Skip to main content
Log in

Recombinant Immunotoxins Containing Truncated Bacterial Toxins for the Treatment of Hematologic Malignancies

  • Drug Development
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Immunotoxins are molecules that contain a protein toxin and a ligand that is either an antibody or a growth factor. The ligand binds to a target cell antigen, and the target cell internalizes the immunotoxin, allowing the toxin to migrate to the cytoplasm where it can kill the cell. In the case of recombinant immunotoxins, the ligand and toxin are encoded in DNA that is then expressed in bacteria, and the purified immunotoxin contains the ligand and toxin fused together. Among the most active recombinant immunotoxins clinically tested are those that are targeted to hematologic malignancies. One agent, containing human interleukin-2 and truncated diphtheria toxin (denileukin diftitox), has been approved for use in cutaneous T-cell lymphoma, and has shown activity in other hematologic malignancies, including leukemias and lymphomas. Diphtheria toxin has also been targeted by other ligands, including granulocyte-macrophage colony-stimulating factor and interleukin-3, to target myelogenous leukemia cells. Single-chain antibodies containing variable heavy and light antibody domains have been fused to truncated Pseudomonas exotoxin to target lymphomas and lymphocytic leukemias. Recombinant immunotoxins anti-Tac(Fv)-PE38 (LMB-2), targeting CD25, and RFB4(dsFv)-PE38 (BL22, CAT-3888), targeting CD22, have each been tested in patients. Major responses have been observed after failure of standard chemotherapy. The most successful application of recombinant immunotoxins today is in hairy cell leukemia, where BL22 has induced complete remissions in most patients who were previously treated with optimal chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Table I

Similar content being viewed by others

References

  1. Cawley DB, Herschman HR, Gilliland DG, et al. Epidermal growth factor-toxin A chain conjugates: EGF-ricin A is a potent toxin while EGF-diphtheria fragment A is nontoxic. Cell 1980; 22: 563–70

    Article  PubMed  CAS  Google Scholar 

  2. Murphy JR, Bishai W, Borowski M, et al. Genetic construction, expression, and melanoma-selective cytotoxicity of a diphtheria toxin-related a-melanocyte-stimulating hormone fusion protein. Proc Natl Acad Sci USA 1986; 83: 8258–62

    Article  PubMed  CAS  Google Scholar 

  3. FitzGerald DJ, Padmanabhan R, Pastan I, et al. Adenovirus-induced release of epidermal growth factor and Pseudomonas toxin into the cytosol of KB cells during receptor-mediated endocytosis. Cell 1983; 32: 607–17

    Article  PubMed  CAS  Google Scholar 

  4. Williams DP, Parker K, Bacha P, et al. Diphtheria toxin receptor binding domain substitution with interleukin-2: genetic construction and properties of a diphtheria toxin-related interleukin-2 fusion protein. Protein Eng 1987; 1: 493–8

    Article  PubMed  CAS  Google Scholar 

  5. Krolick KA, Villemez C, Isakson P, et al. Selective killing of normal or neoplastic B cells by antibodies coupled to the A chain of ricin. Proc Natl Acad Sci USA 1980; 77: 5419–23

    Article  PubMed  CAS  Google Scholar 

  6. Krolick KA, Yuan D, Vitetta ES. Specific killing of a breast carcinoma cell line by a monoclonal antibody coupled to the A-chain of ricin. Cancer Immunol Immunother 1981; 12: 39–41

    Article  Google Scholar 

  7. Casellas P, Brown JP, Gros O, et al. Human melanoma cells can be killed in vitro by an immunotoxin specific for melanoma-associated antigen p97. Int J Cancer 1982; 30: 437–43

    Article  PubMed  CAS  Google Scholar 

  8. Muirhead M, Martin PJ, Torok-Storb B, et al. Use of an antibody-ricin A-chain conjugate to delete neoplastic B cells from human bone marrow. Blood 1983; 62: 327–32

    PubMed  CAS  Google Scholar 

  9. Greenfield L, Johnson VG, Youle RJ. Mutations in diphtheria toxin separate binding from entry and amplify immunotoxin selectivity. Science 1987; 238: 536–9

    Article  PubMed  CAS  Google Scholar 

  10. Moolten FL, Cooperband SR. Selective destruction of target cells by diphtheria toxin conjugated to antibody directed against antigens on the cells. Science 1970; 169: 68–70

    Article  PubMed  CAS  Google Scholar 

  11. Bolognesi A, Polito L, Tazzari PL, et al. In vitro anti-tumour activity of anti-CD80 and anti-CD86 immunotoxins containing type 1 ribosome-inactivating proteins. Br J Haematol 2000; 110: 351–61

    Article  PubMed  CAS  Google Scholar 

  12. Endo Y, Mitsui K, Motizuki M, et al. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. J Biol Chem 1987; 262: 5908–12

    PubMed  CAS  Google Scholar 

  13. Zamboni M, Brigotti M, Rambelli F, et al. High pressure liquid chromatographic and fluorimetric methods for the determination of adenine released from ribosomes by ricin and gelonin. Biochem J 1989; 259: 639–43

    PubMed  CAS  Google Scholar 

  14. Mohanraj D, Ramakrishnan S. Cytotoxic effects of ricin without an interchain disulfide bond: genetic modification and chemical crosslinking studies. Biochim Biophys Acta 1995; 1243: 399–406

    Article  PubMed  Google Scholar 

  15. Ramakrishnan S, Bjorn MJ, Houston LL. Recombinant ricin A chain conjugated to monoclonal antibodies: improved tumor cell inhibition in the presence of lysosomotropic compounds. Cancer Res 1989; 49: 613–7

    PubMed  CAS  Google Scholar 

  16. Kreitman RJ, Chaudhary VK, Siegall CB, et al. Rational design of a chimeric toxin: an intramolecular location for the insertion of transforming growth factor a within Pseudomonas exotoxin as a targeting ligand. Bioconjug Chem 1992; 3: 58–62

    Article  PubMed  CAS  Google Scholar 

  17. Cook JP, Savage PM, Lord JM, et al. Biologically active interleukin-2-ricin A chain fusion proteins may require intracellular proteolytic cleavage to exhibit a cytotoxic effect. Bioconjug Chem 1993; 4: 440–7

    Article  PubMed  CAS  Google Scholar 

  18. Dore JM, Gras E, Wijdenes J. Expression and activity of a recombinant chimeric protein composed of pokeweed antiviral protein and of human interleukin-2. FEBS Lett 1997; 402: 50–2

    Article  PubMed  CAS  Google Scholar 

  19. Francisco JA, Gawlak SL, Siegall CB. Construction, expression, and characterization of BD1-G28-5 sFv, a single-chain anti-CD40 immunotoxin containing the ribosome-inactivating protein bryodin 1. J Biol Chem 1997; 272: 24165–9

    Article  PubMed  CAS  Google Scholar 

  20. Kreitman RJ. Getting plant toxins to fuse. Leukemia Res 1997; 21: 997–9

    Article  CAS  Google Scholar 

  21. Carroll SF, Collier RJ. Active site of Pseudomonas aeruginosa exotoxin A: glutamic acid 553 is photolabeled by NAD and shows functional homology with glutamic acid 148 of diphtheria toxin. J Biol Chem 1987; 262: 8707–11

    PubMed  CAS  Google Scholar 

  22. Uchida T, Pappenheimer Jr AM, Harper AA. Reconstitution of diphtheria toxin from two nontoxic cross-reacting mutant proteins. Science 1972; 175: 901–3

    Article  PubMed  CAS  Google Scholar 

  23. Uchida T, Pappenheimer Jr AM, Greany R. Diphtheria toxin and related proteins I: isolation and properties of mutant proteins serologically related to diphtheria toxin. J Biol Chem 1973; 248: 3838–44

    PubMed  CAS  Google Scholar 

  24. Iglewski BH, Liu PV, Kabat D. Mechanism of action of Pseudomonas aeruginosa exotoxin A: adenosine diphosphate-ribosylation of mammalian elongation factor 2 in vitro and in vivo. Infect Immun 1977; 15: 138–44

    PubMed  CAS  Google Scholar 

  25. Van Ness BG, Howard JB, Bodley JW. ADP-ribosylation of elongation factor 2 by diphtheria toxin: isolation and properties of the novel ribosyl-amino acid and its hydrolysis products. J Biol Chem 1980; 255: 10717–20

    PubMed  Google Scholar 

  26. Phan LD, Perentesis JP, Bodley JW. Saccharomyces cerevisiae elongation factor 2: mutagenesis of the histidine precursor of diphthamide yields a functional protein that is resistant to diphtheria toxin. J Biol Chem 1993; 268: 8665–8

    PubMed  CAS  Google Scholar 

  27. Hwang J, FitzGerald DJ, Adhya S, et al. Functional domains of Pseudomonas exotoxin identified by deletion analysis of the gene expressed in E. coli. Cell 1987; 48: 129–36

    Article  PubMed  CAS  Google Scholar 

  28. Allured VS, Collier RJ, Carroll SF, et al. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0 Angstrom resolution. Proc Natl Acad Sci USA 1986; 83: 1320–4

    Article  PubMed  CAS  Google Scholar 

  29. Hessler JL, Kreitman RJ. An early step in Pseudomonas exotoxin action is removal of the terminal lysine residue, which allows binding to the KDEL receptor. Biochemistry 1997; 36: 14577–82

    Article  PubMed  CAS  Google Scholar 

  30. Kounnas MZ, Morris RE, Thompson MR, et al. The α2-macroglobulin receptor/low density lipoprotein receptor-related protein binds and internalizes Pseudomonas exotoxin A. J Biol Chem 1992; 267: 12420–3

    PubMed  CAS  Google Scholar 

  31. Chiron MF, Fryling CM, FitzGerald DJ. Cleavage of Pseudomonas exotoxin and diphtheria toxin by a furin-like enzyme prepared from beef liver. J Biol Chem 1994; 269: 18167–76

    PubMed  CAS  Google Scholar 

  32. Fryling C, Ogata M, FitzGerald D. Characterization of a cellular protease that cleaves Pseudomonas exotoxin. Infect Immun 1992; 60: 497–502

    PubMed  CAS  Google Scholar 

  33. Ogata M, Fryling CM, Pastan I, et al. Cell-mediated cleavage of Pseudomonas exotoxin between Arg279 and Gly280 generates the enzymatically active fragment which translocates to the cytosol. J Biol Chem 1992; 267: 25396–401

    PubMed  CAS  Google Scholar 

  34. McKee ML, FitzGerald DJ. Reduction of furin-nicked Pseudomonas exotoxin A: an unfolding story. Biochemistry 1999; 38: 16507–13

    Article  PubMed  CAS  Google Scholar 

  35. Chaudhary VK, Jinno Y, FitzGerald D, et al. Pseudomonas exotoxin contains a specific sequence at the carboxyl terminus that is required for cytotoxicity. Proc Natl Acad Sci USA 1990; 87: 308–12

    Article  PubMed  CAS  Google Scholar 

  36. Kreitman RJ, Pastan I. Importance of the glutamate residue of KDEL in increasing the cytotoxicity of Pseudomonas exotoxin derivatives and for increased binding to the KDEL receptor. Biochem J 1995; 307: 29–37

    PubMed  CAS  Google Scholar 

  37. Smith DC, Spooner RA, Watson PD, et al. Internalized Pseudomonas exotoxin A can exploit multiple pathways to reach the endoplasmic reticulum. Traffic 2006; 7: 379–93

    Article  PubMed  CAS  Google Scholar 

  38. Theuer C, Kasturi S, Pastan I. Domain II of Pseudomonas exotoxin A arrests the transfer of translocating nascent chains into mammalian microsomes. Biochemistry 1994; 33: 5894–900

    Article  PubMed  CAS  Google Scholar 

  39. Theuer CP, Buchner J, FitzGerald D, et al. The N-terminal region of the 37-kDa translocated fragment of Pseudomonas exotoxin A aborts translocation by promoting its own export after microsomal membrane insertion. Proc Natl Acad Sci USA 1993; 90: 7774–8

    Article  PubMed  CAS  Google Scholar 

  40. Li M, Dyda F, Benhar I, et al. The crystal structure of Pseudomonas aeruginosa exotoxin domain III with nicotinamide and AMP: conformational differences with the intact exotoxin. Proc Natl Acad Sci USA 1995; 92: 9308–12

    Article  PubMed  CAS  Google Scholar 

  41. Li M, Dyda F, Benhar I, et al. Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation. Proc Natl Acad Sci USA 1996; 93: 6902–6

    Article  PubMed  CAS  Google Scholar 

  42. Han XY, Galloway DR. Active site mutations of Pseudomonas aeruginosa exotoxin A: analysis of the His(440) residue. J Biol Chem 1995; 270: 679–84

    Article  PubMed  CAS  Google Scholar 

  43. Keppler-Hafkemeyer A, Kreitman RJ, Pastan I. Apoptosis induced by immunotoxins used in the treatment of hematologic malignancies. Int J Cancer 2000; 87: 86–94

    Article  PubMed  CAS  Google Scholar 

  44. Brinkmann U, Brinkmann E, Gallo M, et al. Cloning and characterization of a cellular apoptosis susceptibility gene, the human homologue to the yeast chromosome segregation gene CSE1. Proc Natl Acad Sci USA 1995; 92: 10427–31

    Article  PubMed  CAS  Google Scholar 

  45. Rolf JM, Gaudin HM, Eidels L. Localization of the diphtheria toxin receptor-binding domain to the carboxyl-terminal Mr ∼6000 region of the toxin. J Biol Chem 1990; 265: 7331–7

    PubMed  CAS  Google Scholar 

  46. Choe S, Bennett MJ, Fujii G, et al. The crystal structure of diphtheria toxin. Science 1992; 357: 216–22

    CAS  Google Scholar 

  47. Bell CE, Eisenberg D. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. Biochemistry 1996; 35: 1137–49

    Article  PubMed  CAS  Google Scholar 

  48. Bennett MJ, Eisenberg D. Refined structure of monomeric diphtheria toxin at 2.3 A resolution. Protein Sci 1994; 3: 1464–75

    Article  PubMed  CAS  Google Scholar 

  49. Williams DP, Wen Z, Watson RS, et al. Cellular processing of the interleukin-2 fusion toxin DAB!!!486!!-IL-2 and efficient delivery of diphtheria fragment A to the cytosol of target cells requires Arg194. J Biol Chem 1990; 265: 20673–7

    PubMed  CAS  Google Scholar 

  50. Iwamoto R, Higashiyama S, Mitamura T, et al. Heparin-binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which up-regulates functional receptors and diphtheria toxin sensitivity. EMBO J 1994; 13: 2322–30

    PubMed  CAS  Google Scholar 

  51. D’Silva PR, Lala AK. Unfolding of diphtheria toxin: identification of hydrophobic sites exposed on lowering of pH by photolabeling. J Biol Chem 1998; 273: 16216–22

    Article  PubMed  Google Scholar 

  52. vanderSpek J, Cassidy D, Genbauffe F, et al. An intact transmembrane helix 9 is essential for the efficient delivery of the diphtheria toxin catalytic domain to the cytosol of target cells. J Biol Chem 1994; 269: 21455–9

    PubMed  CAS  Google Scholar 

  53. Zhan H, Choe S, Huynh PD, et al. Dynamic transitions of the transmembrane domain of diphtheria toxin: disulfide trapping and fluorescence proximity studies. Biochemistry 1994; 33: 11254–63

    Article  PubMed  CAS  Google Scholar 

  54. Cabiaux V, Mindell J, Collier RJ. Membrane translocation and channel-forming activities of diphtheria toxin are blocked by replacing isoleucine 364 with lysine. Infect Immun 1993; 61: 2200–2

    PubMed  CAS  Google Scholar 

  55. Kaul P, Silverman J, Shen WH, et al. Roles of Glu 349 and Asp 352 in membrane insertion and translocation by diphtheria toxin. Protein Sci 1996; 5: 687–92

    Article  PubMed  CAS  Google Scholar 

  56. Lemichez E, Bomsel M, Devilliers G, et al. Membrane translocation of diphtheria toxin fragment A exploits early to late endosome trafficking machinery. Mol Microbiol 1997; 23: 445–57

    Article  PubMed  CAS  Google Scholar 

  57. Wilson BA, Blanke SR, Reich KA, et al. Active-site mutations of diphtheria toxin: tryptophan 50 is a major determinant of NAD affinity. J Biol Chem 1994; 269: 23296–301

    PubMed  CAS  Google Scholar 

  58. Siegall CB, Chaudhary VK, FitzGerald DJ, et al. Functional analysis of domains II, Ib, and III of Pseudomonas exotoxin. J Biol Chem 1989; 264: 14256–61

    PubMed  CAS  Google Scholar 

  59. Kreitman RJ, Batra JK, Seetharam S, et al. Single-chain immunotoxin fusions between anti-Tac and Pseudomonas exotoxin: relative importance of the two toxin disulfide bonds. Bioconjug Chem 1993; 4: 112–20

    Article  PubMed  CAS  Google Scholar 

  60. Williams DP, Snider CE, Strom TB, et al. Structure/function analysis of interleukin-2-toxin (DAB486-IL-2): fragment B sequences required for the delivery of fragment A to the cytosol of target cells. J Biol Chem 1990; 265: 11885–9

    PubMed  CAS  Google Scholar 

  61. Chaudhary VK, FitzGerald DJ, Pastan I. A proper amino terminus of diphtheria toxin is important for cytotoxicity. Biochem Biophys Res Commun 1991; 180: 545–51

    Article  PubMed  CAS  Google Scholar 

  62. Kreitman RJ, Pastan I. Purification and characterization of IL6-PE4E, a recombinant fusion of interleukin 6 with Pseudomonas exotoxin. Bioconjug Chem 1993; 4: 581–5

    Article  PubMed  CAS  Google Scholar 

  63. Kreitman RJ, Pastan I. Making fusion toxins to target leukemia and lymphoma. In: Francis GE, Delgado C, editors. Vol. 25: drug targeting. Totowa (NJ): Humana Press, 2000: 215–26

    Chapter  Google Scholar 

  64. Buchner J, Pastan I, Brinkmann U. A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal Biochem 1992; 205: 263–70

    Article  PubMed  CAS  Google Scholar 

  65. Shao Y, Warman BE, Perentesis JP. Recombinant fusion toxins directed against the human granulocyte-macrophage colony stimulating factor (GM-CSF) receptor. Methods Mol Biol 2001; 166: 31–53

    PubMed  CAS  Google Scholar 

  66. McDonald JR, Ong M, Shen C, et al. Large-scale purification and characterization of recombinant fibroblast growth factor-saporin mitotoxin. Protein Expr Purif 1996; 8: 97–108

    Article  PubMed  CAS  Google Scholar 

  67. LeMaistre CF, Saleh MN, Kuzel TM, et al. Phase I trial of a ligand fusion-protein (DAB389IL-2) in lymphomas expressing the receptor for interleukin-2. Blood 1998; 91: 399–405

    PubMed  CAS  Google Scholar 

  68. Choo ABH, Dunn RD, Broady KW, et al. Soluble expression of a functional recombinant cytolytic immunotoxin in insect cells. Protein Expr Purif 2002; 24: 338–47

    Article  PubMed  CAS  Google Scholar 

  69. Woo JH, Liu YY, Stavrou S, et al. Increasing secretion of a bivalent anti-T-cell immunotoxin by Pichia pastoris. App Environ Microbiol 2004; 70: 3370–6

    Article  CAS  Google Scholar 

  70. Taniguchi T, Minami Y. The IL2/IL-2 receptor system: a current overview. Cell 1993; 73: 5–8

    Article  PubMed  CAS  Google Scholar 

  71. Kodaka T, Uchiyama T, Ishikawa T, et al. Interleukin-2 receptor β-chain (p70-75) expressed on leukemic cells from adult T cell leukemia patients. Jpn J Cancer Res 1990; 81: 902–8

    Article  PubMed  CAS  Google Scholar 

  72. Yagura H, Tamaki T, Furitsu T, et al. Demonstration of high-affinity interleukin-2 receptors on B-chronic lymphocytic leukemia cells: functional and structural characterization. Blut 1990; 60: 181–6

    Article  PubMed  CAS  Google Scholar 

  73. Kreitman RJ, Pastan I. Recombinant single-chain immunotoxins against T and B cell leukemias. Leuk Lymphoma 1994; 13: 1–10

    PubMed  CAS  Google Scholar 

  74. Robb RJ, Greene WC, Rusk CM. Low and high affinity cellular receptors for interleukin 2. J Exp Med 1984; 160: 1126–46

    Article  PubMed  CAS  Google Scholar 

  75. Gazzola M, Collins NH, Tafuri A, et al. Recombinant interleukin 3 induces interleukin 2 receptor expression on early myeloid cells in normal human bone marrow. Exp Hematol 1992; 20: 201–8

    PubMed  CAS  Google Scholar 

  76. Strauchen JA, Breakstone BA. IL-2 receptor expression in human lymphoid lesions. Am J Pathol 1987; 126: 506–12

    PubMed  CAS  Google Scholar 

  77. Comes A, Rosso O, Orengo AM, et al. CD25+ regulatory T cell depletion augments immunotherapy of micrometastases by an IL-21-secreting cellular vaccine. J Immunol 2006; 176: 1750–8

    PubMed  CAS  Google Scholar 

  78. Bacha P, Williams DP, Waters C, et al. Interleukin 2 receptor-targeted cytotoxicity: interleukin 2 receptor-mediated action of a diphtheria toxin-related interleukin 2 fusion protein. J Exp Med 1988; 167: 612–22

    Article  PubMed  CAS  Google Scholar 

  79. Bacha P, Forte S, Kassam S, et al. Pharmacokinetics of the recombinant fusion protein DAB486IL-2 in animal models. Cancer Chemother Pharmacol 1990; 26: 409–14

    Article  PubMed  CAS  Google Scholar 

  80. LeMaistre CF, Rosenblum MG, Reuben JM, et al. Therapeutic effects of genetically engineered toxin (DAB486IL-2) in patient with chronic lymphocytic leukaemia. Lancet 1991; 337: 1124–5

    Article  Google Scholar 

  81. LeMaistre CF, Meneghetti C, Rosenblum M, et al. Phase I trial of an interleukin-2 (IL-2) fusion toxin (DAB486IL-2) in hematologic malignancies expressing the IL-2 receptor. Blood 1992; 79: 2547–54

    Google Scholar 

  82. LeMaistre CF, Craig FE, Meneghetti C, et al. Phase I trial of a 90-minute infusion of the fusion toxin DAB486IL-2 in hematological cancers. Cancer Res 1993; 53: 3930–4

    Google Scholar 

  83. Olsen E, Duvic M, Frankel A, et al. Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol 2001; 19: 376–88

    PubMed  CAS  Google Scholar 

  84. Duvic M, Kuzel TM, Olsen E, et al. Quality-of-life improvements in cutaneous T-cell lymphoma patients treated with denileukin diftitox (ONTAK). Clin Lymphoma 2002; 2: 222–8

    Article  PubMed  CAS  Google Scholar 

  85. Railan D, Fivenson DP, Wittenberg G. Capillary leak syndrome in a patient treated with interleukin 2 fusion toxin for cutaneous T-cell lymphoma. J Am Acad Dermatol 2000; 43: 323–4

    Article  PubMed  CAS  Google Scholar 

  86. Foss FM, Bacha P, Osann KE, et al. Biological correlates of acute hypersensitivity events with DAB(389)IL-2 (denileukin diftitox, ONTAK) in cutaneous T-cell lymphoma: decreased frequency and severity with steroid premedication. Clin Lymphoma 2001; 1: 298–302

    Article  PubMed  CAS  Google Scholar 

  87. Talpur R, Apisarnthanarax N, Ward S, et al. Treatment of refractory peripheral T-cell lymphoma with denileukin diftitox (ONTAK). Leuk Lymphoma 2002; 43: 121–6

    Article  PubMed  Google Scholar 

  88. McGinnis KS, Shapiro M, Junkins-Hopkins JM, et al. Denileukin diftitox for the treatment of panniculitic lymphoma. Arch Dermatol 2002; 138: 740–2

    Article  PubMed  Google Scholar 

  89. Frankel AE, Fleming DR, Hall PD, et al. A phase II study of DT fusion protein denileukin diftitox in patients with fludarabine-refractory chronic lymphocytic leukemia. Clin Cancer Res 2003; 9: 3555–61

    PubMed  CAS  Google Scholar 

  90. Dang NH, Hagemeister FB, Pro B, et al. Phase II study of denileukin diftitox for relapsed/refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol 2004; 22: 4095–102

    Article  PubMed  CAS  Google Scholar 

  91. Martin A, Gutierrez E, Muglia J, et al. A multicenter dose-escalation trial with denileukin diftitox (ONTAK, DAB(389)IL-2) in patients with severe psoriasis. J Am Acad Dermatol 2001; 45: 871–81

    Article  PubMed  CAS  Google Scholar 

  92. Frankel AE, Surendranathan A, Black JH, et al. Phase II clinical studies of denileukin diftitox diphtheria toxin fusion protein in patients with previously treated chronic lymphocytic leukemia. Cancer 2006; 106: 2158–64

    Article  PubMed  CAS  Google Scholar 

  93. Kuzel TM, Li S, Eklund J, et al. Phase II study of denileukin diftitox for previously treated indolent non-Hodgkin lymphoma: final results of E1497. Leuk Lymphoma 2007; 48: 2397–402

    Article  PubMed  CAS  Google Scholar 

  94. Dang NH, Fayad L, McLaughlin P, et al. Phase II trial of the combination of denileukin diftitox and rituximab for relapsed/refractory B-cell non-Hodgkin lymphoma. Br J Haematol 2007; 138: 502–5

    Article  PubMed  CAS  Google Scholar 

  95. Chin KM, Foss FM. Biologic correlates of response and survival in patients with cutaneous T-cell lymphoma treated with denileukin diftitox. Clin Lymphoma Myeloma 2006; 7: 199–204

    Article  PubMed  CAS  Google Scholar 

  96. Talpur R, Jones DM, Alencar AJ, et al. CD25 expression is correlated with histological grade and response to denileukin diftitox in cutaneous T-cell lymphoma. J Invest Dermatol 2006; 126: 575–83

    Article  PubMed  CAS  Google Scholar 

  97. Foss F, Demierre MF, DiVenuti G. A phase-1 trial of bexarotene and denileukin diftitox in patients with relapsed or refractory cutaneous T-cell lymphoma. Blood 2005; 106: 454–7

    Article  PubMed  CAS  Google Scholar 

  98. Uchiyama TA, Broder S, Waldmann TA. A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells: (I) production of anti-Tac monoclonal antibody and distribution of Tac (+) cells. J Immunol 1981; 126: 1393–7

    PubMed  CAS  Google Scholar 

  99. Weissman AM, Harford JB, Svetlik PB, et al. Only high-affinity receptors for interleukin 2 mediate internalization of ligand. Proc Natl Acad Sci USA 1986; 83: 1463–6

    Article  PubMed  CAS  Google Scholar 

  100. Chaudhary VK, Gallo MG, FitzGerald DJ, et al. A recombinant single-chain immunotoxin composed of anti-Tac variable regions and a truncated diphtheria toxin. Proc Natl Acad Sci USA 1990; 87: 9491–4

    Article  PubMed  CAS  Google Scholar 

  101. Kreitman RJ, Pastan I. Accumulation of a recombinant immunotoxin in a tumor in vivo: fewer than 1000 molecules per cell are sufficient for complete responses. Cancer Res 1998; 58: 968–75

    PubMed  CAS  Google Scholar 

  102. Bird RE, Hardman KD, Jacobson JW, et al. Single-chain antigen-binding proteins. Science 1988; 242: 423–6

    Article  PubMed  CAS  Google Scholar 

  103. Huston JS, Levinson D, Mudgett-Hunter M, et al. Protein engineering of antibody binding sites: recovery of specific activity in an antidigoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA 1988; 85: 5879–83

    Article  PubMed  CAS  Google Scholar 

  104. Chaudhary VK, Queen C, Junghans RP, et al. A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature 1989; 339: 394–7

    Article  PubMed  CAS  Google Scholar 

  105. Kobayashi H, Kao CK, Kreitman RJ, et al. Pharmacokinetics of In-111- and I-125-labeled antiTac single-chain Fv recombinant immunotoxin. J Nucl Med 2000; 41: 755–62

    PubMed  CAS  Google Scholar 

  106. Kreitman RJ, Bailon P, Chaudhary VK, et al. Recombinant immunotoxins containing anti-Tac(Fv) and derivatives of Pseudomonas exotoxin produce complete regression in mice of an interleukin-2 receptor-expressing human carcinoma. Blood 1994; 83: 426–34

    PubMed  CAS  Google Scholar 

  107. Kreitman RJ, Pastan I. Targeting Pseudomonas exotoxin to hematologic malignancies. Semin Cancer Biol 1995; 6: 297–306

    Article  PubMed  CAS  Google Scholar 

  108. Robbins DH, Margulies I, Stetler-Stevenson M, et al. Hairy cell leukemia, a B-cell neoplasm which is particularly sensitive to the cytotoxic effect of anti-Tac(Fv)-PE38 (LMB-2). Clin Cancer Res 2000; 6: 693–700

    PubMed  CAS  Google Scholar 

  109. Decker T, Hipp S, Kreitman RJ, et al. Sensitization of B-CLL cells to recombinant immunotoxin by immunostimulatory phosphorothioate oligonucleotides. Blood 2002: 1320–6

  110. Ohno N, Kreitman RJ, Saito T, et al. Augmentation of the activity of an immunotoxin, anti-Tac(Fv)-PE40KDEL, in T cell lines infected with human T cell leukemia virus type-I. Leuk Lymphoma 2002; 43: 885–8

    Article  PubMed  CAS  Google Scholar 

  111. Kreitman RJ, Wilson WH, Robbins D, et al. Responses in refractory hairy cell leukemia to a recombinant immunotoxin. Blood 1999; 94: 3340–8

    PubMed  CAS  Google Scholar 

  112. Kreitman RJ, Wilson WH, White JD, et al. Phase I trial of recombinant immunotoxin Anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol 2000; 18: 1614–36

    Google Scholar 

  113. Onda M, Kreitman RJ, Vasmatzis G, et al. Reduction of the nonspecific toxicity of anti-Tac(Fv)-PE38 by mutations in the framework regions of the Fv which lower the isoelectric point. J Immunol 1999; 163: 6072–7

    PubMed  CAS  Google Scholar 

  114. Onda M, Willingham M, Wang Q, et al. Inhibition of TNF alpha produced by Kupffer cells protects against the non-specific liver toxicity of immunotoxin anti-Tac(Fv)-PE38, LMB-2. J Immunol 2000; 165: 7150–6

    PubMed  CAS  Google Scholar 

  115. Ghetie M-A, May RD, Till M, et al. Evaluation of ricin A chain-containing immunotoxins directed against CD19 and CD22 antigens on normal and malignant human B-cells as potential reagents for in vivo therapy. Cancer Res 1988; 48: 2610–7

    PubMed  CAS  Google Scholar 

  116. Ghetie M-A, Richardson J, Tucker T, et al. Antitumor activity of Fab′ and IgG-anti-CD22 immunotoxins in disseminated human B lymphoma grown in mice with severe combined immunodeficiency disease: effect on tumor cells in extranodal sites. Cancer Res 1991; 51: 5876–80

    PubMed  CAS  Google Scholar 

  117. Amlot PL, Stone MJ, Cunningham D, et al. A phase I study of an anti-CD22-deglycosylated ricin A chain immunotoxin in the treatment of B-cell lymphomas resistant to conventional therapy. Blood 1993; 82: 2624–33

    PubMed  CAS  Google Scholar 

  118. Sausville EA, Headlee D, Stetler-Stevenson M, et al. Continuous infusion of the anti-CD22 immunotoxin IgG-RFB4-SMPT-dgA in patients with B-cell lymphoma: a phase I study. Blood 1995; 85: 3457–65

    PubMed  CAS  Google Scholar 

  119. Senderowicz AM, Vitetta E, Headlee D, et al. Complete sustained response of a refractory, post-transplantation, large B-cell lymphoma to an anti-CD22 immunotoxin. Ann Intern Med 1997; 126: 882–5

    PubMed  CAS  Google Scholar 

  120. Kreitman RJ, Hansen HJ, Jones AL, et al. Pseudomonas exotoxin-based immunotoxins containing the antibody LL2 or LL2-Fab′ induce regression of subcutaneous human B-cell lymphoma in mice. Cancer Res 1993; 53: 819–25

    PubMed  CAS  Google Scholar 

  121. Theuer CP, Kreitman RJ, FitzGerald DJ, et al. Immunotoxins made with a recombinant form of Pseudomonas exotoxin A that do not require proteolysis for activity. Cancer Res 1993; 53: 340–7

    PubMed  CAS  Google Scholar 

  122. Mansfield E, Chiron MF, Amlot P, et al. Recombinant RFB4 single-chain immunotoxin that is cytotoxic towards CD22-positive cells. Biochem Soc Trans 1997; 25: 709–14

    PubMed  CAS  Google Scholar 

  123. Mansfield E, Amlot P, Pastan I, et al. Recombinant RFB4 immunotoxins exhibit potent cytotoxic activity for CD22-bearing cells and tumors. Blood 1997; 90: 2020–6

    PubMed  CAS  Google Scholar 

  124. Kreitman RJ, Wang QC, FitzGerald DJP, et al. Complete regression of human B-cell lymphoma xenografts in mice treated with recombinant anti-CD22 immunotoxin RFB4(dsFv)-PE38 at doses tolerated by Cynomolgus monkeys. Int J Cancer 1999; 81: 148–55

    Article  PubMed  CAS  Google Scholar 

  125. Kreitman RJ, Margulies I, Stetler-Stevenson M, et al. Cytotoxic activity of disulfide-stabilized recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) towards fresh malignant cells from patients with B-cell leukemias. Clin Cancer Res 2000; 6: 1476–87

    PubMed  CAS  Google Scholar 

  126. Salvatore G, Beers R, Margulies I, et al. Improved cytotoxic activity towards cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display. Clin Cancer Res 2002; 8: 995–1002

    PubMed  CAS  Google Scholar 

  127. Decker T, Oelsner M, Kreitman RJ, et al. Induction of caspase-dependent programmed cell death in B-cell chronic lymphocytic leukemia cells by anti-CD22 immunotoxins. Blood 2004; 103: 2718–26

    Article  PubMed  CAS  Google Scholar 

  128. Kreitman RJ, Wilson WH, Bergeron K, et al. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med 2001; 345: 241–7

    Article  PubMed  CAS  Google Scholar 

  129. Kreitman RJ, Squires DR, Stetler-Stevenson M, et al. Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. J Clin Oncol 2005; 23: 6719–29

    Article  PubMed  CAS  Google Scholar 

  130. Juliusson G, Liliemark J. Rapid recovery from cytopenia in hairy cell leukemia after treatment with 2-chloro-2′-deoxyadenosine (CdA): relation to opportunistic infections. Blood 1992; 79: 888–94

    PubMed  CAS  Google Scholar 

  131. Hoffman MA, Janson D, Rose E, et al. Treatment of hairy-cell leukemia with cladribine: response, toxicity, and long-term follow-up. J Clin Oncol 1997; 15: 1138–42

    PubMed  CAS  Google Scholar 

  132. Blasinska-Morawiec M, Robak T, Krykowski E, et al. Hairy cell leukemia-variant treated with 2-chlorodeoxyadenosine: a report of three cases. Leuk Lymphoma 1997; 25: 381–5

    PubMed  CAS  Google Scholar 

  133. Matutes E, Wotherspoon A, Brito-Babapulle V, et al. The natural history and clinico-pathological features of the variant form of hairy cell leukemia. Leukemia 2001; 15: 184–6

    Article  PubMed  CAS  Google Scholar 

  134. Tallman MS, Hakimian D, Kopecky KJ, et al. Minimal residual disease in patients with hairy cell leukemia in complete remission treated with 2-chlorodeoxyadenosine or 2-deoxycoformycin and prediction of early relapse. Clin Cancer Res 1999; 5: 1665–70

    PubMed  CAS  Google Scholar 

  135. Alderson RF, Kreitman RJ, Chen T, et al. CAT-8015: a second-generation pseudomonas exotoxin A-based immunotherapy targeting CD22-expressing hematologic malignancies. Clin Cancer Res 2009; 15: 832–9

    Article  PubMed  CAS  Google Scholar 

  136. Kreitman RJ, Pastan I. Recombinant toxins containing human granulocyte-macrophage colony-stimulating factor and either Pseudomonas exotoxin or diphtheria toxin kill gastrointestinal cancer and leukemia cells. Blood 1997; 90: 252–9

    PubMed  CAS  Google Scholar 

  137. Frankel AE, Powell BL, Hall PD, et al. Phase I trial of a novel diphtheria toxin/granulocyte macrophage colony-stimulating factor fusion protein (DT388GMCSF) for refractory or relapsed acute myeloid leukemia. Clin Cancer Res 2002; 8: 1004–13

    PubMed  CAS  Google Scholar 

  138. Hall PD, Virella G, Willoughby T, et al. Antibody response to DT-GM, a novel fusion toxin consisting of a truncated diphtheria toxin (DT) linked to human granulocyte-macrophage colony stimulating factor (GM), during a phase I trial of patients with relapsed or refractory acute myeloid leukemia. Clin Immunol 2001; 100: 191–7

    Article  PubMed  CAS  Google Scholar 

  139. Alexander RL, Kucera GL, Klein B, et al. In vitro interleukin-3 binding to leukemia cells predicts cytotoxicity of a diphtheria toxin/IL-3 fusion protein. Bioconjug Chem 2000; 11: 564–8

    Article  PubMed  CAS  Google Scholar 

  140. Frankel A, McCubrey J, Miller MS, et al. Diphtheria toxin fused to human interleukin-3 is toxic to blasts from patients with acute phase chronic myeloid leukemia. Leukemia 2000; 14: 576-85

    Google Scholar 

  141. Alexander RL, Ramage J, Kucera GL, et al. High affinity interleukin-3 receptor expression on blasts from patients with acute myelogenous leukemia correlates with cytotoxicity of a diphtheria toxin/IL-3 fusion protein. Leuk Res 2001; 25: 875–81

    Article  PubMed  CAS  Google Scholar 

  142. Feuring-Buske M, Frankel AE, Alexander RL, et al. A diphtheria toxin-interleukin 3 fusion protein is cytotoxic to primitive acute myeloid leukemia progenitors but spares normal progenitors. Cancer Res 2002; 62: 1730–6

    PubMed  CAS  Google Scholar 

  143. Black JH, McCubrey JA, Willingham MC, et al. Diphtheria toxin-interleukin-3 fusion protein (DT(388)IL3) prolongs disease-free survival of leukemic immunocompromised mice. Leukemia 2003; 17: 155–9

    Article  PubMed  CAS  Google Scholar 

  144. Urieto JO, Liu T, Black JH, et al. Expression and purification of the recombinant diphtheria fusion toxin DT388IL3 for phase I clinical trials. Protein Expr Purif 2004; 33: 123–33

    Article  PubMed  CAS  Google Scholar 

  145. Frankel A, Liu JS, Rizzieri D, et al. Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk Lymphoma 2008; 49: 543–53

    Article  PubMed  CAS  Google Scholar 

  146. Reddy KR. Development and pharmacokinetics and pharmacodynamics of pegylated interferon alfa-2a (40 kD). Semin Liver Dis 2004; 24Suppl. 2: 33–8

    Article  PubMed  CAS  Google Scholar 

  147. Graham ML. Pegaspargase: a review of clinical studies. Adv Drug Deliv Rev 2003; 55: 1293–302

    Article  PubMed  CAS  Google Scholar 

  148. Onda M, Vincent JJ, Lee B, et al. Mutants of immunotoxin anti-Tac(dsFv)-PE38 with variable number of lysine residues as candidates for site-specific chemical modification: (1) properties of mutant molecules. Bioconjug Chem 2003; 14: 480–7

    Article  PubMed  CAS  Google Scholar 

  149. Tsutsumi Y, Onda M, Nagata S, et al. Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity. Proc Natl Acad Sci USA 2000; 97: 8548–53

    Article  PubMed  CAS  Google Scholar 

  150. Roscoe DM, Pai LH, Pastan I. Identification of epitopes on a mutant form of Pseudomonas exotoxin using serum from humans treated with Pseudomonas exotoxin containing immunotoxins. Eur J Immunol 1997; 27: 1459–68

    Article  PubMed  CAS  Google Scholar 

  151. Roscoe DM, Jung SH, Benhar I, et al. Primate antibody response to immunotoxin: serological and computer-aided analysis of epitopes on a truncated form of Pseudomonas exotoxin. Infect Immun 1994; 62: 5055–65

    PubMed  CAS  Google Scholar 

  152. Nagata S, Numata Y, Onda M, et al. Rapid grouping of monoclonal antibodies based on their topographical epitopes by a label-free competitive immunoassay. J Immunol Methods 2004; 292: 141–55

    Article  PubMed  CAS  Google Scholar 

  153. Hassan R, Williams-Gould J, Watson T, et al. Pretreatment with rituximab does not inhibit the human immune response against the immunogenic protein LMB-1. Clin Cancer Res 2004; 10: 16–8

    Article  PubMed  CAS  Google Scholar 

  154. Grossbard ML, Lambert JM, Goldmacher VS, et al. Anti-B4-blocked ricin: a phase I trial of 7-day continuous infusion in patients with B-cell neoplasms. J Clin Oncol 1993; 11: 726–37

    PubMed  CAS  Google Scholar 

  155. Grossbard ML, Fidias P, Kinsella J, et al. Anti-B4-blocked ricin: a phase II trial of 7 day continuous infusion in patients with multiple myeloma. Br J Haematol 1998; 102: 509–15

    Article  PubMed  CAS  Google Scholar 

  156. Zhang Y, Xiang L, Hassan R, et al. Immunotoxin and Taxol synergy results from a decrease in shed mesothelin levels in the extracellular space of tumors. Proc Natl Acad Sci USA 2007; 104: 17099–104

    Article  PubMed  CAS  Google Scholar 

  157. Williams JM, Lea N, Lord JM, et al. Comparison of ribosome-inactivating proteins in the induction of apoptosis. Toxicol Lett 1997; 91: 121–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Robert Kreitman is a co-inventor on the National Institutes of Health patent for BL22. Clinical development of BL22 (CAT-3888) and HA22 (CAT-8015) is in part supported by MedImmune, LLC. This work was supported by the intramural program of the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Kreitman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreitman, R.J. Recombinant Immunotoxins Containing Truncated Bacterial Toxins for the Treatment of Hematologic Malignancies. BioDrugs 23, 1–13 (2009). https://doi.org/10.2165/00063030-200923010-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200923010-00001

Keywords

Navigation