Skip to main content
Log in

Recombinant Antibodies as Therapeutic Agents

Pathways for Modeling New Biodrugs

  • Drug Development
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Hybridoma fusion technology, proposed by Köhler and Milstein in 1975, started major developments in the field of monoclonal antibodies (mAbs). During the following 2 decades, their high potential as laboratory tools was rapidly exploited for biotechnology and biomedical applications. Today, mAbs represent over 30% of all biological proteins undergoing clinical trials and are the second largest class of biodrugs after vaccines. With the help of antibody engineering, mAbs have been reduced in size, rebuilt into multivalent molecules, and conjugated with drugs, toxins, or radioisotopes for the treatment of cancer, autoimmune disorders, graft rejection, and infectious diseases. Additionally, in the past few years, important advances have been made in the design, selection, and production of these new types of engineered antibodies. The present review focuses on the structural and functional characteristics of mAbs and their fragments, and also provides a walk through the most important methods used in antibody selection. In addition, the recent trends in antibody engineering for improving antibody clinical efficacy are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256(5517): 495–7

    Article  PubMed  Google Scholar 

  2. Khazaeli MB, Conry RM, LoBuglio AF. Human immune response to monoclonal antibodies. J Immunother 1994; 15(1): 42–52

    Article  CAS  Google Scholar 

  3. Hwang WY, Foote J. Immunogenicity of engineered antibodies. Methods 2005; 36(1): 3–10

    Article  PubMed  CAS  Google Scholar 

  4. Presta LG. Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev 2006; 58(5): 640–56

    Article  PubMed  CAS  Google Scholar 

  5. Morrison SL, Johnson MJ, Herzenberg LA, et al. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 1984; 81(21): 6851–5

    Article  PubMed  CAS  Google Scholar 

  6. Boulianne GL, Hozumi N, Shulman MJ. Production of functional chimaeric mouse/human antibody. Nature 1984; 312(5995): 643–6

    Article  PubMed  CAS  Google Scholar 

  7. Jones PT, Dear PH, Foote J, et al. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986; 321(6069): 522–5

    Article  PubMed  CAS  Google Scholar 

  8. Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov 2003; 2(1): 52–62

    Article  PubMed  CAS  Google Scholar 

  9. Reichert JM, Rosensweig CJ, Faden LB, et al. Monoclonal antibody successes in the clinic. Nat Biotechnol 2005; 23(9): 1073–8

    Article  PubMed  CAS  Google Scholar 

  10. Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol 2006; 6(5): 343–57

    Article  PubMed  CAS  Google Scholar 

  11. Turner M. Antibodies and their receptors. In: Roitt I, Brostoff J, Male D. Immunology. 5th ed. London: Mosby International Ltd, 1998: 71–82

    Google Scholar 

  12. Reff ME, Carner K, Chambers KS, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 1994; 83(2): 435–45

    PubMed  CAS  Google Scholar 

  13. Cartron G, Watier H, Golay J, et al. From the bench to the bedside: ways to improve rituximab efficacy. Blood 2004; 104(9): 2635–42

    Article  PubMed  CAS  Google Scholar 

  14. Flieger D, Renoth S, Beier I, et al. Mechanism of cytotoxicity induced by chimeric mouse human monoclonal antibody IDEC-C2B8 in CD20-expressing lymphoma cell lines. Cell Immunol 2000; 204(1): 55–63

    Article  PubMed  CAS  Google Scholar 

  15. Harjunpaa A, Junnikkala S, Meri S. Rituximab (anti-CD20) therapy of B-cell lymphomas: direct complement killing is superior to cellular effector mechanisms. Scand J Immunol 2000; 51(6): 634–41

    Article  PubMed  CAS  Google Scholar 

  16. Golay J, Lazzari M, Facchinetti V, et al. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood 2001; 98(12): 3383–9

    Article  PubMed  CAS  Google Scholar 

  17. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005; 23(9): 1126–36

    Article  PubMed  CAS  Google Scholar 

  18. Huston JS, McCartney J, Tai MS, et al. Medical applications of single-chain antibodies. Int Rev Immunol 1993; 10(2): 195–217

    Article  PubMed  CAS  Google Scholar 

  19. Hudson PJ. Recombinant antibody fragments. Curr Opin Biotechnol 1998; 9(4): 395–402

    Article  PubMed  CAS  Google Scholar 

  20. Dall’ Acqua W, Carter P. Antibody engineering. Curr Opin Struct Biol 1998; 8(4): 443–50

    Article  Google Scholar 

  21. Hudson PJ. Recombinant antibody constructs in cancer therapy. Curr Opin Immunol 1999; 11(5): 548–57

    Article  PubMed  CAS  Google Scholar 

  22. Presta L. Antibody engineering for therapeutics. Curr Opin Struct Biol 2003; 13(4): 519–25

    Article  PubMed  CAS  Google Scholar 

  23. Hudson PJ, Souriau C. Engineered antibodies. Nat Med 2003; 9(1): 129–34

    Article  PubMed  CAS  Google Scholar 

  24. Kipriyanov SM. Generation of antibody molecules through antibody engineering. Methods Mol Biol 2003; 207: 3–25

    PubMed  CAS  Google Scholar 

  25. Skerra A, Pluckthun A. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 1988; 240(4855): 1038–41

    Article  PubMed  CAS  Google Scholar 

  26. Bird RE, Hardman KD, Jacobson JW, et al. Single-chain antigen-binding proteins. Science 1988; 242(4877): 423–6

    Article  PubMed  CAS  Google Scholar 

  27. Huston JS, Levinson D, Mudgett-Hunter M, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digosin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A 1988; 85(16): 5879–83

    Article  PubMed  CAS  Google Scholar 

  28. Worn A, Pluckthün A. Stability engineering of antibody single-chain Fv fragments. J Mol Biol 2001; 305(5): 989–1010

    Article  PubMed  CAS  Google Scholar 

  29. Glockshuber R, Malia M, Pfitzinger I, et al. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 1990; 29(6): 1362–7

    Article  PubMed  CAS  Google Scholar 

  30. Brinkmann U, Reiter Y, Jung SH, et al. A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc Natl Acad Sci U S A 1993; 90(16): 7538–42

    Article  PubMed  CAS  Google Scholar 

  31. Reverter JC, Beguin S, Kessels H, et al. Inhibition of platelet-mediated, tissue factor-induced thrombin generation by the mouse/human chimeric 7E3 antibody: potential implications for the effect of c7E3 Fab treatment on acute thrombosis and “clinical restenosis”. J Clin Invest 1996; 98(3): 863–74

    Article  PubMed  CAS  Google Scholar 

  32. Coller BS. GPIIb/IIIa antagonists: pathophysiologic and therapeutic insights from studies of c7E3 Fab. Thromb Haemost 1997; 78(1): 730–5

    PubMed  CAS  Google Scholar 

  33. Kaiser PK, Do DV. Ranibizumab for the treatment of neovascular AMD. Int J Clin Pract 2007; 61(3): 501–9

    Article  PubMed  CAS  Google Scholar 

  34. Haverich A, Shernan SK, Levy JH, et al. Pexelizumab reduces death and myocardial infarction in higher risk cardiac surgical patients. Ann Thorac Surg 2006; 82(2): 486–92

    Article  PubMed  Google Scholar 

  35. Trubion Pharmaceuticals Inc. Product candidates: TRU-015 for the treatment of rheumatoid arthritis [online]. Available from URL: http://www.trubion.com/products/product-candidates/tru-015 [Accessed 2008 May]

  36. Haber E, Richards FF. The specificity of antigenic recognition of antibody heavy chain. Proc R Soc Lond B Biol Sci 1966; 166(3): 176–87

    Article  PubMed  CAS  Google Scholar 

  37. Rockey JH. Equine antihapten antibody: the subunits and fragments of anti-beta-lactoside antibody. J Exp Med 1967; 125(2): 249–75

    Article  PubMed  CAS  Google Scholar 

  38. Jaton JC, Klinman NR, Givol D, et al. Recovery of antibody activity upon reoxidation of completely reduced polyalanyl heavy chain and its Fd fragment derived from anti-2,4-dinitrophenyl antibody. Biochemistry 1968; 7(12): 4185–95

    Article  PubMed  CAS  Google Scholar 

  39. Ward ES, Gussow D, Griffiths AD, et al. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 1989; 341(6242): 544–6

    Article  PubMed  CAS  Google Scholar 

  40. Cai X, Garen A. A melanoma-specific VH antibody cloned from a fusion phage library of a vaccinated melanoma patient. Proc Natl Acad Sci U S A 1996; 93(13): 6280–5

    Article  PubMed  CAS  Google Scholar 

  41. Davies J, Riechmann L. ’Camelising’ human antibody fragments: NMR studies on VH domains. FEBS Lett 1994; 339(3): 285–90

    Article  PubMed  CAS  Google Scholar 

  42. Davies J, Riechmann L. Single antibody domains as small recognition units: design and in vitro antigen selection of camelized, human VH domains with improved protein stability. Protein Eng 1996; 9(6): 531–7

    Article  PubMed  CAS  Google Scholar 

  43. Tanha J, Xu P, Chen Z, et al. Optimal design features of camelized human single-domain antibody libraries. J Biol Chem 2001; 276(27): 24774–80

    Article  PubMed  CAS  Google Scholar 

  44. Aires da Silva F, Santa-Marta M, Freitas-Viera A, et al. Camelized rabbit-derived VH single-domain intrabodies against Vif strongly neutralize HIV-1 infectivity. J Mol Biol 2004; 340(3): 525–42

    Article  PubMed  CAS  Google Scholar 

  45. Dottorini T, Vaughan CK, Walsh MA, et al. Crystal structure of a human VH: requirements for maintaining a monomeric fragment. Biochemistry 2004; 43(3): 622–8

    Article  PubMed  CAS  Google Scholar 

  46. Jespers L, Schon O, James LC, et al. Crystal structure of HEL4, a soluble, refoldable human V(H) single domain with a germ-line scaffold. J Mol Biol 2004; 337(4): 893–903

    Article  PubMed  CAS  Google Scholar 

  47. Jespers L, Schon O, Famm K, et al. Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol 2004; 22(9): 1161–5

    Article  PubMed  CAS  Google Scholar 

  48. Tanha J, Nguyen TD, Ng A, et al. Improving solubility and refolding efficiency of human V(H)s by a novel mutational approach. Protein Eng Des Sel 2006; 19(11): 503–9

    Article  PubMed  CAS  Google Scholar 

  49. Holt LJ, Herring C, Jespers LS, et al. Domain antibodies: proteins for therapy. Trends Biotechnol 2003; 21(11): 484–90

    Article  PubMed  CAS  Google Scholar 

  50. Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature 1993; 363(6428): 446–8

    Article  PubMed  CAS  Google Scholar 

  51. Greenberg AS, Avila D, Hughes M, et al. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 1995; 374(6518): 168–73

    Article  PubMed  CAS  Google Scholar 

  52. Nuttall SD, Krishnan UV, Hattarki M, et al. Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Mol Immunol 2001; 38(4): 313–26

    Article  PubMed  CAS  Google Scholar 

  53. Roux KH, Greenberg AS, Greene L, et al. Structural analysis of the nurse shark (new) antigen receptor (NAR): molecular convergence of NAR and unusual mammalian immunoglobulins. Proc Natl Acad Sci U S A 1998; 95(20): 11804–9

    Article  PubMed  CAS  Google Scholar 

  54. Muyldermans S. Single domain camel antibodies: current status. J Biotechnol 2001; 74(4): 277–302

    PubMed  CAS  Google Scholar 

  55. Desmyter A, Decanniere K, Muyldermans S, et al. Antigen specificity and high affinity binding provided by one single loop of a camel single-domain antibody. J Biol Chem 2001; 276(28): 26285–90

    Article  PubMed  CAS  Google Scholar 

  56. Cortez-Retamozo V, Lauwereys M, Hassanzadeh GhG, et al. Efficient tumour targeting by single-domain antibody fragments of camels. Int J Cancer 2002; 98(3): 456–62

    Article  PubMed  CAS  Google Scholar 

  57. Cortez-Retamozo V, Backmann N, Senter PD, et al. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res 2004; 64(8): 2853–7

    Article  PubMed  CAS  Google Scholar 

  58. van der Linden RH, Frenken LG, de Geus B, et al. Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta 1999; 1431(1): 37–46

    Article  PubMed  Google Scholar 

  59. Frenken LG, van der Linden RH, Hermans PW, et al. Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol 2000; 78(1): 11–21

    Article  PubMed  CAS  Google Scholar 

  60. Casey JL, Napier MP, King DJ, et al. Tumour targeting of humanised cross-linked divalent-Fab′ antibody fragments: a clinical phase I/II study. Br J Cancer 2002; 86(9): 1401–10

    Article  PubMed  CAS  Google Scholar 

  61. Weir AN, Nesbitt A, Chapman AP, et al. Formatting antibody fragments to mediate specific therapeutic functions. Biochem Soc Trans 2002; 30(4): 512–6

    Article  PubMed  CAS  Google Scholar 

  62. Casey JL, King DJ, Chaplin LC, et al. Preparation, characterisation and tumour targeting of cross-linked divalent and trivalent anti-tumour Fab′ fragments. Br J Cancer 1996; 74(9): 1397–405

    Article  PubMed  CAS  Google Scholar 

  63. Milstein C, Cuello AC. Hybrid hybridomas and their use in immunohistochemistry. Nature 1983; 305(5934): 537–40

    Article  PubMed  CAS  Google Scholar 

  64. Staerz UD, Bevan MJ. Hybrid hybridoma producing a bispecific monoclonal antibody that can focus effector T-cell activity. Proc Natl Acad Sci U S A 1986; 83(5): 1453–7

    Article  PubMed  CAS  Google Scholar 

  65. Suresh MR, Cuello AC, Milstein C. Bispecific monoclonal antibodies from hybrid hybridomas. Methods Enzymol 1986; 121: 210–28

    Article  PubMed  CAS  Google Scholar 

  66. Holliger P, Prospero T, Winter G, et al. Diabodies: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci U S A 1993; 90(14): 6444–8

    Article  PubMed  CAS  Google Scholar 

  67. Kipriyanov SM, Moldenauer G, Schuhmacher J, et al. Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J Mol Biol 1999; 293(1): 41–56

    Article  PubMed  CAS  Google Scholar 

  68. Staerz UD, Kanagawa O, Bevan MJ. Hybrid antibodies can target sites for attack by T cells. Nature 1985; 314(6012): 628–31

    Article  PubMed  CAS  Google Scholar 

  69. Loffler A, Gruen M, Wuchter C, et al. Efficient elimination of chronic lymphocytic leukaemia B cells by autologous T cells with a bispecific anti-CD19/anti-CD3 single-chain antibody construct. Leukemia 2003; 17(5): 900–9

    Article  PubMed  CAS  Google Scholar 

  70. Karpovsky B, Titus JA, Stephany DA, et al. Production of target-specific effector cells using hetero-cross-linked aggregates containing anti-target cell and anti-Fc gamma receptor antibodies. J Exp Med 1984; 160(6): 1686–701

    Article  PubMed  CAS  Google Scholar 

  71. de Jonge J, Heirman C, de Veerman M, et al. In vivo retargeting of T cell effector function by recombinant bispecific single chain Fv (anti-CD3 x anti-idiotype) induces long-term survival in the murine BCL1 lymphoma model. J Immunol 1998; 161(3): 1454–61

    PubMed  Google Scholar 

  72. Vose JM, Bierman PJ, Loberiza Jr FR, et al. Phase I trial of (90)Y-ibritumomab tiuxetan in patients with relapsed B-cell non-Hodgkin’s lymphoma following high-dose chemotherapy and autologous stem cell transplantation. Leuk Lymphoma 2007; 48(4): 683–90

    Article  PubMed  CAS  Google Scholar 

  73. Macklis RM. Iodine-131 tositumomab (Bexxar) in a radiation oncology environment. Int J Radiat Oncol Biol Phys 2006; 66 (2 Suppl.): S30–4

    Article  PubMed  CAS  Google Scholar 

  74. Larson RA, Boogaerts M, Estey E, et al. Antibody-targeted chemotherapy of older patients with acute myeloid leukemia in first relapse using Mylotarg (gemtuzumab ozogamicin). Leukemia 2002; 16(9): 1627–36

    Article  PubMed  CAS  Google Scholar 

  75. Chapman AP. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev 2002; 54(4): 531–45

    Article  PubMed  CAS  Google Scholar 

  76. Chapman AP, Antoniw P, Spitali M, et al. Therapeutic antibody fragments with prolonged in vivo half-lives. Nat Biotechnol 1999; 17(8): 780–3

    Article  PubMed  CAS  Google Scholar 

  77. Choy EH, Hazleman B, Smith M, et al. Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: a phase II double-blinded, randomized, dose-escalating trial. Rheumatology (Oxford) 2002; 41(10): 1133–7

    Article  CAS  Google Scholar 

  78. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228(4705): 1315–7

    Article  PubMed  CAS  Google Scholar 

  79. McCafferty J, Griffiths AD, Winter G, et al. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990; 348(6301): 552–4

    Article  PubMed  CAS  Google Scholar 

  80. Barbas III CF, Kang AS, Lerner RA, et al. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 1991; 88(18): 7978–82

    Article  PubMed  CAS  Google Scholar 

  81. Winter G, Griffiths AD, Hawkins RE, et al. Making antibodies by phage display technology. Annu Rev Immunol 1994; 12: 433–5

    Article  PubMed  CAS  Google Scholar 

  82. Hoogenboom HR. Overview of antibody phage-display technology and its applications. Methods Mol Biol 2002; 178: 1–37

    PubMed  CAS  Google Scholar 

  83. Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol 2005; 23(9): 1105–16

    Article  PubMed  CAS  Google Scholar 

  84. Hoogenboom HR. Designing and optimizing library selection strategies for generating high-affinity antibodies. Trends Biotechnol 1997; 15(2): 62–70

    Article  PubMed  CAS  Google Scholar 

  85. Griffiths AD, Duncan AR. Strategies for selection of antibodies by phage display. Curr Opin Biotechnol 1998; 9(1): 102–8

    Article  PubMed  CAS  Google Scholar 

  86. Burton DR, Barbas III CF, Persson MA, et al. A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc Natl Acad Sci U S A 1991; 88(22): 10134–7

    Article  PubMed  CAS  Google Scholar 

  87. Barbas III CF, Crowe Jr JE, Cababa D, et al. Human monoclonal Fab fragments derived from a combinatorial library bind to respiratory syncytial virus F glycoprotein and neutralize. Proc Natl Acad Sci U S A 1992; 89(21): 10164–8

    Article  PubMed  CAS  Google Scholar 

  88. Bowley DR, Labrijn AF, Zwick MB, et al. Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel 2007; 20(2): 81–90

    Article  PubMed  CAS  Google Scholar 

  89. Emanuel P, O’Brien T, Burans J, et al. Directing antigen specificity towards botulinum neurotoxin with combinatorial phage display libraries. J Immunol Methods 1996; 193(2): 189–97

    Article  PubMed  CAS  Google Scholar 

  90. Chowdhury PS, Viner JL, Beers R, et al. Isolation of a high-affinity stable single-chain Fv specific for mesothelin from DNA-immunized mice by phage display and construction of a recombinant immunotoxin with anti-tumor activity. Proc Natl Acad Sci U S A 1998; 95(2): 669–74

    Article  PubMed  CAS  Google Scholar 

  91. McWhirter JR, Kretz-Rommel A, Saven A, et al. Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc Natl Acad Sci U S A 2006; 103(4): 1041–6

    Article  PubMed  CAS  Google Scholar 

  92. Marks JM, Hoogenboom HR, Bonnert TP, et al. By-passing immunization: human antibodies from V-gene libraries displayed on phage. J Mol Biol 1991; 222(3): 581–97

    Article  PubMed  CAS  Google Scholar 

  93. Vaughan TJ, Williams AJ, Pritchard K, e. Human antibodies with sub-nanomolar affinities isolated from large non-immunized phage display library. Nat Biotechnol 1996; 14(3): 309–14

    Article  PubMed  CAS  Google Scholar 

  94. Sheets MD, Amersdorfer P, Finnern R, et al. Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci U S A 1998; 95(11): 6157–62

    Article  PubMed  CAS  Google Scholar 

  95. de Haard HJ, van Neer N, Reurs A, et al. A large non-immunized human Fab fragment library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 1999; 274(26): 18218–30

    Article  PubMed  Google Scholar 

  96. Bradbury AR, Marks JD. Antibodies from phage antibody libraries. J Immunol Methods 2004; 290(1–2): 29–49

    Article  PubMed  CAS  Google Scholar 

  97. Maynard J, Georgiou G. Antibody engineering. Annu Rev Biomed Eng 2000; 2: 339–76

    Article  PubMed  CAS  Google Scholar 

  98. Fellouse F, Sidhu SS. Synthetic antibody libraries. In: Sidhu SS, editor. Phage display in biotechnology and drug discovery. New York: CRC Press, 2006: 709–40

    Google Scholar 

  99. Hoogenboom HR, Winter G. By-passing immunization: human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J Mol Biol 1992; 227(2): 381–8

    Article  PubMed  CAS  Google Scholar 

  100. Nissim A, Hoogenboom HR, Tomlinson IM, et al. Antibody fragments from a ’single pot’ phage display library as immunochemical reagents. EMBO J 1994; 13(3): 692–8

    PubMed  CAS  Google Scholar 

  101. Griffiths AD, Williams SC, Hartley O, et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J 1994; 13(14): 3245–60

    PubMed  CAS  Google Scholar 

  102. de Kruif J, Boel E, Logtenberg T. Selection and application of human single chain Fv antibody fragments from a semi-synthetic phage antibody display library with designed CDR3 regions. J Mol Biol (1995); 248: 97–105

    Article  PubMed  CAS  Google Scholar 

  103. Tomlinson IM, Walter G, Marks JD, et al. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J Mol Biol 1992; 227(3): 776–98

    Article  PubMed  CAS  Google Scholar 

  104. Boehncke WH, Ochsendorf FR, Noll S, et al. Efficacy of the fully human monoclonal antibody MOR102 (5) against intercellular adhesion molecule 1 in the psoriasis-severe combined immunodeficient mouse model. Br J Dermatol 2005; 153(4): 758–66

    Article  PubMed  CAS  Google Scholar 

  105. Johnson G, Wu TT. Kabat database and its applications: 30 years after the first variability plot. Nucleic Acids Res 2000; 28(1): 214–8

    Article  PubMed  CAS  Google Scholar 

  106. Lee CV, Hymowitz SG, Wallweber HJ. Synthetic anti-BR3 antibodies that mimic BAFF binding and target both human and murine B cells. Blood 2006; 108(9): 3103–11

    Article  PubMed  CAS  Google Scholar 

  107. Lee CV, Liang WC, Dennis MS. High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. J Mol Biol 2004; 340(5): 1073–93

    Article  PubMed  CAS  Google Scholar 

  108. Fellouse FA, Wiesmann C, Sidhu SS. Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. Proc Natl Acad Sci U S A 2004; 101(34): 12467–72

    Article  PubMed  CAS  Google Scholar 

  109. Fellouse FA, Li B, Compann DM. Molecular recognition by a binary code. J Mol Biol 2005; 348(5): 1153–62

    Article  PubMed  CAS  Google Scholar 

  110. Mattheakis LC, Bhatt RR, Dower WJ. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci U S A 1994; 91(19): 9022–6

    Article  PubMed  CAS  Google Scholar 

  111. Hanes J, Pliickthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 1997; 94(10): 4937–42

    Article  PubMed  CAS  Google Scholar 

  112. He M, Taussig MJ. Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res 1997; 25(5): 5132–4

    Article  PubMed  CAS  Google Scholar 

  113. Hanes J, Jermutus L, Weber-Bornhauser S, et al. Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci U S A 1998; 95(24): 14130–5

    Article  PubMed  CAS  Google Scholar 

  114. Schaffitzel C, Hanes J, Jermutus L, et al. Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. J Immunol Methods 1999; 231(1–2): 119–35

    Article  PubMed  CAS  Google Scholar 

  115. Jermutus L, Honegger A, Schwesinger F, et al. Tailoring in vitro evolution for protein affinity or stability. Proc Natl Acad Sci U S A 2001; 98(1): 75–80

    Article  PubMed  CAS  Google Scholar 

  116. Hanes J, Schaffitzel C, Knappik A, et al. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 2000; 18(12): 1287–92

    Article  PubMed  CAS  Google Scholar 

  117. Francisco JA, Campbell R, Iverson BL, et al. Production and fluorescenceactivated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc Natl Acad Sci U S A 1993; 90(22): 10444–8

    Article  PubMed  CAS  Google Scholar 

  118. Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 1997; 15(6): 553–7

    Article  PubMed  CAS  Google Scholar 

  119. Boder ET, Wittrup KD. Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 2000; 328: 430–44

    Article  PubMed  CAS  Google Scholar 

  120. Feldhaus M, Siegel R. Flow cytometric screening of yeast surface display libraries. Methods Mol Biol 2004; 263: 311–32

    PubMed  CAS  Google Scholar 

  121. Feldhaus MJ, Siegel RW, Opresko LK, et al. Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 2003; 21(2): 163–70

    Article  PubMed  CAS  Google Scholar 

  122. Chao G, Lau WL, Hackel BJ, et al. Isolating and engineering human antibodies using yeast surface display. Nat Protoc 2006; 1(2): 755–68

    Article  PubMed  CAS  Google Scholar 

  123. Bruggemann M, Caskey HM, Teale C, et al. A repertoire of monoclonal antibodies with human heavy chains from transgenic mice. Proc Natl Acad Sci U S A 1989; 86(17): 6709–13

    Article  PubMed  CAS  Google Scholar 

  124. Lonberg N, Taylor LD, Harding FA, et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 1994; 368(6474): 856–9

    Article  PubMed  CAS  Google Scholar 

  125. Green LL, Hardy MC, Maynard-Currie CE, et al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 1994; 7(1): 13–21

    Article  PubMed  CAS  Google Scholar 

  126. Wagner SD, Williams GT, Larson T. Antibodies generated from human immunoglobulin miniloci in transgenic mice. Nucleic Acids Res 1994; 22(8): 1389–93

    Article  PubMed  CAS  Google Scholar 

  127. Jakobovits A. Production of fully human antibodies by transgenic mice. Curr Opin Biotechnol 1995; 6(5): 561–6

    Article  PubMed  CAS  Google Scholar 

  128. Bruggemann M, Taussig MJ. Production of human antibody repertoires in transgenic mice. Curr Opin Biotechnol 1997; 8(4): 455–8

    Article  PubMed  CAS  Google Scholar 

  129. Lonberg N. Human antibodies from transgenic animals. Nat Biotechnol 2005; 23(9): 1117–25

    Article  PubMed  CAS  Google Scholar 

  130. Bayes M, Rabasseda X, Prous JR. Gateways to clinical trials. Methods Find Exp Clin Pharmacol 2006; 28(6): 379–412

    PubMed  CAS  Google Scholar 

  131. Abrahamsen B, Teng AY. Technology evaluation: denosumab, Amgen. Curr Opin Mol Ther 2005; 7(6): 604–10

    PubMed  CAS  Google Scholar 

  132. Small EJ, Tchekmedyian NS, Rini BI, et al. A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin Cancer Res 2007; 13(6): 1810–5

    Article  PubMed  CAS  Google Scholar 

  133. Morse MA. Technology evaluation: ipilimumab, Medarex/Bristol-Myers Squibb. Curr Opin Mol Ther 2005; 7(6): 588–97

    PubMed  CAS  Google Scholar 

  134. Hwang WY, Almagro JC, Buss TN, et al. Use of human germline genes in a CDR homology-based approach to antibody humanization. Methods 2005; 36(1): 35–42

    Article  PubMed  CAS  Google Scholar 

  135. Tsurushita N, Vasquez M. Humanization of monoclonal antibodies. In: Honjo T, Alt F, Neuberger M, editors. Molecular biology of B cells. San Diego (CA): Academic Press, 2003: 533–45

    Chapter  Google Scholar 

  136. Clark M. Antibody humanization: a case of the ’Emperor’s new clothes’? Immunol Today 2000; 21(8): 397–402

    Article  PubMed  CAS  Google Scholar 

  137. Ritter G, Cohen LS, Williams Jr C, et al. Serological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal antibody A33. Cancer Res 2001; 61(18): 6851–9

    PubMed  CAS  Google Scholar 

  138. Marasco WA. Intrabodies: basic research and clinical gene therapy applications. New York: Springer, 1998: 1–22

    Google Scholar 

  139. Bradbury A. Recombinant antibodies for ectopic expression. In: Cattaneo A, Biocca S, editors. Intracellular antibodies: development and applications. New York: Springer-Verlags and Landes Biosciences, 1997: 15–40

    Chapter  Google Scholar 

  140. Zhu Q, Marasco WA. Intracellular targeting of antibodies in mammalian cells. In: Makrides SC, editor. Gene transfer and expression in mammalian cells. Vol. 38. Amsterdam: Elsevier Science BV, 2003: 120–30

    Google Scholar 

  141. Worn A, Pluckthün A. An intrinsically stable antibody scFv fragment can tolerate the loss of both disulfide bonds and fold correctly. FEBS Lett 1998; 427(3): 357–61

    Article  PubMed  CAS  Google Scholar 

  142. Osbourn J, Jermutus L, Duncan A. Current methods for the generation of human antibodies for the treatment of autoimmune diseases. Drug Discov Today 2003; 8(18): 845–51

    Article  PubMed  CAS  Google Scholar 

  143. Rondon IJ, Marasco WA. Intracellular antibodies (intrabodies) for gene therapy of infectious diseases. Annu Rev Microbiol 1997; 51: 257–83

    Article  PubMed  CAS  Google Scholar 

  144. Funaro A, Horenstein AL, Santoro P. Monoclonal antibodies and therapy of human cancers. Biotechnol Adv 2000; 18(5): 385–401

    Article  PubMed  CAS  Google Scholar 

  145. Cochet O, Kenigsberg M, Delumeau I, et al. Intracellular expression of an antibody fragment-neutralizing p21 ras promotes tumor regression. Cancer Res 1998; 58(6): 1170–6

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors were supported by grants from Fundação para a Ciência e Tecnologia (PTDC/BIA-BCM/64275/2006). Drs Aires da Silva and Corte-Real are the recipients of a fellowship from Fundação para a Ciência e Tecnologia. The authors also thank Dr Sara Maia for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joao Goncalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aires da Silva, F., Corte-Real, S. & Goncalves, J. Recombinant Antibodies as Therapeutic Agents. BioDrugs 22, 301–314 (2008). https://doi.org/10.2165/00063030-200822050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200822050-00003

Keywords

Navigation