Skip to main content
Log in

Applications of Positron Emission Tomography in the Development of Molecular Targeted Cancer Therapeutics

  • Biological Imaging
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

For molecular targeted cancer therapies to fulfill their promise in cancer treatment, innovative approaches are required to overcome significant obstacles that exist in the clinical development of these agents. Positron emission tomography (PET) is a functional imaging technology that allows rapid, repeated, noninvasive, in vivo assessment and quantification of many biological processes and in some cases molecular pathways targeted by these therapies. It is highly sensitive, with the capacity to detect subnanomolar concentrations of radiotracer and provides superior image resolution to conventional nuclear medicine imaging with gamma cameras. Novel PET radiotracers have been developed that allow visualisation of a variety of processes including tumour metabolism, cell proliferation, apoptosis, hypoxia and blood flow. Furthermore, specific molecular targets including cellular receptors can be identified using radiolabelled receptor ligands or specific monoclonal antibodies. Improvements in imaging technology leading to the development of small-animal PET scanners, with resolution capable of imaging commonly used mouse models of cancer, will enable PET to play an important role in preclinical proof-of-principle drug studies. Such improvements will also facilitate the validation of imaging protocols that can be readily translated to studies in humans. The greatest utility of PET in the development of molecular targeted therapeutics, however, lies in clinical studies, where PET may play a valuable role in a number of situations. These include selection of patients for therapy through noninvasive identification of the presence of specific molecular targets, pharmacokinetic studies with labelled drugs and pharmacodynamic evaluations of biological parameters to select the optimal biological dose, and assessment of response to therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gambhir SS, Czernin J, Schwimmer J, et al. A tabulated summary of the FDG PET literature. J Nucl Med 2001; 42(5 Suppl.): 1S–93S

    PubMed  CAS  Google Scholar 

  2. MacManus MP, Hicks RJ, Matthews JP, et al. Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol 2003; 21(7): 1285–92

    Article  Google Scholar 

  3. Hara T, Inagaki K, Kosaka N, et al. Sensitive detection of mediastinal lymph node metastasis of lung cancer with 11C-choline PET. J Nucl Med 2000; 41(9): 1507–13

    PubMed  CAS  Google Scholar 

  4. Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 1998; 39(6): 990–5

    PubMed  CAS  Google Scholar 

  5. Hara T, Kosaka N, Shinoura N, et al. PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med 1997; 38(6): 842–7

    PubMed  CAS  Google Scholar 

  6. Hara T, Kosaka N, Kishi H. Development of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 2002; 43(2): 187–99

    PubMed  CAS  Google Scholar 

  7. DeGrado TR, Baldwin SW, Wang S, et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001; 42(12): 1805–14

    PubMed  CAS  Google Scholar 

  8. Shreve P, Chiao PC, Humes HD, et al. Carbon-11-acetate PET imaging in renal disease. J Nucl Med 1995; 36(9): 1595–601

    PubMed  CAS  Google Scholar 

  9. Kubota K, Ito M, Fukuda H, et al. Cancer diagnosis with positron computed tomography and carbon-11-labelled L-methionine [letter]. Lancet 1983; II(8360): 1192

    Article  Google Scholar 

  10. Bolster JM, Vaalburg W, Paans AM, et al. Carbon-11 labelled tyrosine to study tumor metabolism by positron emission tomography (PET). Eur J Nucl Med 1986; 12(7): 321–4

    Article  PubMed  CAS  Google Scholar 

  11. Weber WA, Wester HJ, Grosu AL, et al. O-(2-[18F]fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 2000; 27(5): 542–9

    Article  PubMed  CAS  Google Scholar 

  12. Inoue T, Tomiyoshi K, Higuichi T, et al. Biodistribution studies on L-3-[fluorine-18]fluoro-alpha-methyl tyrosine: a potential tumor-detecting agent. J Nucl Med 1998; 39(4): 663–7

    PubMed  CAS  Google Scholar 

  13. Kubota K, Ishiwata K, Kubota R, et al. Feasibility of fluorine-18-fluorophenylalanine for tumor imaging compared with carbon-11-L-methionine. J Nucl Med 1996; 37(2): 320–5

    PubMed  CAS  Google Scholar 

  14. Wienhard K, Herholz K, Coenen HH, et al. Increased amino acid transport into brain tumors measured by PET of L-(2-18F)fluorotyrosine. J Nucl Med 1991; 32(7): 1338–46

    PubMed  CAS  Google Scholar 

  15. Shields AF, Lim K, Grierson J, et al. Utilization of labeled thymidine in DNA synthesis: studies for PET. J Nucl Med 1990; 31(3): 337–42

    PubMed  CAS  Google Scholar 

  16. Shields AF, Grierson JR, Dohmen BM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998; 4(11): 1334–6

    Article  PubMed  CAS  Google Scholar 

  17. Conti PS, Alauddin MM, Fissekis JR, et al. Synthesis of 2′-fluoro-5-[l lC]-methyl-1-beta-D-arabinofuranosyluracil ([11C]-FMAU): a potential nucleoside analog for in vivo study of cellular proliferation with PET. Nucl Med Biol 1995; 22(6): 783–9

    Article  PubMed  CAS  Google Scholar 

  18. Blasberg RG, Roelcke U, Weinreich R, et al. Imaging brain tumor proliferative activity with [124I]iododeoxyuridine. Cancer Res 2000; 60(3): 624–35

    PubMed  CAS  Google Scholar 

  19. Glaser M, Collingridge DR, Aboagye EO, et al. Iodine-124 labelled annexin-V as a potential radiotracer to study apoptosis using positron emission tomography. Appl Radiat Isot 2003; 58(1): 55–62

    Article  PubMed  CAS  Google Scholar 

  20. Zijlstra S, Gunawan J, Burchert W. Synthesis and evaluation of a 18F-labelled recombinant annexin-V derivative, for identification and quantification of apoptotic cells with PET. Appl Radiat Isot 2003; 58(2): 201–7

    Article  PubMed  CAS  Google Scholar 

  21. Wilson CB, Lammertsma AA, McKenzie CG, et al. Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method. Cancer Res 1992; 52(6): 1592–7

    PubMed  CAS  Google Scholar 

  22. Ito M, Lammertsma AA, Wise RJ, et al. Measurement of regional cerebral blood flow and oxygen utilisation in patients with cerebral tumours using 15O and positron emission tomography: analytical techniques and preliminary results. Neuroradiology 1982; 23(2): 63–74

    Article  PubMed  CAS  Google Scholar 

  23. Rasey JS, Koh WJ, Grierson JR, et al. Radiolabelled fluoromisonidazole as an imaging agent for tumor hypoxia. Int J Radiat Oncol Biol Phys 1989; 17(5): 985–91

    Article  PubMed  CAS  Google Scholar 

  24. Fujibayashi Y, Taniuchi H, Yonekura Y, et al. Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 1997; 38(7): 1155–60

    PubMed  CAS  Google Scholar 

  25. Chapman JD, Schneider RF, Urbain JL, et al. Single-photon emission computed tomography and positron-emission tomography assays for tissue oxygenation. Semin Radiat Oncol 2001; 11(1): 47–57

    Article  PubMed  CAS  Google Scholar 

  26. Sorger D, Patt M, Kumar P, et al. [18F]fluoroazomycinarabinofuranoside ([18]FAZA) and [18F]fluoromisonidazole ([18]FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl Med Biol 2003; 30(3): 317–26

    Article  PubMed  CAS  Google Scholar 

  27. Schirrmeister H, Guhlmann A, Eisner K, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 1999; 40(10): 1623–9

    PubMed  CAS  Google Scholar 

  28. Woodward GE, Hudson MT. The effect of 2-deoxy-D-glucose in glycolysis and respiration of tumor and normal tissues. Cancer Res 1954; 14: 599–605

    PubMed  CAS  Google Scholar 

  29. Sokoloff L, Reivich M, Kennedy C, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977; 28(5): 897–916

    Article  PubMed  CAS  Google Scholar 

  30. Gallagher BM, Ansari A, Atkins H, et al. Radiopharmaceuticals XXVII: 18F-labeled 2-deoxy-2-fluoro-D-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. J Nucl Med 1977; 18(10): 990–6

    PubMed  CAS  Google Scholar 

  31. Harris AL. Hypoxia: a key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2(1): 38–47

    Article  PubMed  CAS  Google Scholar 

  32. Warburg O, Pofner K, Negelein E. The metabolism of the cancer cell. Smith R, editor. The metabolism of tumors. New York: Richard Smith, 1931: 129–69

    Google Scholar 

  33. Semenza GL, Roth PH, Fang HM, et al. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 1994; 269(38): 23757–63

    PubMed  CAS  Google Scholar 

  34. Osthus RC, Shim H, Kim S, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 2000; 275(29): 21797–800

    Article  PubMed  CAS  Google Scholar 

  35. Ahuja V, Coleman RE, Herndon J, et al. The prognostic significance of fluorode-oxyglucose positron emission tomography imaging for patients with nonsmall cell lung carcinoma. Cancer 1998; 83(5): 918–24

    Article  PubMed  CAS  Google Scholar 

  36. Vansteenkiste JF, Stroobants SG, Dupont PJ, et al. Prognostic importance of the standardized uptake value on 18F-fluoro-2-deoxy-glucose: positron emission tomography scan in non-small-cell lung cancer, an analysis of 125 cases. J Clin Oncol 1999; 17(10): 3201–6

    PubMed  CAS  Google Scholar 

  37. Higashi K, Ueda Y, Arisaka Y, et al. 18F-FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small-cell lung cancer. J Nucl Med 2002; 43(1): 39–45

    PubMed  Google Scholar 

  38. Nakata B, Chung YS, Nishimura S, et al. 18F-fluorodeoxyglucose positron emission tomography and the prognosis of patients with pancreatic adenocarcinoma. Cancer 1997; 79(4): 695–9

    Article  PubMed  CAS  Google Scholar 

  39. Allai AS, Dulguerov P, Allaoua M, et al. Standardized uptake value of 2-[18F] fluoro-2-deoxy-D-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol 2002; 20(5): 1398–404

    Article  Google Scholar 

  40. Franzius C, Bielack S, Flege S, et al. Prognostic significance of 18F-FDG and 99mTc-methylene diphosphonate uptake in primary osteosarcoma. J Nucl Med 2002; 43(8): 1012–7

    PubMed  CAS  Google Scholar 

  41. Czernin J, Phelps ME. Positron emission tomography scanning: current and future applications. Annu Rev Med 2002; 53: 89–112

    Article  PubMed  CAS  Google Scholar 

  42. Miller AB, Hoogstraten B, Staquet M, et al. Reporting results of cancer treatment. Cancer 1981; 47(1): 207–14

    Article  PubMed  CAS  Google Scholar 

  43. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors: European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000; 92(3): 205–16

    Article  PubMed  CAS  Google Scholar 

  44. Price P, Jones T. Can positron emission tomography (PET) be used to detect subclinical response to cancer therapy?: the EC PET Oncology Concerted Action and the EORTC PET Study Group. Eur J Cancer 1995; 31A(12): 1924–7

    Article  PubMed  CAS  Google Scholar 

  45. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002; 347(7): 472–80

    Article  PubMed  CAS  Google Scholar 

  46. Van den Abbeele AD, Badawi RD, Cliche J-P, et al. 18F-FDG-PET predicts response to imatinib mesylate (Gleevec) in patients with advanced gastrointestinal stromal tumors (GIST). Proc Am Soc Clin Oncol 2002; 21: 403a

    Google Scholar 

  47. Van Oosterom AT, Judson I, Verweij J, et al. STI571, an active drug in metastatic gastro intestinal stromal tumors (GIST), an EORTC phase I study. Proc Am Soc Clin Oncol 2001; 20: 1a

    Google Scholar 

  48. Blanke CD, von Mehren M, Joensuu H, et al. Evaluation of the safety and efficacy of an oral molecularly-targeted therapy, STI571, in patients (pts) with unresectable or metastatic gastrointestinal stromal tumors (GISTS) expressing C-KIT (CD117). Proc Am Soc Clin Oncol 2001; 20: 1a

    Google Scholar 

  49. Kostakoglu L, Leonard JP, Coleman M, et al. Prediction of response to therapy using early F-18 fluorodeoxyglucose imaging (FDG-PET) in patients undergoing I-131 tositumomab therapy. Proc Am Soc Clin Oncol 2001; 20: 237b

    Google Scholar 

  50. Flamen P, Van Cutsem E, Lerut A, et al. Positron emission tomography for assessment of the response to induction radiochemotherapy in locally advanced oesophageal cancer. Ann Oncol 2002; 13(3): 361–8

    Article  PubMed  CAS  Google Scholar 

  51. Spence AM, Muzi M, Graham MM, et al. 2-[18F]fluoro-2-deoxyglucose and glucose uptake in malignant gliomas before and after radiotherapy: correlation with outcome. Clin Cancer Res 2002; 8(4): 971–9

    PubMed  Google Scholar 

  52. Negendank W. Studies of human tumors by MRS: a review. NMR Biomed 1992; 5(5): 303–24

    Article  PubMed  CAS  Google Scholar 

  53. Katz-Brull R, Seger D, Rivenson-Segal D, et al. Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Cancer Res 2002; 62(7): 1966–70

    PubMed  CAS  Google Scholar 

  54. Katz-Brull R, Degani H. Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anti-cancer Res 1996; 16(3B): 1375–80

    CAS  Google Scholar 

  55. Katz-Brull R, Margalit R, Bendel P, et al. Choline metabolism in breast cancer; 2H-, 13C-and 31P-NMR studies of cells and tumors. MAGMA 1998; 6(1): 44–52

    Article  PubMed  CAS  Google Scholar 

  56. Kobori O, Kirihara Y, Kosaka N, et al. Positron emission tomography of esophageal carcinoma using (11)C-choline and (18)F-fluorodeoxyglucose: a novel method of preoperative lymph node staging. Cancer 1999; 86(9): 1638–48

    Article  PubMed  CAS  Google Scholar 

  57. DeGrado TR, Coleman RE, Wang S, et al. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 2001; 61(1): 110–7

    PubMed  CAS  Google Scholar 

  58. Price DT, Coleman RE, Liao RP, et al. Comparison of [18F]fluorocholine and [18F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 2002; 168(1): 273–80

    Article  PubMed  Google Scholar 

  59. Cuadrado A, Carnero A, Dolfi F, et al. Phosphorylcholine: a novel second messenger essential for mitogenic activity of growth factors. Oncogene 1993; 8(11): 2959–68

    PubMed  CAS  Google Scholar 

  60. Ronen SM, Jackson LE, Beloueche M, et al. Magnetic resonance detects changes in phosphocholine associated with Ras activation and inhibition in NIH 3T3 cells. Br J Cancer 2001; 84(5): 691–6

    Article  PubMed  CAS  Google Scholar 

  61. Liu D, Hutchinson OC, Osman S, et al. Use of radiolabelled choline as a pharmacodynamic marker for the signal transduction inhibitor geldanamycin. Br J Cancer 2002; 87(7): 783–9

    Article  PubMed  CAS  Google Scholar 

  62. Yoshimoto M, Waki A, Yonekura Y, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 2001; 28(2): 117–22

    Article  PubMed  CAS  Google Scholar 

  63. Oyama N, Akino H, Kanamaru H, et al. 11C-acetate PET imaging of prostate cancer. J Nucl Med 2002; 43(2): 181–6

    PubMed  CAS  Google Scholar 

  64. Kotzerke J, Volkmer BG, Neumaier B, et al. Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 2002; 29(10): 1380–4

    Article  PubMed  CAS  Google Scholar 

  65. Isselbacher KJ. Sugar and amino acid transport by cells in culture: differences between normal and malignant cells. N Engl J Med 1972; 286(17): 929–33

    Article  PubMed  CAS  Google Scholar 

  66. Ishiwata K, Hatazawa J, Kubota K, et al. Metabolic fate of L-[methyl-11C]methionine in human plasma. Eur J Nucl Med 1989; 15(10): 665–9

    Article  PubMed  CAS  Google Scholar 

  67. Jager PL, Vaalburg W, Pruim J, et al. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 2001; 42(3): 432–45

    PubMed  CAS  Google Scholar 

  68. Goldman S, Levivier M, Pirotte B, et al. Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 1997; 38(9): 1459–62

    PubMed  CAS  Google Scholar 

  69. Nuutinen J, Sonninen P, Lehikoinen P, et al. Radiotherapy treatment planning and long-term follow-up with [11C]methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 2000; 48(1): 43–52

    Article  PubMed  CAS  Google Scholar 

  70. Heiss P, Mayer S, Herz M, et al. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 1999; 40(8): 1367–73

    PubMed  CAS  Google Scholar 

  71. Wester HJ, Herz M, Weber W, et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 1999; 40(1): 205–12

    PubMed  CAS  Google Scholar 

  72. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57–70

    Article  PubMed  CAS  Google Scholar 

  73. Sherley JL, Kelly TJ. Regulation of human thymidine kinase during the cell cycle. J Biol Chem 1988; 263(17): 8350–8

    PubMed  CAS  Google Scholar 

  74. Hengstschlager M, Knofler M, Mullner EW, et al. Different regulation of thymidine kinase during the cell cycle of normal versus DNA tumor virus-transformed cells. J Biol Chem 1994; 269(19): 13836–42

    PubMed  CAS  Google Scholar 

  75. Wells P, Gunn RN, Alison M, et al. Assessment of proliferation in vivo using 2-[11C]thymidine positron emission tomography in advanced intra-abdominal malignancies. Cancer Res 2002; 62(20): 5698–702

    PubMed  CAS  Google Scholar 

  76. Shields AF, Mankoff DA, Link JM, et al. Carbon-11-thymidine and FDG to measure therapy response. J Nucl Med 1998; 39(10): 1757–62

    PubMed  CAS  Google Scholar 

  77. Rasey JS, Grierson JR, Wiens LW, et al. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 2002; 43(9): 1210–7

    PubMed  CAS  Google Scholar 

  78. Buck AK, Schirrmeister H, Hetzel M, et al. 3-deoxy-3-[18F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 2002; 62(12): 3331–4

    PubMed  CAS  Google Scholar 

  79. Vesselle H, Grierson J, Muzi M, et al. In vivo validation of 3′deoxy-3′-[18F]fluorothymidine ([18F]FLT) as a proliferation imaging tracer in humans: correlation of [18F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res 2002; 8(11): 3315–23

    PubMed  CAS  Google Scholar 

  80. Fadok VA, Voelker DR, Campbell PA, et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 1992; 148(7): 2207–16

    PubMed  CAS  Google Scholar 

  81. Hofstra L, Liem IH, Dumont EA, et al. Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet 2000; 356(9225): 209–12

    Article  PubMed  CAS  Google Scholar 

  82. Blankenberg FG, Naumovski L, Tait JF, et al. Imaging cyclophosphamide-induced intramedullary apoptosis in rats using 99mTc-radiolabeled annexin V. J Nucl Med 2001; 42(2): 309–16

    PubMed  CAS  Google Scholar 

  83. Mochizuki T, Kuge Y, Zhao S, et al. Detection of apoptotic tumor response in vivo after a single dose of chemotherapy with (99m)Tc-annexin V. J Nucl Med 2003; 44(1): 92–7

    PubMed  CAS  Google Scholar 

  84. Belhocine T, Steinmetz N, Hustinx R, et al. Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 2002; 8(9): 2766–74

    PubMed  CAS  Google Scholar 

  85. Anderson H, Price P. Clinical measurement of blood flow in tumours using positron emission tomography: a review. Nucl Med Commun 2002; 23(2): 131–8

    Article  PubMed  CAS  Google Scholar 

  86. Lammertsma AA, Wise RJ, Cox TC, et al. Measurement of blood flow, oxygen utilisation, oxygen extraction ratio, and fractional blood volume in human brain tumours and surrounding oedematous tissue. Br J Radiol 1985; 58(692): 725–34

    Article  PubMed  CAS  Google Scholar 

  87. Beaney RP, Lammertsma AA, Jones T, et al. Positron emission tomography for in-vivo measurement of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma. Lancet 1984; I(8369): 131–4

    Article  Google Scholar 

  88. Mineura K, Sasajima T, Itoh Y, et al. Blood flow and metabolism of central neurocytoma: a positron emission tomography study. Cancer 1995; 76(7): 1224–32

    Article  PubMed  CAS  Google Scholar 

  89. Yamaguchi A, Taniguchi H, Kunishima S, et al. Correlation between angiographically assessed vascularity and blood flow in hepatic metastases in patients with colorectal carcinoma. Cancer 2000; 89(6): 1236–44

    Article  PubMed  CAS  Google Scholar 

  90. Anderson H, Japp J, Price P. Measurement of tumour and normal tissue (NT) perfusion by positron emission tomography (PET) in the evaluation of antivascular therapy: results in the phase I study of combretastatin A4 phosphate (CA4P). Proc Am Soc Clin Oncol 2000; 19: 695

    Google Scholar 

  91. Herbst RS, Mullani NA, Davis DW, et al. Development of biologic markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin. J Clin Oncol 2002; 20(18): 3804–14

    Article  PubMed  CAS  Google Scholar 

  92. Herbst RS, Hess KR, Tran HT, et al. Phase I study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 2002; 20(18): 3792–803

    Article  PubMed  CAS  Google Scholar 

  93. Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001; 93(4): 266–76

    Article  PubMed  CAS  Google Scholar 

  94. Gray LH, Conger AD, Ebert M, et al. Concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 1953; 26: 638–48

    Article  PubMed  CAS  Google Scholar 

  95. Teicher BA. Hypoxia and drug resistance. Cancer Metastasis Rev 1994; 13(2): 139–68

    Article  PubMed  CAS  Google Scholar 

  96. Brown JM. Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today 2000; 6(4): 157–62

    Article  PubMed  CAS  Google Scholar 

  97. Kennedy AS, Raleigh JA, Perez GM, et al. Proliferation and hypoxia in human squamous cell carcinoma of the cervix: first report of combined immunohistochemical assays. Int J Radiat Oncol Biol Phys 1997; 37(4): 897–905

    Article  PubMed  CAS  Google Scholar 

  98. Lord EM, Harwell L, Koch CJ. Detection of hypoxic cells by monoclonal antibody recognizing 2-nitroimidazole adducts. Cancer Res 1993; 53(23): 5721–6

    PubMed  CAS  Google Scholar 

  99. Koh WJ, Rasey JS, Evans ML, et al. Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int J Radiat Oncol Biol Phys 1992; 22(1): 199–212

    Article  PubMed  CAS  Google Scholar 

  100. Rasey JS, Wui-Jin K, Evans ML, et al. Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 1996; 36(2): 417–28

    Article  PubMed  CAS  Google Scholar 

  101. Koh WJ, Bergman KS, Rasey JS, et al. Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]fluoromisonidazole positron emission tomography. Int J Radiat Oncol Biol Phys 1995; 33(2): 391–8

    Article  PubMed  CAS  Google Scholar 

  102. Rischin D, Peters L, Hicks R, et al. Phase I trial of concurrent tirapazamine, cisplatin, and radiotherapy in patients with advanced head and neck cancer. J Clin Oncol 2001; 19(2): 535–42

    PubMed  CAS  Google Scholar 

  103. Nunn A, Linder K, Strauss HW. Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 1995; 22(3): 265–80

    Article  PubMed  CAS  Google Scholar 

  104. Lewis JS, Welch MJ. PET imaging of hypoxia. Q J Nucl Med 2001; 45(2): 183–8

    PubMed  CAS  Google Scholar 

  105. Engelhardt EL, Schneider RF, Seeholzer SH, et al. The synthesis and radiolabeling of 2-nitroimidazole derivatives of cyclam and their preclinical evaluation as positive markers of tumor hypoxia. J Nucl Med 2002; 43(6): 837–50

    PubMed  CAS  Google Scholar 

  106. Dehdashti F, Grigsby PW, Mintun MA, et al. Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response, a preliminary report. Int J Radiat Oncol Biol Phys 2003; 55(5): 1233–8

    Article  PubMed  Google Scholar 

  107. Dehdashti F, Mintun MA, Lewis JS, et al. In vivo assessment of tumor hypoxia in lung cancer with (60)Cu-ATSM. Eur J Nucl Med Mol Imaging 2003; 30(6): 844–50

    Article  PubMed  CAS  Google Scholar 

  108. Chao KSC, Bosch WR, Mutic S, et al. A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2001; 49(4): 1171–82

    Article  PubMed  CAS  Google Scholar 

  109. Bakir MA, Eccles S, Babich JW, et al. c-erbB2 protein overexpression in breast cancer as a target for PET using iodine-124-labeled monoclonal antibodies. J Nucl Med 1992; 33(12): 2154–60

    PubMed  CAS  Google Scholar 

  110. Divgi CR, Welt S, Kris M, et al. Phase I and imaging trial of indium 111-labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J Natl Cancer Inst 1991; 83(2): 97–104

    Article  PubMed  CAS  Google Scholar 

  111. Ramos-Suzarte M, Rodriguez N, Oliva JP, et al. 99mTc-labeled antihuman epidermal growth factor receptor antibody in patients with tumors of epithelial origin. Part III: clinical trials safety and diagnostic efficacy. J Nucl Med 1999; 40(5): 768–75

    PubMed  CAS  Google Scholar 

  112. Jayson GC, Zweit J, Jackson A, et al. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 2002; 94(19): 1484–93

    Article  PubMed  CAS  Google Scholar 

  113. Collingridge DR, Carroll VA, Glaser M, et al. The development of [124I]iodinated-VG76e: a novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. Cancer Res 2002; 62(20): 5912–9

    PubMed  CAS  Google Scholar 

  114. Wu AM, Yazaki PJ, Tsai S, et al. High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. Proc Natl Acad Sci U S A 2000; 97(15): 8495–500

    Article  PubMed  CAS  Google Scholar 

  115. Behr TM, Gotthardt M, Barth A, et al. Imaging tumors with peptide-based radioligands. Q J Nucl Med 2001; 45(2): 189–200

    PubMed  CAS  Google Scholar 

  116. Krenning EP, Kwekkeboom DJ, Bakker WH, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]-and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993; 20(8): 716–31

    Article  PubMed  CAS  Google Scholar 

  117. Anderson CJ, Dehdashti F, Cutler PD, et al. 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med 2001; 42(2): 213–21

    PubMed  CAS  Google Scholar 

  118. Henze M, Schuhmacher J, Hipp P, et al. PET imaging of somatostatin receptors using [68GA]DOTA-D-Phel-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med 2001; 42(7): 1053–6

    PubMed  CAS  Google Scholar 

  119. Wester HJ, Schottelius M, Scheidhauer K, et al. PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel 18F-labelled, carbohydrated analogue of octreotide. Eur J Nucl Med Mol Imaging 2003; 30(1): 117–22

    Article  PubMed  CAS  Google Scholar 

  120. Mintun MA, Welch MJ, Siegel BA, et al. Breast cancer: PET imaging of estrogen receptors. Radiology 1988; 169(1): 45–8

    PubMed  CAS  Google Scholar 

  121. Mortimer JE, Dehdashti F, Siegel BA, et al. Positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose and 16alpha-[18F]fluoro-17beta-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapy. Clin Cancer Res 1996; 2(6): 933–9

    PubMed  CAS  Google Scholar 

  122. Dehdashti F, Flanagan FL, Mortimer JE, et al. Positron emission tomographic assessment of ‘metabolic flare’ to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 1999; 26(1): 51–6

    Article  PubMed  CAS  Google Scholar 

  123. Verhagen A, Studeny M, Luurtsema G, et al. Metabolism of a [18F]fluorine labeled progestin (21-[18F]fluoro-16 alpha-ethyl-19-norprogesterone) in humans: a clue for future investigations. Nucl Med Biol 1994; 21(7): 941–52

    Article  PubMed  CAS  Google Scholar 

  124. Dehdashti F, McGuire AH, Van Brocklin HF, et al. Assessment of 21-[18F]fluoro-16 alpha-ethyl-19-norprogesterone as a positron-emitting radiopharmaceutical for the detection of progestin receptors in human breast carcinomas. J Nucl Med 1991; 32(8): 1532–7

    PubMed  CAS  Google Scholar 

  125. Dence CS, John CS, Bowen WD, et al. Synthesis and evaluation of 18F-labeled benzamides: high affinity sigma receptor ligands for PET imaging. Nucl Med Biol 1997; 24(4): 333–40

    Article  PubMed  CAS  Google Scholar 

  126. Waterhouse RN, Mardon K, Giles KM, et al. Halogenated 4-(phenoxymethyl)piperidines as potential radiolabeled probes for sigma-1 receptors: in vivo evaluation of [123I]-1-(iodopropen-2-yl)-4-[(4-cyanophenoxy)methyl]piperidine. J Med Chem 1997; 40(11): 1657–67

    Article  PubMed  CAS  Google Scholar 

  127. Mach RH, Huang Y, Buchheimer N, et al. [18F]N-(4′-fluorobenzyl)-4-(3-bromophenyl) acetamide for imaging the sigma receptor status of tumors: comparison with [18F]FDG, and [125I]IUDR. Nucl Med Biol 2001; 28(4): 451–8

    Article  PubMed  CAS  Google Scholar 

  128. Arap W, Kolonin MG, Trepel M, et al. Steps toward mapping the human vasculature by phage display. Nat Med 2002; 8(2): 121–7

    Article  PubMed  CAS  Google Scholar 

  129. Tavitian B, Terrazzino S, Kuhnast B, et al. In vivo imaging of oligonucleotides with positron emission tomography. Nat Med 1998; 4(4): 467–71

    Article  PubMed  CAS  Google Scholar 

  130. Dewanjee MK, Ghafouripour AK, Kapadvanjwala M, et al. Noninvasive imaging of c-Myc oncogene messenger RNA with indium-111-antisense probes in a mammary tumor-bearing mouse model. J Nucl Med 1994; 35(6): 1054–63

    PubMed  CAS  Google Scholar 

  131. Younes CK, Boisgard R, Tavitian B. Labelled oligonucleotides as radiopharmaceuticals: pitfalls, problems and perspectives. Curr Pharm Des 2002; 8(16): 1451–66

    Article  PubMed  CAS  Google Scholar 

  132. Cerchia L, Hamm J, Libri D, et al. Nucleic acid aptamers in cancer medicine. FEBS Lett 2002; 528(1–3): 12–6

    Article  PubMed  CAS  Google Scholar 

  133. Harte RJA, Matthews JC, O’Reilly SM, et al. Tumor, normal tissue, and plasma pharmacokinetic studies of fluorouracil biomodulation with N-phosphonacetyl-L-aspartate, folinic acid, and interferon alfa. J Clin Oncol 1999; 17(5): 1580–9

    PubMed  CAS  Google Scholar 

  134. Saleem A, Yap J, Osman S, et al. Modulation of fluorouracil tissue pharmaco-kinetics by eniluracil: in-vivo imaging of drug action. Lancet 2000; 355(9221): 2125–31

    Article  PubMed  CAS  Google Scholar 

  135. Moehler M, Dimitrakopoulou-Strauss A, Gutzler F, et al. 18F-labeled fluorouracil positron emission tomography and the prognoses of colorectal carcinoma patients with metastases to the liver treated with 5-fluorouracil. Cancer 1998; 83(2): 245–53

    Article  PubMed  CAS  Google Scholar 

  136. Dimitrakopoulou-Strauss A, Strauss LG, Schlag P, et al. Fluorine-18-fluorouracil to predict therapy response in liver metastases from colorectal carcinoma. J Nucl Med 1998; 39(7): 1197–202

    PubMed  CAS  Google Scholar 

  137. Inoue T, Kim EE, Wallace S, et al. Positron emission tomography using [18F]fluorotamoxifen to evaluate therapeutic responses in patients with breast cancer: preliminary study. Cancer Biother Radiopharm 1996; 11(4): 235–45

    Article  PubMed  CAS  Google Scholar 

  138. Inoue T, Kim EE, Wallace S, et al. Preliminary study of cardiac accumulation of F-18 fluorotamoxifen in patients with breast cancer. Clin Imaging 1997; 21(5): 332–6

    Article  PubMed  CAS  Google Scholar 

  139. Meikle SR, Matthews JC, Brock CS, et al. Pharmacokinetic assessment of novel anti-cancer drugs using spectral analysis and positron emission tomography: a feasibility study. Cancer Chemother Pharmacol 1998; 42(3): 183–93

    Article  PubMed  CAS  Google Scholar 

  140. Saleem A, Brown GD, Brady F, et al. Metabolic activation of temozolomide measured in vivo using positron emission tomography. Cancer Res 2003; 63(10): 2409–15

    PubMed  CAS  Google Scholar 

  141. Hendrikse NH, Franssen EJ, van der Graaf T, et al. Visualization of multidrug resistance in vivo. Eur J Nucl Med 1999; 26(3): 283–93

    Article  PubMed  CAS  Google Scholar 

  142. Saleem A, Harte RJ, Matthews JC, et al. Pharmacokinetic evaluation of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide in patients by positron emission tomography. J Clin Oncol 2001; 19(5): 1421–9

    PubMed  CAS  Google Scholar 

  143. Tjuvajev JG, Stockhammer G, Desai R, et al. Imaging the expression of transfected genes in vivo. Cancer Res 1995; 55(24): 6126–32

    PubMed  CAS  Google Scholar 

  144. Gambhir SS, Bauer E, Black ME, et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci U S A 2000; 97(6): 2785–90

    Article  PubMed  CAS  Google Scholar 

  145. MacLaren DC, Gambhir SS, Satyamurthy N, et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 1999; 6(5): 785–91

    Article  PubMed  CAS  Google Scholar 

  146. Liang Q, Satyamurthy N, Barrio JR, et al. Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 2001; 8(19): 1490–8

    Article  PubMed  CAS  Google Scholar 

  147. Doubrovin M, Ponomarev V, Beresten T, et al. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci U S A 2001; 98(16): 9300–5

    Article  PubMed  CAS  Google Scholar 

  148. Ponomarev V, Doubrovin M, Lyddane C, et al. Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 2001; 3(6): 480–8

    Article  PubMed  CAS  Google Scholar 

  149. Weissleder R, Mahmood U. Molecular imaging. Radiology 2001; 219(2): 316–33

    PubMed  CAS  Google Scholar 

  150. Del Guerra A, Belcari N. Advances in animal PET scanners. Q J Nucl Med 2002; 46(1): 35–47

    PubMed  Google Scholar 

  151. Lewis JS, Achilefu S, Garbow JR, et al. Small animal imaging: current technology and perspectives for oncological imaging. Eur J Cancer 2002; 38(16): 2173–88

    Article  PubMed  Google Scholar 

  152. Van Dyke T, Jacks T. Cancer modeling in the modern era: progress and challenges. Cell 2002; 108(2): 135–44

    Article  PubMed  Google Scholar 

  153. Haubner R, Wester HJ, Weber WA, et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001; 61(5): 1781–5

    PubMed  CAS  Google Scholar 

  154. Betensky RA, Louis DN, Cairncross JG. Influence of unrecognized molecular heterogeneity on randomized clinical trials. J Clin Oncol 2002; 20(10): 2495–9

    Article  PubMed  Google Scholar 

  155. Gelmon KA, Eisenhauer EA, Harris AL, et al. Anticancer agents targeting signaling molecules and cancer cell environment: challenges for drug development? J Natl Cancer Inst 1999; 91(15): 1281–7

    Article  PubMed  CAS  Google Scholar 

  156. Fox E, Curt GA, Balis FM. Clinical trial design for target-based therapy. Oncologist 2002; 7(5): 401–9

    Article  PubMed  CAS  Google Scholar 

  157. Korn EL, Arbuck SG, Pluda JM, et al. Clinical trial designs for cytostatic agents: are new approaches needed? J Clin Oncol 2001; 19(1): 265–72

    PubMed  CAS  Google Scholar 

  158. Hoffman JM. Imaging in cancer: a National Cancer Institute ‘extraordinary opportunity’. Neoplasia 2000; 2(1–2): 5–8

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Benjamin Solomon is supported by a National Health and Medical Research Council (NHMRC) medical post-graduate scholarship. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney J. Hicks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solomon, B., McArthur, G.A., Cullinane, C. et al. Applications of Positron Emission Tomography in the Development of Molecular Targeted Cancer Therapeutics. BioDrugs 17, 339–354 (2003). https://doi.org/10.2165/00063030-200317050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200317050-00004

Keywords

Navigation