ganglion may be different. Br J Pharmacol 1991; 102: 615–20

    Article  PubMed  CAS  Google Scholar 

  26. Peters JA, Lambert JJ. Electrophysiology of 5-HT3 receptors in neuronal cell lines. Trends Pharmacol Sci 1989; 10: 172–5

    Article  PubMed  CAS  Google Scholar 

  27. Barnes JM, Barnes NM, Costall B, et al. Agonist interactions with 5-HT3 receptor recognition sites in the rat entorhinal cortex labelled by structurally diverse radioligands. Br J Pharmacol 1992; 105: 500–4

    Article  PubMed  CAS  Google Scholar 

  28. Barnes JM, Barnes NM. Differential binding characteristics of agonists at 5-HT3 receptor recognition sites in NG108-15 neuroblastoma-glioma cells labelled by [3H]-(S)-zacopride and [3H]granisetron. Biochem Pharmacol 1993; 45: 2155–8

    Article  PubMed  CAS  Google Scholar 

  29. Barnes NM, Costall B, Naylor RJ. [3H]Zacopride: ligand for the identification of 5-HT3 recognition sites. J Pharm Pharmacol 1988; 40: 548–51

    Article  PubMed  CAS  Google Scholar 

  30. Hamon M, Gallissot MC, Menard F, et al. 5-HT3 receptor binding sites on capsaicin-sensitive fibres in the rat spinal cord. Eur J Pharmacol 1989; 164: 315–22

    Article  PubMed  CAS  Google Scholar 

  31. Lovinger DM. Ethanol potentiation of 5-H3 receptor-mediated ion current in NCB-20 neuroblastoma cells. Neurosci Lett 1991; 122: 57–60

    Article  PubMed  CAS  Google Scholar 

  32. Downie DL, Hope AG, Lambert JJ, et al. Trichloroethanol enhances agonist induced responses in Xenopus oocytes expressing cloned 5-HT3 receptor subunits [abstract]. Brain Res 1993; 10: 10.1

    Google Scholar 

  33. Lovinger DM, Zhou Q. Trichloroethanol potentiation of 5-hydroxytryptamine3 receptor-mediated ion current in nodose ganglion neurons from the adult rat. J Pharmacol Exp Ther 1993; 265: 771–6

    PubMed  CAS  Google Scholar 

  34. Bentley KR, Chen CY, Steward LJ, et al. Trichloroethanol modulates agonist affinity for the 5-HT3-As homomeric receptor. Presented at the 3rd IUPHAR Satellite Meeting on Serotonin. 1994 Jul 30-Aug 3: Chicago

  35. Bentley KR, Downie DL, Lambert JJ, et al. Trichloroethanol potentiates the affinity of quipazine for the 5-HT3 receptor. Presented at the 3rd IUPHAR Satellite Meeting on Serotonin. 1994 Jul 30-Aug 3: Chicago

  36. Bentley KR, Downie DL, Hope AJ, et al. 5-Chloroindole potentiates the affinity of 5-HT for the 5-HT3 receptor. Presented at the 3rd IUPHAR Satellite Meeting on Serotonin. 1994 Jul 30-Aug 3: Chicago

  37. Barann M, Gothert M, Fink K, et al. Inhibition by anaesthetics of 14C-guanidinium flux through the voltage-gated sodium channel and the cation channel of the 5-HT3 receptor of N1E-115 neuroblastoma cells. Naunyn Schmiedebergs Arch Pharmacol 1993; 347: 125–32

    Article  PubMed  CAS  Google Scholar 

  38. Olsen RW. Drug interactions at the GABA receptor-ionophore complex. Ann Rev Pharmacol Toxicol 1982; 22: 245–77

    Article  CAS  Google Scholar 

  39. Miller KW, Braswell LM, Firestone LL, et al. General anaesthetics act both specifically and nonspecifically on acetylcholine receptors. In: Roth SH, Miller KW, editors. Molecular and cellular mechanisms of anaesthetics. New York: Plenum Medical, 1986: 125–37

    Chapter  Google Scholar 

  40. Lovinger DM, White G, Weight FF. Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 1989; 243: 1721–4

    Article  PubMed  CAS  Google Scholar 

  41. Lambert JJ, Peters JA, Sturgess NC, et al. Steroid modulation of the GABAA receptor complex: electrophysiological studies. In: Chadwick D, Widdows K, editors. Steroids and neuronal activity. New York: John Wiley and Sons, 1990: 56–82

    Google Scholar 

  42. Sieghart W. GABAA receptors: ligand-gated Cl ion channels modulated by multiple drug-binding sites. Trends Pharmacol Sci 1992; 13: 446–50

    Article  PubMed  CAS  Google Scholar 

  43. Waeber C, Hoyer D, Palacios JM. 5-Hydroxytryptamine3 receptors in the human brain: autoradiographic visualization using [3H]ICS205-930. Neuroscience 1989; 31: 393–400

    Article  PubMed  CAS  Google Scholar 

  44. Steward LJ, Bufton KE, Hopkins PC, et al. Reduced levels of 5-HT3 receptor recognition sites in the putamen of patients with Huntington’s disease. Eur J Pharmacol 1993; 242: 137–43

    Article  PubMed  CAS  Google Scholar 

  45. Bird ED. Huntington’s disease. In: Riederer P, Kopp N, Pearson J, editors. An introduction to neurotransmission in health and disease. New York: Oxford Medical Publications, 1990: 221–33

    Google Scholar 

  46. Matthysse S. Dopamine and the pharmacology of schizophrenia: the state of the evidence. J Psychiatr Res 1974; 11: 107–13

    Article  PubMed  CAS  Google Scholar 

  47. Meltzer HY, Stahl SM. The dopamine hypothesis of schizophrenia: a review. Schizophr Bull 1976; 2: 19–76

    Article  PubMed  CAS  Google Scholar 

  48. Bowers MB. The role of drugs in the production of schizophreniform psychoses and related disorders. In: Meltzer HY, editor. Psychopharmacology: the third generation of progress. New York: Raven Press, 1987: 819–23

    Google Scholar 

  49. Connell PH. Amphetamine psychosis. London: Oxford University Press, 1958

    Google Scholar 

  50. Meltzer HY, Nash JF. Effects of antipsychotic drugs on serotonin receptors. Pharmacol Rev 1991; 43(4): 587–604

    PubMed  CAS  Google Scholar 

  51. Green AR, Grahame-Smith DG. Effects of drugs on the processes regulating the functional activity of brain 5-hydroxytryptamine. Nature 1976; 260: 487–91

    Article  PubMed  CAS  Google Scholar 

  52. Smythies JR. Recent progress in schizophrenia research. Lancet 1976; 2: 136–9

    Article  PubMed  CAS  Google Scholar 

  53. Leysen JE, Niemegeers CJE, Tollanaere JP, et al. Serotonergic component of neuroleptic receptors. Nature 1978; 272: 168–71

    Article  PubMed  CAS  Google Scholar 

  54. Meltzer HY, Matsubara S, Lee JC. Classification of typical and atypical antipsychotic drugs on the basis of D1, D2 and serotonin2 pKi values. J Pharmacol Exp Ther 1989; 251: 238–46

    PubMed  CAS  Google Scholar 

  55. Watling KJ, Beer MS, Stanton JA. Interaction of the atypical neuroleptic clozapine with 5-HT3 receptors in the cerebral cortex and superior cervical ganglion of the rat. Eur J Pharm 1990; 182: 465–72

    Article  CAS  Google Scholar 

  56. Leysen JE, Janssen PMF, Schotte A, et al. Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacology and clinical effects - role of 5-HT2 receptors. Psychopharmacology (Bert) 1993; 112: S40–54

    Article  CAS  Google Scholar 

  57. Uetz P, Abdelatty F, Villarroel A, et al. Organisation of the murine 5-HT3 receptor gene and assignment to human chromosome 11. FEBS Lett 1994; 339(3): 302–6

    Article  PubMed  CAS  Google Scholar 

  58. Butler A, Hill JM, Ireland SJ, et al. Pharmacological properties of GR38032F, a novel antagonist at 5-HT3 receptors. Br J Pharmacol 1988; 94: 397–412

    Article  PubMed  CAS  Google Scholar 

  59. Costall B, Domeney AM, Naylor RJ, et al. Effects of the 5-HT3 receptor antagonist GR38032F, on raised dopaminergic activity in the mesolimbic system of the rat and marmoset brain. Br J Pharmacol 1987; 92: 881–94

    Article  PubMed  CAS  Google Scholar 

  60. Hagan RM, Butler A, Hill JM, et al. Effect of the 5-HT3 receptor antagonist, GR38032F, on responses to injection of a neurokinin agonist into the ventral tegmental area of the rat brain. Eur J Pharmacol 1987; 138: 303–5

    Article  PubMed  CAS  Google Scholar 

  61. Costall B, Domeney AM, Naylor RJ, et al. Hyperactivity following withdrawal of mesolimbic dopamine infusion and neuroleptic treatment is reversed by GR38032F [abstract]. Br J Pharmacol 1987; 91: 338P

    Article  Google Scholar 

  62. Moser PC. The effect of the 5-HT3 receptor antagonists on the discriminative stimulus effects of amphetamine. Eur J Pharmacol 1992; 212: 271–4

    Article  PubMed  CAS  Google Scholar 

  63. Chen J, van Praag HM, Gardner EL. Activation of 5-HT3 receptor by 1-phenylbiguanide increases dopamine release in the rat nucleus accumbens. Brain Res 1991; 543: 354–7

    Article  PubMed  CAS  Google Scholar 

  64. Warburton EC, Joseph MH, Feldon J, et al. Antagonism of amphetamine-induced disruption of latent inhibition in rats by haloperidol and ondansetron: implications for a possible antipsychotic action of ondansetron. Psychopharmacology (Bert) 1994; 114(4): 657–64

    Article  CAS  Google Scholar 

  65. Costall B, Domeney AM, Naylor RJ. 5-HT3 receptor antagonists attenuate dopamine-induced hyperactivity in the rat. Neuroreport 1990; 1: 77–80

    Article  PubMed  CAS  Google Scholar 

  66. Hagan RM, Jones BJ, Jordan CC, et al. Effect of 5-HT3 receptor antagonists on responses to selective activation of mesolimbic dopaminergic pathways in the rat. Br J Pharmacol 1990; 99: 227–32

    Article  PubMed  CAS  Google Scholar 

  67. Blandina P, Goldfarb J, Craddock-Royal B, et al. A function for 5-HT3 receptors in the striatum [abstract]. Proc NY Acad Sci 1989; Jul: 28

    Google Scholar 

  68. Schmidt CJ, Black CK. The putative 5-HT3 agonist phenylbiguanide induces carrier-mediated release of [3H]dopamine. Eur J Pharmacol 1989; 167: 309–10

    Article  PubMed  CAS  Google Scholar 

  69. Imperato A, Angelucci L. 5-HT3 receptors control dopamine release in the nucleus accumbens of freely moving rats. Neurosci Lett 1989; 101: 214–7

    Article  PubMed  CAS  Google Scholar 

  70. Jiang LH, Ashby Jr CR, Kasser RJ. The effect of intraventricular administration of the 5-HT3 receptor agonist 2-methylseroton in on the release of dopamine in the nucleus accumbens: an in vivo chrono coulometric study. Brain Res 1990; 513: 156–60

    Article  PubMed  CAS  Google Scholar 

  71. Ashby Jr CR, Lian HJ, Wang RY. Chronic BRL 43694, a selective 5-HT3 receptor antagonist, fails to alter the number of spontaneously active midbrain dopamine neurons. Eur J Pharmacol 1990; 175: 347–50

    Article  PubMed  CAS  Google Scholar 

  72. Minabe Y, Ashby CR, Schwartz JE, et al. The 5-HT3 receptor antagonists LY 277359 and granisetron potentiate the suppressant action of apomorphine on the basal firing rate of ventral tegmental dopamine cells. Eur J Pharmacol 1991; 209: 143–50

    Article  PubMed  CAS  Google Scholar 

  73. Domeney AM, Costall B, Naylor RJ, et al. Effects of GR68755, a selective 5-HT3 receptor antagonist, on behaviours induced by raised mesolimbic dopaminergic activity [abstract]. Br J Pharmacol 1992; 107: 444P

    Google Scholar 

  74. Smith AG, Domeney AM, Costall B, et al. Alosetron attenuates the rebound hyperactivity induced by withdrawal from a chronic mesolimbic dopamine infusion and systemic treatment [abstract]. Br J Pharmacol 1993; 110: 100P

    Article  Google Scholar 

  75. Sorensen SM, Humphreys TM, Palfreyman MG. Effect of acute and chronic MOL 73,147EF, a 5-HT3 receptor antagonist, on A9 and A10 dopamine neurons. Eur J Pharmacol 1989; 163: 115–8

    Article  PubMed  CAS  Google Scholar 

  76. Rizzi CA, Prudentino A, Giraldo E. Effects on general behaviour and neurotransmitter functions of a new 5-hydroxytryptamine(3) receptor antagonist with potential therapeutic relevance in central nervous system disturbances. Arzneimittelforschung 1993; 43-2(10): 1033–41

    Google Scholar 

  77. Prisco S, Pessia M, Ceci A, et al. Chronic treatment with DAU 6215, a new 5-HT3 receptor antagonist, causes a selective decrease in the number of spontaneously active dopaminergic neurons in the ventral tegmental area. Eur J Pharmacol 1992; 214: 13–9

    Article  PubMed  CAS  Google Scholar 

  78. Eison AS, Iversen SD, Sandberg BEB, et al. Substance Panalog, DiMe-C7: evidence for stability in rat brain and prolonged central actions. Science 1982; 215: 188–90

    Article  PubMed  CAS  Google Scholar 

  79. Barnes JM, Barnes NM, Costall B, et al. Behavioural and neurochemical consequences following injection of the substance P analogue, DiMe-C7, into the rat ventral tegmental area. Pharmacol Biochem Behav 1990; 37: 839–41

    Article  PubMed  CAS  Google Scholar 

  80. Eison AS, Eison MS, Iversen SD. The behavioural effects of a novel substance P analogue following infusion into the ventral tegmental area of the substantia nigra of the rat brain. Brain Res 1982; 238: 137–52

    Article  PubMed  CAS  Google Scholar 

  81. Blandina P, Goldfarb J, Green JP. Activation of a 5-HT3 receptor releases dopamine from rat striatal slices. Eur J Pharmacol 1988; 155: 349–50

    Article  PubMed  CAS  Google Scholar 

  82. Bachy A, Heaulmem, Giudue A, et al. SR-57227A - a potent and selective agonist at central and peripheral 5-HT3 receptors in vitro and in vivo. Eur J Pharmacol 1993; 237: 299–309

    Article  PubMed  CAS  Google Scholar 

  83. Bunney BS, Aghajanian GK. Anti-psychotic drugs and central dopaminergic neurons: a model for predicting therapeutic efficacy and incidence of extra pyramidal side effects. In: Sudilovsky A, Gershon S, Beer B, editors. Predictability in psychopharmacology: preclinical and clinical observations. New York: Raven Press, 1975: 225–45

    Google Scholar 

  84. Ashby CR, Minabe Y, Toor A, et al. Effect produced by acute and chronic administration of the selective 5-HT3 receptor antagonist BRL46470 on the number of spontaneously active midbrain dopamine cells in the rat. Drug Dev Res 1994; 31(3): 228–36

    Article  CAS  Google Scholar 

  85. Koulu M, Sjöholm B, Lappalainen J, et al. Effects of acute GR38032F (ondansetron), a 5-HT3 receptor antagonist on dopamine and serotonin metabolism in mesolimbic and nigrostriatal dopaminergic neurons. Eur J Pharmacol 1989; 169: 321–8

    Article  PubMed  CAS  Google Scholar 

  86. De Veaugh-Geiss J, McBain S, Bell JM, et al. The effect of a novel 5-HT3 antagonist, ondansetron, in schizophrenia: results from uncontrolled trials. ANCP Satellite Conference on the New Research Directions in the Development of Atypical and Other Novel Antipsychotic Medications. 1990 Dec: San Juan, Puerto Rico

  87. Meltzer HY. Studies of ondansetron in schizophrenia. The role of ondansetron, a novel 5-HT3 antagonist, in the treatment of psychiatric disorders. 5th World Congress of Biological Psychiatry Satellite Symposium; 1991 Jun 9: Florence: 25–7

  88. White A, Corn TH, Feetham C, et al. Ondansetron in the treatment of schizophrenia [letter]. Lancet 1991; 337: 1173

    Article  PubMed  CAS  Google Scholar 

  89. Johnson BA, Campling GM, Griffiths P, et al. Attenuation of so me alcohol-induced mood changes and the desire to drink by 5-HT3 receptor blockade: a preliminary study in healthy male volunteers. Psychopharmacology (Berl) 1993; 112: 142–4

    Article  CAS  Google Scholar 

  90. Sellers EM, Romach MK, Frecker RC, et al. Efficacy of the 5-HT3 antagonist ondansetron in addictive disorders. 5th World Congress of Biological Psychiatry Satellite Symposium: The role of ondansetron, a novel 5-HT3 antagonist, in the treatment of psychiatric disorders; 1991 Jun 9: Florence: 29–31

  91. Zacny JP, Apfelbaum JL, Lichtor JL, et al. Effects of 5-hydroxytryptamine3 antagonist, ondansetron, on cigarette smoking, smoke exposure, and mood in humans. Pharmacol Biochem Behav 1993; 44: 387–91

    Article  PubMed  CAS  Google Scholar 

  92. Bell J, De Veaugh-Geiss J. Multicenter trial of a 5-HT3 antagonists, ondansetron, in social phobia. Presented at the AC NP conference; 1994 Dec 12-16: Puerto Rico

  93. Lader MH. Ondansetron in the treatment of anxiety. Presented at the 5th World Congress of Biological Psychiatry Satellite Symposium: The role of ondansetron, a novel 5-HT3 antagonist, in the treatment of psychiatric disorders; 1991 Jun 9: Florence: 17–9

  94. Lecrubier Y. Efficacy of 5-HT3 receptor antagonists. Eur Neuropsychopharmacol 1993; 3: 250–2

    Article  Google Scholar 

  95. Lecrubier V, Puech AJ, Azcona A, et al. A randomized double-blind placebo-controlled study of tropisetron in the treatment of outpatients with generalized anxiety disorder. Psychopharmacology (Berl) 1993; 112: 129–33

    Article  CAS  Google Scholar 

  96. Metz A, Evoniuk G, De Vaeaugh-Geiss MD. Multicenter trial of a 5-HT3 antagonist, ondansetron, in panic disorder. Presented at the ACNP conference; 1994 Dec 12-16: Puerto Rico

  97. Schneiner FR, Garfinkel R, Kennedy B, et al. Ondansetron in the treatment of panic disorder. Presented at the ACNP conference; 1994 Dec 12-16: Puerto Rico

  98. Silverstone PH, Cowen PJ. The 5-HT3 antagonist, BRL46470 does not attenuate m-chlorophenylpiperazine (mCPP) induced changes in human volunteers. Biol Psychiatry 1994; 36: 309–16

    Article  PubMed  CAS  Google Scholar 

  99. Crook T, Lakin M. Effects of ondansetron in age-associated memory impairment. 5th World Congress of Biological Psychiatry Satellite Symposium: the role of ondansetron, a novel 5-HT3 antagonist, in the treatment of psychiatric disorders; 1991 Jun 9: Florence: 21–3

  100. Smith RJ, Davies LF, Noble J. The efficacy of zacopride in the prevention of scopolamine induced cognitive impairment in normal young volunteers. Proceedings of the conference on Serotonin: From Cell Biology to Pharmacology and Therapeutics; 1989 Mar 29-Apr 1: Florence: 53

  101. Glaxo R & D Update November 1993

  102. Wise RA, Bozarth MA. Action of drugs of abuse on brain reward systems: an update with specific attention to opiates. Pharmacol Biochem Behav 1982; 17: 239–43

    Article  PubMed  CAS  Google Scholar 

  103. Imperato A, Di Chiara G. Preferential stimulation of dopamine release in the nudeus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther 1986; 239: 219–28

    PubMed  CAS  Google Scholar 

  104. Di Chiara G, Imperato A. Preferential stimulation of dopamine release in the nucleus accumbens by opiates, alcohol and barbiturates: studies with transcerebral dialysis in freely moving rats. Ann NY Acad Sci 1986; 473: 367–81

    Article  PubMed  Google Scholar 

  105. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 1988; 85: 5274–8

    Article  PubMed  Google Scholar 

  106. Di Chiara G, Imperato A. Opposite effects of μ and k-opiate agonists on dopamine release in the nucleus accumbens and the dorsal caudate of freely moving rats. J Pharmacol Exp Ther 1988; 244: 1067–80

    PubMed  Google Scholar 

  107. Spyraki C, Fibinger HC. A role for the mesolimbic dopamine system in the reinforcing properties of diazepam. Psychopharmacology (Berl) 1988; 94: 133–7

    Article  CAS  Google Scholar 

  108. Oakley NR, Jones BJ, Tyers MB, et al. The effect of GR38032F on alcohol consumption in the marmoset [abstract]. Br J Pharmacol 1988; 95: 870P

    Google Scholar 

  109. Peltier R, Schenk S. GR38032F, a serotonin 5-HT3 antagonist, fails to alter cocaine self-administration in rats. Pharmacol Biochem Behav 1991; 39: 133–6

    Article  PubMed  CAS  Google Scholar 

  110. Van der Hoek GA, Cooper SJ. Evidence that ondansetron, a selective 5-HT3 antagonist, reduces cocaine’s psychomotor stimulant effects in the rat [abstract]. Psychopharmacology (Berl) 1990; 101: S59

    Google Scholar 

  111. Hui SCG, Sevilla EL, Ogle CW. 5-HT(3) antagonists reduce morphine self-administration in rats. Br J Pharmacol 1993; 110(4): 1341–6

    Article  PubMed  CAS  Google Scholar 

  112. Borg PJ, Taylor DA. Voluntary oral morphine self-administration in rats - effect of haloperidol or ondansetron. Pharmacol Biochem Behav 1994; 47(3): 633–46

    Article  PubMed  CAS  Google Scholar 

  113. Higgins GA, Wang YP, Corrigall WA, et al. Influence of 5-HT(3) receptor antagonists and the indirect 5-HT agonist, dexfenfluramine, on heroin self-administration in rats. Psychopharmacology (Berl) 1994; 114(4): 611–9

    Article  CAS  Google Scholar 

  114. Higgins GA, Joharchi N, Nguyen P, et al. Effect of the 5-HT3 receptor antagonists, MDL72222 and ondansetron on morphine place conditioning. Psychopharmacology (Berl) 1992; 106: 315–20

    Article  CAS  Google Scholar 

  115. Pei Q, Zetterström T, Leslie RA, et al. 5-HT3 receptor antagonists inhibit morphine-induced stimulation of mesolimbic dopamine release and function in the rat. Eur J Pharmacol 1993; 230: 63–8

    Article  PubMed  CAS  Google Scholar 

  116. Carboni E, Acquas E, Leone O, et al. 5-HT3 receptor antagonists block morphine- and nicotine-induced place-preference conditioning. Eur J Pharmacol 1988; 151: 159–60

    Article  PubMed  CAS  Google Scholar 

  117. Kostowski W, Dyr H, Krzascik P. The abilities of 5-HT3 receptor antagonist ICS 205-930 to inhibit alcohol preference and withdrawal seizures in rats. Alcohol 1993; 10: 369–73

    Article  PubMed  CAS  Google Scholar 

  118. Jankowska E, Bidzinski A, Kostowski W. Alcohol drinking in rats treated with 5,7-dihydroxytryptamine: effect of 8-OHDPAT and tropisetron (ICS 205-930). Alcohol 1994; 63(2): 456–64

    Google Scholar 

  119. Paris JM, Cunningham KA. Serotonin 5-HT3 antagonists do not alter the discriminative stimulus properties of cocaine. Psychopharmacology (Berl) 1991; 104: 475–8

    Article  CAS  Google Scholar 

  120. Grant KA, Lovinger DM, White G, et al. Blockade of the discriminative stimulus properties of ethanol by 5-HT3 receptor antagonists [abstract]. FASEB J 1990; 4: A989

    Google Scholar 

  121. Carboni E, Acquas E, Frau R, et al. Differential inhibitory effects of a 5-HT3 antagonist on drug-induced stimulation of dopamine release. Eur J Pharmacol 1989; 164: 515–9

    Article  PubMed  CAS  Google Scholar 

  122. Wozniak KM, Pert A, Linnoila M. Antagonism of 5-HT3 receptors attenuates the effects of ethanol on extracellular dopamine. Eur J Pharmacol 1990; 187: 287–9

    Article  PubMed  CAS  Google Scholar 

  123. Reith MEA. 5-HT3 receptor antagonists attenuate the cocaine-induced locomotion in mice. Eur J Pharmacol 1990; 186: 327–30

    Article  PubMed  CAS  Google Scholar 

  124. Gifford AN, Wang RY. The effect of 5-HT3 receptor antagonists on the morphine-induced excitation of A10 dopamine cells - electrophysiological studies. Brain Res 1994; 638(1-2): 325–8

    Article  PubMed  CAS  Google Scholar 

  125. Bilsky EJ, Reid LD. MDL72222, a serotonin 5-HT3 receptor antagonist, blocks MDMA’s ability to establish a conditioned place preference. Pharmacol Biochem Behav 1991; 39: 509–12

    Article  PubMed  CAS  Google Scholar 

  126. Carr GD, Fibiger HC, Phillips AG. Conditioned place preference as a measure of drug reward. In: Liebman JM, Cooper SJ, editors. The neuropharmacological basis of reward. Oxford: Oxford University Press, 1989: 264–319

    Google Scholar 

  127. Beach HD. Morphine addiction in rats. Can J Psychol 1957; 11: 104–12

    Article  PubMed  CAS  Google Scholar 

  128. Van der Kooy D, O’Shaunessy M, Mucha R, et al. Motivational properties of ethanol in naive rats as studied by place preference conditioning. Pharmacol Biochem Behav 1983; 19: 441–5

    Article  PubMed  Google Scholar 

  129. Asin KE, Wirtshafter D, Tabakoff B. Failure to establish a conditioned place preference with ethanol in rats. Pharmacol Biochem Behav 1985; 22: 169–73

    Article  PubMed  CAS  Google Scholar 

  130. Stewart RB, Grupp LA. Conditioned place aversion mediated by orally self-administered ethanol in the rat. Pharmacol Biochem Behav 1986; 24: 1369–75

    Article  PubMed  CAS  Google Scholar 

  131. Einhorn LC, Johansen PA, White FJ. Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci 1988; 8(1): 100–12

    PubMed  CAS  Google Scholar 

  132. Matthews RT, German DC. Electrophysiological evidence for excitation of rat ventral tegmental area dopamine neurons by morphine. Neuroscience 1984; 11: 617–25

    Article  PubMed  CAS  Google Scholar 

  133. Mereu G, Fadd F, Gessa GL. Ethanol stimulates the firing rate of nigral dopaminergic neurons in unanesthetized rats. Brain Res 1984; 292: 63–9

    Article  PubMed  CAS  Google Scholar 

  134. Clarke PBS, Hommer DW, Pert A, et al. Electrophysiological actions of nicotine on substantia nigra single units. Br J Pharmacol 1985; 85: 827–35

    Article  PubMed  CAS  Google Scholar 

  135. Barnes JM, Barnes NM, Champaneria S, et al. Characterisation and autoradiographic localisation of 5-HT3 receptor recognition sites identified with [3H]-(S)-zacopride in the forebrain of the rat. Neuropharmacology 1990; 29: 1037–45

    Article  PubMed  CAS  Google Scholar 

  136. Laporte AM, Koscielniak T, Ponchant M, et al. Quantitative autoradiographic mapping of 5-HT3 receptors in the rat CNS using [125I]iodo-zacopride and [3H]zacopride as radioligands. Synapse 1992; 10: 271–81

    Article  PubMed  CAS  Google Scholar 

  137. Lovinger DM, White G. Ethanol potentiation of 5-hydroxytryptamine3 receptor-mediated ion current in neuroblastoma cells and isolated adult mammalian neurons. Mol Pharmacol 1991; 40: 263–70

    PubMed  CAS  Google Scholar 

  138. Downie DL, Hope AG, Belelli D, et al. The interaction of trichloroethanol with murine recombinant 5-HT3 receptors. Br J Pharmacol 1995; 114: 1641–51

    Article  PubMed  CAS  Google Scholar 

  139. Lovinger DM, Peoples RW. Actions of alcohols and other sedative/hypnotic compounds on cation channels associated with glutamate and 5-HT3 receptors. In: Alling C, Diamond I, Leslie S, et al., editors. Alcohol, cell membrane and signal transduction in brain. New York: Plenum Press, 1993: 157–68

    Chapter  Google Scholar 

  140. Johnson BA, Rue J, Cowen PJ. Ondansetron and alcohol pharmacokinetics [letter]. Psychophannacology (Berl) 1993; 112: 145

    Article  CAS  Google Scholar 

  141. Woods JH, Katz JL, Winger G. Abuse liability of benzodiazepines. Pharmacol Rev 1987; 39: 251–413

    PubMed  CAS  Google Scholar 

  142. Barry JM, Costall B, Kelly ME, et al. Withdrawal syndrome following subchronic treatment with anxiolytic agents. Pharmacol Biochem Behav 1987; 27: 239–45

    Article  PubMed  CAS  Google Scholar 

  143. Costall B, Jones BJ, Kelly ME, et al. The effects of ondansetron (GR38032F) in rats and mice treated sub-chronically with diazepam. Pharmacol Biochem Behav 1989; 34: 769–78

    Article  PubMed  CAS  Google Scholar 

  144. Goudie AJ, Leathley MJ. Effects of the 5-HT3 antagonist ondansetron on benzodiazepine-induced operant behavioural dependence in rats. Psychopharmacology (Berl) 1992; 109: 461–5

    Article  CAS  Google Scholar 

  145. Goudie AJ, Leathley MJ. Effects of the 5-HT3 antagonist GR38032F (ondansetron) on benzodiazepine withdrawal in rats. Eur J Pharmacol 1990; 185: 179–86

    Article  PubMed  CAS  Google Scholar 

  146. Higgins GA, Nguyen P, Joharchi N, et al. Effects of 5-HT3 receptor antagonists on behavioural measures of naloxone-precipitated opioid withdrawal. Psychopharmacology (Berl) 1991; 105: 322–8

    Article  CAS  Google Scholar 

  147. Costall B, Jones BJ, Kelly ME, et al. Sites of action of ondansetron to inhibit the withdrawal from drugs of abuse. Pharmacol Biochem Behav 1990; 36: 97–104

    Article  PubMed  CAS  Google Scholar 

  148. Leathley MJ, Goudie AJ. Effects of the 5-HT3 antagonist ICS-205-930 on benzodiazepine withdrawal signs in rats. Behav Pharmacol 1992; 3: 51–6

    Article  PubMed  CAS  Google Scholar 

  149. Andrews N, File SE. Are there changes in sensitivity to 5-HT3 receptor ligands following chronic diazepam treatment? Psychopharmacology (Berl) 1992; 108: 333–7

    Article  CAS  Google Scholar 

  150. File SE, Andrews N. Enhanced anxiolytic effect of zacopride enantiomers in diazepam-withdrawn rats. Eur J Pharmacol 1993; 237: 127–30

    Article  PubMed  CAS  Google Scholar 

  151. Costall B, Domeney AM, Kelly ME, et al. The effect of the 5-HT3 receptor antagonist, RS-42358-197, in animal models of anxiety. Eur J Pharmacol 1993; 234: 91–9

    Article  PubMed  CAS  Google Scholar 

  152. Iversen SD. 5-HT and anxiety. Neuropharmacology 1984; 23: 1553–60

    Article  PubMed  CAS  Google Scholar 

  153. Deakin JFW, Graeff FG. 5-HT mechanisms and defence. J Psychopharmacology (Berl) 1991; 5: 305–15

    Article  CAS  Google Scholar 

  154. Handley SL, McBlane JW. 5-HT drugs in animal models of anxiety. Psychopharmacology (Berl) 1993; 112: 13–20

    Article  CAS  Google Scholar 

  155. Lader M. Benzodiazepines: a risk-benefit profile. CNS Drugs 1994; 1: 377–87

    Article  Google Scholar 

  156. Mosconi M, Chiamulera C, Recchia G. New anxiolytics in development. Int J Clin Pharmacol Res 1993; XIII: 331–44

    Google Scholar 

  157. Schweitzer E, Rickels K. Serotonergic anxiolytics: a review of their clinical efficacy. In: Rodgers RJ, Cooper SJ, editors. 5-HT1A agonists and 5-HT3 antagonists and benzodiazepines: their comparative behavioural pharmacology. New York: Wiley, 1991: 366–76

    Google Scholar 

  158. Vander Maelen CP, Aghajanian GK. Electrophysiological and pharmacological characterisation of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res 1983; 289: 109–19

    Article  Google Scholar 

  159. Sharp T, Bramwell SR, Clark D, et al. In vivo measurement of extracellular 5-hydroxytryptamine in hippocampus: changes in relation to 5-hydroxytryptaminergic neuronal activity. J Neurochem 1989; 53: 234–40

    Article  PubMed  CAS  Google Scholar 

  160. De Vivo M, Maayani S. Inhibition of forskolin-stimulated adenylate cyclase activity by 5-HT receptor agonists. Eur J Pharmacol 1985; 119: 231–4

    Article  Google Scholar 

  161. Meller E, Goldstein M, Bohmaker K. Receptor reserve for 5-hydroxytryptamine1A-mediated inhibition of serotonin synthesis: possible relationship to anxiolytic properties of 5-hydroxytryptamine1A agonists. Mol Pharmacol 1990; 37: 231–7

    PubMed  CAS  Google Scholar 

  162. Fletcher A, Cliffe IA, Dourish CT. Silent 5-HT1A receptor antagonists: utility as research tools and therapeutic agents. Trends Pharmacol Sci 1993; 14: 441–8

    Article  CAS  Google Scholar 

  163. Stefanski R, Palejko W, Kostowski W, et al. The comparison of benzodiazepine derivatives and serotonergic agonists and antagonists in 2 animal models of anxiety. Neuropharmacology 1992; 31: 1251–8

    Article  PubMed  CAS  Google Scholar 

  164. Dunn RW, Corbett R, Hubbard JW, et al. The preclinical anxiolytic profiles of the 5-HT3 antagonists ondansetron, zacopride and MDL 72222. FASEB J 1990; 4: A812

    Google Scholar 

  165. Higgins GA, Jones BJ, Oakley NR, et al. Evidence that the amygdala is involved in the disinhibitory effects of 5-HT3-receptor antagonists. Psychopharmacology (Berl) 1991; 104: 545–51

    Article  CAS  Google Scholar 

  166. Jones BJ, Costall B, Domeney AM, et al. The potential anxiolytic activity of GR38032F, a 5-HT3-receptor antagonist. Br J Pharmacol 1988; 93: 985–93

    Article  PubMed  CAS  Google Scholar 

  167. Bill DJ, Fletcher A, Glenn BD, et al. Behavioural studies on WAY100289, a novel 5-HT(3) receptor antagonist, in 2 animal models of anxiety. Eur J Pharmacol 1992; 218: 327–33

    Article  PubMed  CAS  Google Scholar 

  168. Young R, Johnson DN. A fully automated light/dark apparatus useful for comparing anxiolytic agents. Pharmacol Biochem Behav 1991; 40: 739–43

    Article  PubMed  CAS  Google Scholar 

  169. Eglen RM, Lee CH, Khabbaz M, et al. Comparison of potencies of 5-HT3 receptor antagonists at inhibiting aversive behaviour to illumination and the Von Bezold-Jarisch reflex in the mouse. Neuropharmacology 1994; 33(2): 227–34

    Article  PubMed  CAS  Google Scholar 

  170. Costall B, Jones BJ, Kelly ME, et al. Exploration of mice in black and white test box: validation as a model of anxiety. Pharmacol Biochem Behav 1989; 32: 777–85

    Article  PubMed  CAS  Google Scholar 

  171. Mos J, Heyden JVD, Olivier B. Behavioural effects of 5-HT3 antagonists in animal models of aggression, anxiety and psychosis. In: Bevan P, Cools R, Archer T, editors. Behavioural pharmacology of 5-HT. New Jersey: Lawrence Erlbaum Associates, 1989: 389–95

    Google Scholar 

  172. Morinan A. Effects of the 5-HT3 receptor antagonists, GR38032F and BRL24924, on anxiety in socially isolated rats [abstract]. Br J Pharmacol 1989; 97: 457P

    Google Scholar 

  173. Piper D, Upton N, Thomas D, et al. The effects of the 5-HT3 receptor antagonists BRL43694 and GR38032F in animal behavioural models of anxiety [abstract]. Br J Pharmacol 1988; 95: 314P

    Google Scholar 

  174. File SE, Johnston AL. Lack of effects of 5-HT3 receptor antagonists in the social interaction and elevated plus-maze tests of anxiety in the rat. Psychopharmacology (Berl) 1989; 99: 248–51

    Article  CAS  Google Scholar 

  175. Wright IK, Heaton M, Upton N, et al. Comparison of acute and chronic treatment of various serotonergic agents with those of diazepam and idazoxan in the rat elevated X-maze. Psychopharmacology (Berl) 1992; 107: 405–14

    Article  CAS  Google Scholar 

  176. Nevins ME, Anthony EW. Antagonists at the serotonin(3) receptor can reduce the fear-potentiated startle response in the rat - evidence for different types of anxiolytic activity. J Pharmacol Exp Ther 1994; 268(1): 248–54

    PubMed  CAS  Google Scholar 

  177. Onaivi ES, Martin BR. Neuropharmacological and physiological validation of a computer-controlled two-compartment black and white box for the assessment of anxiety. Prog Neuropsychopharmacol Biol Psychiatry 1989; 13: 963–76

    Article  PubMed  CAS  Google Scholar 

  178. Costall B, Naylor RJ. The psychopharmacology of 5-HT3 receptors. Pharmacol Toxicol 1992; 71: 401–15

    Article  PubMed  CAS  Google Scholar 

  179. Costall B, Domeney AM, Gerrard PA, et al. Effects of the 5-HT3 receptor antagonists GR38032F, ICS205-930 and BRL43694 in tests for anxiolytic activity [abstract]. Br J Pharmacol 1988; 93: 195P

    Google Scholar 

  180. Young R, Johnson DN. Comparison of routes of administration and time course effects of zacopride and buspirone in mice using an automated light/dark test. Pharmacol Biochem Behav 1991; 40: 733–7

    Article  PubMed  CAS  Google Scholar 

  181. Andrews N, File SE. Handling history of rats modifies behavioural effects of drugs in the elevated plus-maze test of anxiety. Eur J Pharmacol 1993; 235: 109–12

    Article  PubMed  CAS  Google Scholar 

  182. Barnes JM, Barnes NM, Costall B, et al. The differential activities of R(+)- and S(-)-zacopride as 5-HT3 receptor antagonists. Pharmacol Biochem Behav 1990; 37: 717–27

    Article  PubMed  CAS  Google Scholar 

  183. Barnes NM, Cheng CHK, Costall B, et al. Profiles of interaction of R(+)/S(-)zacopride and anxiolytic agents in a mouse model. Eur J Pharmacol 1992; 218: 91–100

    Article  PubMed  CAS  Google Scholar 

  184. Gao B, Culler MG. Effects of acute administration of the 5-HT3 receptor antagonist, BRL-46470A, on the behaviour of mice in a 2 compartment light dark box and during social interactions in their home cage and unfamiliar neutral cage. Neuropharmacology 1992; 31: 743–8

    Article  PubMed  CAS  Google Scholar 

  185. Blackburn TP, Baxter GS, Kennen GA, et al. BRL46470A: a highly potent, selective and long acting 5-HT3 receptor antagonist with anxiolytic-like properties. Psychopharmacology (Berl) 1993; 110: 257–64

    Article  CAS  Google Scholar 

  186. Metzenauer P, Barnes NM, Costall B, et al. Anxiolytic-like actions of anpirtoline in a mouse light-dark aversion paradigm. Neuroreport 1992; 3: 527–9

    Article  PubMed  CAS  Google Scholar 

  187. Pellow S, Johnston AL, File SE. Selective agonists and antagonists for 5-hydroxytryptamine receptor subtypes, and interactions with yohimbine and FG7142 using the elevated plus-maze test in the rat. J Pharm Pharmacol 1987; 39: 917–28

    Article  PubMed  CAS  Google Scholar 

  188. Costall B, Kelly ME, Naylor RJ, et al. Neuroanatomical sites of action of 5-HT3 receptor agonists and antagonists for alteration of aversive behaviour in the mouse. Br J Pharmacol 1989; 96: 325–32

    Article  PubMed  CAS  Google Scholar 

  189. Schechter LE, Bolanos FJ, Gozlan H, et al. Alterations of central serotonergic and dopaminergic neurotransmission in rats chronically treated with ipsapirone: biochemieal and electrophysiological studies. J Pharmacol Exp Ther 1990; 255: 1335–47

    PubMed  CAS  Google Scholar 

  190. Jagger SM, Barnes NM, Costall B, et al. Effects of chronic para-chlorophenylalanine and 8-OHDPAT administration on rat cortical 5-HT3 receptor recognition site density [abstract]. Br J Pharmacol 1991; 104: 374P

    Google Scholar 

  191. Jagger SJ, Barnes NM, Costall B, et al. Characterisation of 8-OHDPAT-induced down regulation of 5-HT3 receptor recognition sites in rat brain. Proceedings of the 2nd International Symposium on Serotonin from Cell Biology to Pharmacology and Therapeutics: 1992 Sept 15-18; Houston: 42

  192. Ropert N, Guy N. Serotonin facilitates GABAergic transmission in the CA 1 region of rat hippocampus in vitro. J Physiol (Lond) 1991; 441: 121–36

    CAS  Google Scholar 

  193. Kawa K. Distribution and functional properties of 5-HT(3) receptors in the rat hippocampal dentate gyrus: a patch-clamp study. J Neurophysiol 1994; 71(5): 1935–47

    PubMed  CAS  Google Scholar 

  194. Alhaider AA, Lei SZ, Wilcox GL. Spinal 5-HT3 receptor-mediated antinociception - possible release of GABA. J Neurosci 1991; 11: 1881–8

    PubMed  CAS  Google Scholar 

  195. Cloez-Tayarani I, Hareldupas C, Fillion G. Inhibition of [3H] gamma-aminobutyric acid release from guinea-pig hippocampal synaptosomes by serotonergic agents. Fundam Clin Pharmacol 1992; 6: 333–41

    Article  PubMed  CAS  Google Scholar 

  196. Tecott LH, Maricq AV, Julius D. Nervous system distribution of the serotonin 5-HT3 receptor messenger RNA. Proc Natl Acad Sci USA 1993; 90: 1430–4

    Article  PubMed  CAS  Google Scholar 

  197. Lacaille J-C, Schwartzkroin PA. Stratum lacunosum-moleculare intemeurons of hippocampal CA 1 region. I. Intracellular responses characteristics, synaptic responses and morphology. J Neurosci 1988; 8: 1400–10

    PubMed  CAS  Google Scholar 

  198. Lacaille J-C, Schwartzkroin PA. Stratum lacunosum-moleculare intemeurons of hippocampal CA 1 region. II. Intrasomatic and intradendritic recordings of local circuit synaptic interactions. J Neurosci 1988; 8: 1411–24

    PubMed  CAS  Google Scholar 

  199. Martin KF, Hannon S, Phillips I, et al. Opposing roles for 5-HT1B and 5-HT3 receptors in the control of 5-HT release in rat hippocampus in vivo. Br J Pharmacol 1992; 106: 139–42

    Article  PubMed  CAS  Google Scholar 

  200. Blier P, Bouchard C. Functional characterisation of a 5-HT(3)-receptor which modulates the release of 5-HT in the guinea-pig brain. Br J Pharmacol 1993; 108: 13–22

    Article  PubMed  CAS  Google Scholar 

  201. Blier P, Monroe PJ, Bouchard C, et al. 5-HT3 receptors which modulate [H-3]5-HT release in the guinea-pig hypothalamus are not autoreceptors. Synapse 1993; 15: 143–8

    Article  PubMed  CAS  Google Scholar 

  202. Williams GM, Smith DL, Smith DJ. 5-HT3 receptors are not involved in the modulation of the K+-evoked release of [3H]5-HT from spinal cord synaplosomes of rat. Neuropharmacology 1992; 31: 725–33

    Article  PubMed  CAS  Google Scholar 

  203. Rex A, Marsden CA, Fink H. Effect of diazepam on cortical 5-HT release and behaviour in the guinea-pig on exposure to the elevated plus maze. Psychopharmacology (Berl) 1993; 110: 490–6

    Article  CAS  Google Scholar 

  204. Vahabzadeh A, Fillenz M. Comparison of stress-induced changes in noradrenergic and serotonergic neurons in the rat hippocampus using microdialysis. Eur J Neurosci 1994; 6(7): 1205–12

    Article  PubMed  CAS  Google Scholar 

  205. Andrews N, Zharkovsky A, File SE. Raised [3H]-5-HT release and 45Ca2+ uptake in diazepam withdrawal - inhibition by baclofen. Pharmacol Biochem Behav 1992; 41: 695–9

    Article  PubMed  CAS  Google Scholar 

  206. Andrews N, File SE. Increased 5-HT release mediates the anxiogenic response during benzodiazepine withdrawal - a review of supporting neurochemical and behavioural evidence. Psychopharmacology (Berl) 1993; 112: 21–5

    Article  CAS  Google Scholar 

  207. Cadogan AK, Kendall DA, Fink H, et al. Social interaction increases 5-HT release and cAMP efflux in the rat ventral hippocampus in vivo. Behav Pharmacol 1994; 5: 299–305

    Article  PubMed  CAS  Google Scholar 

  208. Harro J, Vasar E, Bradwejn J. CCK in animal and human research on anxiety. Trends Pharmacol Sci 1993; 14: 244–9

    Article  PubMed  CAS  Google Scholar 

  209. Bradwejn J, Koszycki D. The cholecystokinin hypothesis of anxiety and panic disorder. Ann NY Acad Sci 1994; 713: 273–82

    Article  PubMed  CAS  Google Scholar 

  210. Paudice P, Raiteri M. Cholecystokinin release mediated by 5-HT3 receptors in rat cerebral cortex and nucleus accumbens. Br J Pharmacol 1991; 103: 1790–4

    Article  PubMed  CAS  Google Scholar 

  211. Raiteri M, Paudice P, Vallebuona F. Inhibition by 5-HT3 receptor antagonists of release of cholecystokinin-like immunoreactivity from the frontal cortex of freely moving rats. Naunyn Schmiedebergs Arch Pharmacol 1993; 347: 111–4

    Article  PubMed  CAS  Google Scholar 

  212. Vasar E, Peuranen E, Oopik T, et al. Ondansetron, an antagonist of 5-HT3-receptors, antagonizes the antiexploratory effect of caerulein, an agonist of CCK-receptors, in the elevated plus-maze. Psychopharmacology (Berl) 1993; 110: 213–8

    Article  CAS  Google Scholar 

  213. Glaxo R & D Update Press Release, September 1994

  214. Altman HJ, Normile HJ, Gershon S. Non-cholinergic pharmacology in human cognitive disorders. In: Stahl SM, Iversen SD, Goodman EL, editors. Cognitive neurochemistry. New York: Oxford University Press, 1987: 346–71

    Google Scholar 

  215. Barnes JM, Costall B, Coughlan J, et al. The effects of ondansetron, a 5-HT3 receptor antagonist, on cognition in rodents and primates. Pharmacol Biochem Behav 1990; 35: 955–62

    Article  PubMed  CAS  Google Scholar 

  216. Costall B, Domeney AM, Kelly ME, et al. New antidementia molecules which selectively influence serotonin receptor subtypes. In: Vanhoutte PM, Saxena PR, Paoletti R, et al., editors. Serotonin from cell biology to pharmacology and therapeutics. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1993: 407–16

    Google Scholar 

  217. Riekkinen P, Sirvio J, Riekkinen P. Non-reversal of scopolamine- or age-related EEG changes by ondansetron, methysergide or alaproclate. Psychopharmacology (Berl) 1991; 103: 567–70

    Article  CAS  Google Scholar 

  218. Domeney AM, Costall B, Gerrard PA, et al. The effect of ondansetron on cognitive performance in the marmoset. Pharmacol Biochem Behav 1991; 38: 169–75

    Article  PubMed  CAS  Google Scholar 

  219. Carey GJ, Costall B, Domeney AM, et al. Ondansetron and arecoline prevent scopolamine-induced cognitive deficits in the marmoset. Pharmacol Biochem Behav 1992; 42: 75–83

    Article  PubMed  CAS  Google Scholar 

  220. Chugh Y, Saha N, Sankaranarayanan A, et al. Enhancement of memory retrieval and attenuation of scopolamine-induced amnesia following administration of 5-HT3 antagonist ICS-205-930. Pharmacol Toxicol 1991; 69: 105–6

    Article  PubMed  CAS  Google Scholar 

  221. Chugh Y, Saha N, Sankaranarayanan A, et al. Memory enhancing effects of granisetron (BRL43694) in a passive avoidance task. Eur J Pharmacol 1991; 203: 121–3

    Article  PubMed  CAS  Google Scholar 

  222. Brambilla A, Ghiorzi A, Pitsikas N, et al. DAU-6215, a novel 5-HT(3)-receptor antagonist, selectively antagonizes scopolamine-induced deficit in a passive-avoidance task, but not scopolamine-induced hypermotility in rats. J Pharm Pharmacol 1993; 45: 841–84

    Article  PubMed  CAS  Google Scholar 

  223. Pitsikas N, Brambilla A, Borsini F. Effect of DAU 6125, a novel 5-HT 3 receptor antagonist, on scopolamine-induced amnesia in the rat in a spatial learning task. Pharmacol Biochem Behav 1994; 47(1): 95–9

    Article  PubMed  CAS  Google Scholar 

  224. Pitsikas N, Brambilla A, Borsini F. DAU 6125, a novel 5-HT3 receptor antagonist, improves performance in the aged rat in the Morris water maze task. Neurobiol Aging 1993; 14(6): 561–4

    Article  PubMed  CAS  Google Scholar 

  225. Bartus RT, Dean RL, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982; 217: 408–17

    Article  PubMed  CAS  Google Scholar 

  226. Price DL, Whitehouse PJ, Struble RG, et al. Transmitter systems in selected types of dementia. In: Reiderer P, Kopp N, Pearson J, editors. An introduction to neurotransmission in health and disease. New York: Oxford University Press, 1990: 349–57

    Google Scholar 

  227. Barnes JM, Barnes NM, Costall B, et al. 5-HT3 receptors mediate inhibition of acetylcholine release in cortical tissue. Nature 1989; 338: 762–3

    Article  PubMed  CAS  Google Scholar 

  228. Bianchi C, Siniscalchi A, Beani L. 5-HT1A agonists increase and 5-HT3 agonists decrease acetylcholine efflux from the cerebral cortex of freely-moving guinea-pigs. Br J Pharmacol 1990; 101: 448–52

    Article  PubMed  CAS  Google Scholar 

  229. Maura G, Andrioli GC, Cavazzani P, et al. 5-Hydroxytryptamine(3) receptors sited on cholinergic axon terminals of human cerebral cortex mediate inhibition of acetylcholine release. J Neurochem 1992; 58: 2334–7

    Article  PubMed  CAS  Google Scholar 

  230. Consolo S, Bertorelli R, Russi G, et al. Serotonergic facilitation of acetylcholine release in vivo from rat dorsal hippocampus via serotonin 5-HT(3) receptors. J Neurochem 1994; 62(6): 2254–61

    Article  PubMed  CAS  Google Scholar 

  231. Collingridge GL, Singer W. Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol Sci 1990; 11: 290–6

    Article  PubMed  CAS  Google Scholar 

  232. Corradetti R, Ballerinin L, Pugliese AM, et al. Serotonin blocks the long-term potentiation induced by primed burst stimulation in the CA 1 region of rat hippocampal slices. Neurosci 1992; 46: 511–8

    Article  CAS  Google Scholar 

  233. Maeda T, Kaneko S, Satoh M. Inhibitory influence via 5-HT3 receptors in the induction of LTP in mossy fibre-CA3 system of guinea-pig hippocampal slices. Neurosci Res 1994; 18(4): 277–82

    Article  PubMed  CAS  Google Scholar 

  234. Passani MB, Pugliese AM, Azzurrini M, et al. Effects of DAU 6125, a novel 5-hydroxytryptamine(3) (5-HT(3)) antagonist on electrophysiological properties of the rat hippocampus. Br J Pharmacol 1994; 112(2): 695–703

    Article  PubMed  CAS  Google Scholar 

  235. Piguet P, Galvan M. Transient and long-lasting actions of 5-HT on rat dentate gyrus neurones in vitro. J Physiol. In press

  236. Zeise ML, Batsche K, Wang RY. The 5-HT(3) receptor agonist 2-methyl-5-HT reduces postsynaptic potentials in rat CA 1 pyramidal neurons of the hippocampus in vitro. Brain Res 1994; 651(1-2): 337–41

    Article  PubMed  CAS  Google Scholar 

  237. Jacobsen MBJ. Ondansetron in carcinoid syndrome [letter]. Lancet 1992; 340: 185

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentley, K.R., Barnes, N.M. Therapeutic Potential of Serotonin 5-HT3 Antagonists in Neuropsychiatric Disorders. CNS Drugs 3, 363–392 (1995). https://doi.org/10.2165/00023210-199503050-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199503050-00005

Keywords

Navigation