Skip to main content
Log in

Molecular Mechanisms of Migraine

Prospects for Pharmacogenomics

  • Genomics in Human Disease
  • Published:
American Journal of Pharmacogenomics

Abstract

Migraine is a common complex disorder that affects a large portion of the population and thus incurs a substantial economic burden on society. The disorder is characterized by recurrent headaches that are unilateral and usually accompanied by nausea, vomiting, photophobia, and phonophobia. The range of clinical characteristics is broad and there is evidence of comorbidity with other neurological diseases, complicating both the diagnosis and management of the disorder. Although the class of drugs known as the triptans (serotonin 5-HT1B/1D agonists) has been shown to be effective in treating a significant number of patients with migraine, treatment may in the future be further enhanced by identifying drugs that selectively target molecular mechanisms causing susceptibility to the disease.

Genetically, migraine is a complex familial disorder in which the severity and susceptibility of individuals is most likely governed by several genes that may be different among families. Identification of the genomic variants involved in genetic predisposition to migraine should facilitate the development of more effective diagnostic and therapeutic applications. Genetic profiling, combined with our knowledge of therapeutic response to drugs, should enable the development of specific, individually-tailored treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Headache Classification Committee of the International Headache Society. Classification and diagnostic criteria for headache disorders: cranial neuralgias and facial pain. Cephalgia 1988; 8Suppl. 7: 1–96

    Google Scholar 

  2. Goadsby PJ. The pharmacology of headache. Prog Neurobiol 2000; 62(5): 509–25

    Article  PubMed  CAS  Google Scholar 

  3. Jensen R. Central and peripheral mechanisms in migraine: a neurophysiological approach. Funct Neurol 2000; 15Suppl. 3: 63–7

    PubMed  Google Scholar 

  4. Montagna P. Molecular genetics of migraine headaches: a review. Cephalalgia 2000; 20(1): 3–14

    Article  PubMed  CAS  Google Scholar 

  5. Hargreaves RJ, Shepheard SL. Pathophysiology of migraine: new insights. Can J Neurol Sci 1999; 26Suppl 3 (10): S12–9

    PubMed  Google Scholar 

  6. Ferrari MD. Migraine. Lancet 1998; 351(9108): 1043–51

    Article  PubMed  CAS  Google Scholar 

  7. Mitsikostas DD, Sanchez del Rio M. Receptor systems mediating c-fos expression within trigeminal nucleus caudalis in animal models of migraine. Brain Res Brain Res Rev 2001; 35(1): 20–35

    Article  PubMed  CAS  Google Scholar 

  8. Limmroth V, Katsarava Z, Liedert B, et al. An in vivo rat model to study calcitonin gene related peptide release following activation of the trigeminal vascular system. Pain 2001; 92(1-2): 101–6

    Article  PubMed  CAS  Google Scholar 

  9. Goadsby PJ, Edvinsson L, Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 1988; 23(2): 193–6

    Article  PubMed  CAS  Google Scholar 

  10. Buzzi MG, Dimitriadou V, Theoharides TC, et al. 5-Hydroxytryptamine receptor agonists for the abortive treatment of vascular headaches block mast cell, endothelial and platelet activation within the rat dura mater after trigeminal stimulation. Brain Res 1992; 583(1-2): 137–49

    Article  PubMed  CAS  Google Scholar 

  11. Goadsby PJ. Neuroimaging in headache. Microsc Res Tech 2001; 53(3): 179–87

    Article  PubMed  CAS  Google Scholar 

  12. Bahra A, Matharu MS, Buchel C, et al. Brainstem activation specific to migraine headache. Lancet 2001; 357(9261): 1016–7

    Article  PubMed  CAS  Google Scholar 

  13. Tajti J, Uddman R, Edvinsson L. Neuropeptide localization in the ‘migraine generator’ region of the human brainstem. Cephalalgia 2001; 21(2): 96–101

    Article  PubMed  CAS  Google Scholar 

  14. Clayton JS, Gaskin PJ, Beattie DT. Attenuation of Fos-like immunoreactivity in the trigeminal nucleus caudalis following trigeminovascular activation in the anaesthetised guinea-pig. Brain Res 1997; 775(1-2): 74–80

    Article  PubMed  CAS  Google Scholar 

  15. Nozaki K, Boccalini P, Moskowitz MA. Expression of c-fos-like immunoreactivity in brainstem after meningeal irritation by blood in the subarachnoid space. Neuroscience 1992; 49(3): 669–80

    Article  PubMed  CAS  Google Scholar 

  16. Cumberbatch MJ, Williamson DJ, Mason GS, et al. Durai vasodilation causes a sensitization of rat caudal trigeminal neurones in vivo that is blocked by a 5-HT1B/1D agonist. Br J Pharmacol 1999; 126(6): 1478–86

    Article  PubMed  CAS  Google Scholar 

  17. Durham PL, Russo AF. Regulation of calcitonin gene-related peptide secretion by a serotonergic antimigraine drug. J Neurosci 1999; 19(9): 3423–9

    PubMed  CAS  Google Scholar 

  18. Hoskin KL, Bulmer DC, Goadsby PJ. Fos expression in the trigeminocervical complex of the cat after stimulation of the superior sagittal sinus is reduced by L-NAME. Neurosci Lett 1999; 266(3): 173–6

    Article  PubMed  CAS  Google Scholar 

  19. Cutrer FM, Moskowitz MA. Wolff Award 1996: the actions of valproate and neurosteroids in a model of trigeminal pain. Headache 1996; 36(10): 579–85

    Article  PubMed  CAS  Google Scholar 

  20. Hoskin KL, Kaube H, Goadsby PJ. Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine: A c-Fos and electrophysiological study. Brain 1996; 119 (Pt 1) (3): 249–56

    Article  PubMed  Google Scholar 

  21. Moskowitz MA. Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology 1993; 43 (6 Suppl. 3): S16–20

    PubMed  CAS  Google Scholar 

  22. Buzzi MG, Moskowitz MA. Evidence for 5-HT1B/1D receptors mediating the antimigraine effect of sumatriptan and dihydroergotamine. Cephalalgia 1991; 11(4): 165–8

    Article  PubMed  CAS  Google Scholar 

  23. Goadsby PJ, Hoskin KL. Differential effects of low dose CP122,288 and eletriptan on fos expression due to stimulation of the superior sagittal sinus in cat. Pain 1999; 82(1): 15–22

    Article  PubMed  CAS  Google Scholar 

  24. Mitsikostas DD, Sanchez del Rio M, Moskowitz MA, et al. Both 5-HT1B and 5-HT1F receptors modulate c-fos expression within rat trigeminal nucleus caudalis. Eur J Pharmacol 1999; 369(3): 271–7

    Article  PubMed  CAS  Google Scholar 

  25. Hoskin KL, Goadsby PJ. Comparison of more and less lipophilic serotonin (5HT1B/1D) agonists in a model of trigeminovascular nociception in cat. Exp Neurol 1998; 150(1): 45–51

    Article  PubMed  CAS  Google Scholar 

  26. Mitsikostas DD, Sanchez del Rio M, Waeber C, et al. The NMDA receptor antagonist MK-801 reduces capsaicin-induced c-fos expression within rat trigeminal nucleus caudalis. Pain 1998; 76(1-2): 239–48

    Article  PubMed  CAS  Google Scholar 

  27. Polley JS, Gaskin PJ, Perren MJ, et al. The activity of GR205171, a potent non-peptide tachykinin NK1 receptor antagonist, in the trigeminovascular system. Regul Pept 1997; 68(1): 23–9

    Article  PubMed  CAS  Google Scholar 

  28. Siniatchkin M, Kirsch E, Kropp P, et al. Slow cortical potentials in migraine families. Cephalalgia 2000; 20(10): 881–92

    Article  PubMed  CAS  Google Scholar 

  29. Kropp P, Kirbach U, Detlefsen JO, et al. Slow cortical potentials in migraine: a comparison of adults and children. Cephalalgia 1999; 19Suppl. 25: 60–4

    PubMed  Google Scholar 

  30. Kropp P, Gerber WD. Contingent negative variation during migraine attack and interval: evidence for normalization of slow cortical potentials during the attack. Cephalalgia 1995; 15(2): 123–8

    Article  PubMed  CAS  Google Scholar 

  31. Nagel-Leiby S, Welch KM, D’Andrea G, et al. Event-related slow potentials and associated catecholamine function in migraine. Cephalalgia 1990; 10(6): 317–29

    Article  PubMed  CAS  Google Scholar 

  32. Siniatchkin M, Gerber WD, Vein A. Clinical efficacy and central mechanisms of cyclandelate in migraine: a double-blind placebo-controlled study. Funct Neurol 1998; 13(1): 47–56

    PubMed  CAS  Google Scholar 

  33. Aurora SK, Cao Y, Bowyer SM, et al. The occipital cortex is hyperexcitable in migraine: experimental evidence. Headache 1999; 39(7): 469–76

    Article  PubMed  CAS  Google Scholar 

  34. Grosser K, Oelkers R, Hummel T, et al. Olfactory and trigeminal event-related potentials in migraine. Cephalalgia 2000; 20(7): 621–31

    PubMed  CAS  Google Scholar 

  35. Hansenne M, Pitchot W, Pinto E, et al. Serotonergic-1a activity and contingent negative variation. Biol Psychol 2000; 52(3): 259–65

    Article  PubMed  CAS  Google Scholar 

  36. Sandor PS, Afra J, Proietti Cecchini AP, et al. From neurophysiology to genetics: cortical information processing in migraine underlies familial influences: a novel approach. Funct Neurol 2000; 15Suppl. 3: 68–72

    PubMed  Google Scholar 

  37. Sandor PS, Afra J, Proietti-Cecchini A, et al. Familial influences on cortical evoked potentials in migraine. Neuroreport 1999; 10(6): 1235–8

    Article  PubMed  CAS  Google Scholar 

  38. van Beijsterveldt CE, Boomsma DI. Genetics of the human electroencephalogram (EEG) and event-related brain potentials (ERPs): a review. Hum Genet 1994; 94(4): 319–30

    Article  PubMed  Google Scholar 

  39. Lauritzen M. Pathophysiology of the migraine aura: the spreading depression theory. Brain 1994; 117 (Pt 1): 199–210

    Article  PubMed  Google Scholar 

  40. Hadjikhani N, Sanchez Del Rio M, Wu O, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA 2001; 98(8): 4687–92

    Article  PubMed  CAS  Google Scholar 

  41. Goadsby PJ. Current concepts of the pathophysiology of migraine. Neurol Clin 1997; 15(1): 27–42

    Article  PubMed  CAS  Google Scholar 

  42. Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann Neurol 1981; 9(4): 344–52

    Article  PubMed  CAS  Google Scholar 

  43. Gold L, Back T, Arnold G, et al. Cortical spreading depression-associated hyperemia in rats: involvement of serotonin. Brain Res 1998; 783(2): 188–93

    Article  PubMed  CAS  Google Scholar 

  44. Wiedemann M, de Lima VM, Hanke W. Effects of antimigraine drugs on retinal spreading depression. Naunyn Schmiedebergs Arch Pharmacol 1996; 353(5): 552–6

    Article  PubMed  CAS  Google Scholar 

  45. Shen PJ, Gundlach AL. Prolonged induction of neuronal NOS expression and activity following cortical spreading depression (SD): implications for SD- and NO-mediated neuroprotection. Exp Neurol 1999; 160(2): 317–32

    Article  PubMed  CAS  Google Scholar 

  46. Colonna DM, Meng W, Deal DD, et al. Neuronal NO promotes cerebral cortical hyperemia during cortical spreading depression in rabbits. Am J Physiol 1997; 272 (3 Pt 2): H1315–22

    PubMed  CAS  Google Scholar 

  47. Meng W, Colonna DM, Tobin JR, et al. Nitric oxide and prostaglandins interact to mediate arteriolar dilation during cortical spreading depression. Am J Physiol 1995; 269 (1 Pt 2): H176–81

    PubMed  CAS  Google Scholar 

  48. Reuter U, Weber JR, Gold L, et al. Perivascular nerves contribute to cortical spreading depression-associated hyperemia in rats. Am J Physiol 1998; 274 (6 Pt 2): H1979–87

    PubMed  CAS  Google Scholar 

  49. Shimazawa M, Hara H, Watano T, et al. Effects of Ca2+ channel blockers on cortical hypoperfusion and expression of c-Fos-like immunoreactivity after cortical spreading depression in rats. Br J Pharmacol 1995; 115(8): 1359–68

    Article  PubMed  CAS  Google Scholar 

  50. Wahl M, Schilling L, Parsons AA, et al. Involvement of calcitonin gene-related peptide (CGRP) and nitric oxide (NO) in the pial artery dilatation elicited by cortical spreading depression. Brain Res 1994; 637(1-2): 204–10

    Article  PubMed  CAS  Google Scholar 

  51. Moskowitz MA, Nozaki K, Kraig RP. Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci 1993; 13(3): 1167–77

    PubMed  CAS  Google Scholar 

  52. Ingvardsen BK, Laursen H, Olsen UB, et al. Possible mechanism of c-fos expression in trigeminal nucleus caudalis following cortical spreading depression. Pain 1997; 72(3): 407–15

    Article  PubMed  CAS  Google Scholar 

  53. Martins-Ferreira H, Nedergaard M, Nicholson C. Perspectives on spreading depression. Brain Res Brain Res Rev 2000; 32(1): 215–34

    Article  PubMed  CAS  Google Scholar 

  54. Basarsky TA, Duffy SN, Andrew RD, et al. Imaging spreading depression and associated intracellular calcium waves in brain slices. J Neurosci 1998; 18(18): 7189–99

    PubMed  CAS  Google Scholar 

  55. Hara H, Shimazawa M, Hashimoto M, et al. Anti-migraine effects of lomerizine [in Japanese]. Nippon Yakurigaku Zasshi 1998; 112Suppl. 1: 138P–42P

    Article  PubMed  Google Scholar 

  56. Kunkler PE, Kraig RP. Calcium waves precede electrophysiological changes of spreading depression in hippocampal organ cultures. J Neurosci 1998; 18(9): 3416–25

    PubMed  CAS  Google Scholar 

  57. Ayata C, Shimizu-Sasamata M, Lo EH, et al. Impaired neurotransmitter release and elevated threshold for cortical spreading depression in mice with mutations in the alpha1A subunit of P/Q type calcium channels. Neuroscience 2000; 95(3): 639–45

    Article  PubMed  CAS  Google Scholar 

  58. Smith TA. Type A gamma-aminobutyric acid (GABAA) receptor subunits and benzodiazepine binding: significance to clinical syndromes and their treatment. Br J Biomed Sci 2001; 58(2): 111–21

    PubMed  CAS  Google Scholar 

  59. Lyons HR, Land MB, Gibbs TT, et al. Distinct signal transduction pathways for GABA-induced GABA (A) receptor down-regulation and uncoupling in neuronal culture: a role for voltage-gated calcium channels. J Neurochem 2001; 78(5): 1114–26

    Article  PubMed  CAS  Google Scholar 

  60. Palmer JE, Chronicle EP, Rolan P, et al. Cortical hyperexcitability is cortical under-inhibition: evidence from a novel functional test of migraine patients. Cephalalgia 2000; 20(6): 525–32

    Article  PubMed  CAS  Google Scholar 

  61. Deutsch SI, Mastropaolo J, Hitri A. GABA-active steroids: endogenous modulators of GABA-gated chloride ion conductance. Clin Neuropharmacol 1992; 15(5): 352–64

    Article  PubMed  CAS  Google Scholar 

  62. Limmroth V, Lee WS, Moskowitz MA. GABAA-receptor-mediated effects of progesterone, its ring-A-reduced metabolites and synthetic neuroactive steroids on neurogenic oedema in the rat meninges. Br J Pharmacol 1996; 117(1): 99–104

    Article  PubMed  CAS  Google Scholar 

  63. Frye CA, Duncan JE. Progesterone metabolites, effective at the GABAA receptor complex, attenuate pain sensitivity in rats. Brain Res 1994; 643(1-2): 194–203

    Article  PubMed  CAS  Google Scholar 

  64. Bonnert TP, McKernan RM, Farrar S, et al. Theta, a novel gamma-aminobutyric acid type A receptor subunit. Proc Natl Acad Sci U S A 1999; 96(17): 9891–6

    Article  PubMed  CAS  Google Scholar 

  65. Moragues N, Ciofi P, Lafon P, et al. cDNA cloning and expression of a gammaaminobutyric acid A receptor epsilon-subunit in rat brain. Eur J Neurosci 2000; 12(12): 4318–30

    PubMed  CAS  Google Scholar 

  66. Mu W, Burt DR. The mouse GABA (A) receptor alpha3 subunit gene and promoter. Brain Res Mol Brain Res 1999; 73(1-2): 172–80

    Article  PubMed  CAS  Google Scholar 

  67. Newman EA. Regional specialization of the membrane of retinal glial cells and its importance to K+ spatial buffering. Ann N Y Acad Sci 1986; 481: 273–86

    Article  PubMed  CAS  Google Scholar 

  68. Gorji A. Spreading depression: a review of the clinical relevance. Brain Res Brain Res Rev 2001 Dec; 38(1-2): 33–60

    Article  PubMed  CAS  Google Scholar 

  69. Lassen LH, Ashina M, Christiansen I, et al. Nitric oxide synthase inhibition: a new principle in the treatment of migraine attacks. Cephalalgia 1998; 18(1): 27–32

    Article  PubMed  CAS  Google Scholar 

  70. Iversen HK, Olesen J. Headache induced by a nitric oxide donor (nitroglycerin) responds to sumatriptan: a human model for development of migraine drugs. Cephalalgia 1996; 16(6): 412–8

    Article  PubMed  CAS  Google Scholar 

  71. Olesen J, Iversen HK, Thomsen LL. Nitric oxide supersensitivity: a possible molecular mechanism of migraine pain. Neuroreport 1993; 4(8): 1027–30

    Article  PubMed  CAS  Google Scholar 

  72. Christiansen I, Thomsen LL, Daugaard D, et al. Glyceryl trinitrate induces attacks of migraine without aura in sufferers of migraine with aura. Cephalalgia 1999; 19(7): 660–7

    Article  PubMed  CAS  Google Scholar 

  73. Sarchielli P, Alberti A, Codini M, et al. Nitric oxide metabolites, prostaglandins and trigeminal vasoactive peptides in internal jugular vein blood during spontaneous migraine attacks. Cephalalgia 2000; 20(10): 907–18

    Article  PubMed  CAS  Google Scholar 

  74. Lambert GA, Donaldson C, Boers PM, et al. Activation of trigeminovascular neurons by glyceryl trinitrate. Brain Res 2000; 887(1): 203–10

    Article  PubMed  CAS  Google Scholar 

  75. Stirparo G, Zicari A, Favilla M, et al. Linked activation of nitric oxide synthase and cyclooxygenase in peripheral monocytes of asymptomatic migraine without aura patients. Cephalalgia 2000; 20(2): 100–6

    Article  PubMed  CAS  Google Scholar 

  76. Shimomura T, Murakami F, Kotani K, et al. Platelet nitric oxide metabolites in migraine. Cephalalgia 1999; 19(4): 218–22

    Article  PubMed  CAS  Google Scholar 

  77. Gallai V, Floridi A, Mazzotta G, et al. L-arginine/nitric oxide pathway activation in platelets of migraine patients with and without aura. Acta Neurol Scand 1996; 94(2): 151–60

    Article  PubMed  CAS  Google Scholar 

  78. D’Andrea G, Cananzi AR, Perini F, et al. Decreased collagen-induced platelet aggregation and increased platelet arginine levels in migraine: a possible link with the NO pathway. Cephalalgia 1994; 14(5): 352–6

    Article  PubMed  Google Scholar 

  79. Tassorelli C, Joseph SA. Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res 1995; 682(1-2): 167–81

    Article  PubMed  CAS  Google Scholar 

  80. Griffiths LR, Nyholt DR, Curtain RP, et al. Migraine association and linkage studies of an endothelial nitric oxide synthase (NOS3) gene polymorphism. Neurology 1997; 49(2): 614–7

    Article  PubMed  CAS  Google Scholar 

  81. Lea RA, Curtain RP, Shepherd AG, et al. No evidence for involvement of the human inducible nitric oxide synthase (iNOS) gene in susceptibility to typical migraine. Am J Med Genet 2001; 105(1): 110–3

    Article  PubMed  CAS  Google Scholar 

  82. Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 1993; 33(1): 48–56

    Article  PubMed  CAS  Google Scholar 

  83. Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 1990; 28(2): 183–7

    Article  PubMed  CAS  Google Scholar 

  84. Pedersen-Bjergaard U, Nielsen LB, Jensen K, et al. Calcitonin gene-related peptide, neurokinin A and substance P: effects on nociception and neurogenic inflammation in human skin and temporal muscle. Peptides 1991; 12(2): 333–7

    Article  PubMed  CAS  Google Scholar 

  85. Knyihar-Csillik E, Tajti J, Chadaide Z, et al. Functional immunohistochemistry of neuropeptides and nitric oxide synthase in the nerve fibers of the supratentorial dura mater in an experimental migraine model. Microsc Res Tech 2001; 53(3): 193–211

    Article  PubMed  CAS  Google Scholar 

  86. Wang ZY, Waldeck K, Grundemar L, et al. Ocular inflammation induced by electroconvulsive treatment: contribution of nitric oxide and neuropeptides mobilized from C-fibres. Br J Pharmacol 1997; 120(8): 1491–6

    Article  PubMed  CAS  Google Scholar 

  87. Green PG, Basbaum AI, Levine JD. Sensory neuropeptide interactions in the production of plasma extravasation in the rat. Neuroscience 1992; 50(3): 745–9

    Article  PubMed  CAS  Google Scholar 

  88. Martin GR, Robertson AD, MacLennan SJ, et al. Receptor specificity and trigemino-vascular inhibitory actions of a novel 5-HT1B/1D receptor partial agonist, 311C90 (zolmitriptan). Br J Pharmacol 1997; 121(2): 157–64

    Article  PubMed  CAS  Google Scholar 

  89. Ellrich J, Schepelmann K, Pawlak M, et al. Acetylsalicylic acid inhibits meningeal nociception in rat. Pain 1999; 81(1-2): 7–14

    Article  PubMed  CAS  Google Scholar 

  90. Ai X, MacPhedran SE, Hall AK. Depolarization stimulates initial calcitonin gene-related peptide expression by embryonic sensory neurons in vitro. J Neurosci 1998; 18(22): 9294–302

    PubMed  CAS  Google Scholar 

  91. Maggi CA, Tramontana M, Cecconi R, et al. Neurochemical evidence for the involvement of N-type calcium channels in transmitter secretion from peripheral endings of sensory nerves in guinea pigs. Neurosci Lett 1990; 114(2): 203–6

    Article  PubMed  CAS  Google Scholar 

  92. Hong KW, Kim CD, Rhim BY, et al. Effect of omega-conotoxin GVIA and omega-agatoxin IVA on the capsaicin-sensitive calcitonin gene-related peptide release and autoregulatory vasodilation in rat pial arteries. J Cereb Blood Flow Metab 1999; 19(1): 53–60

    Article  PubMed  CAS  Google Scholar 

  93. Asakura K, Kanemasa T, Minagawa K, et al. Alpha-eudesmol, a P/Q-type Ca (2+) channel blocker, inhibits neurogenic vasodilation and extravasation following electrical stimulation of trigeminal ganglion. Brain Res 2000; 873(1): 94–101

    Article  PubMed  CAS  Google Scholar 

  94. Hans M, Luvisetto S, Williams ME, et al. Functional consequences of mutations in the human alpha1A calcium channel subunit linked to familial hemiplegic migraine. J Neurosci 1999; 19(5): 1610–9

    PubMed  CAS  Google Scholar 

  95. Williamson DJ, Hargreaves RJ. Neurogenic inflammation in the context of migraine. Microsc Res Tech 2001; 53(3): 167–78

    Article  PubMed  CAS  Google Scholar 

  96. van den Broek RW, Maassen VanDenBrink A, de Vries R, et al. Pharmacological analysis of contractile effects of eletriptan and sumatriptan on human isolated blood vessels. Eur J Pharmacol 2000; 407(1-2): 165–73

    Article  PubMed  Google Scholar 

  97. Roberts C, Allen L, Langmead CJ, et al. The effect of SB-269970, a 5-HT (7) receptor antagonist, on 5-HT release from serotonergic terminals and cell bodies. Br J Pharmacol 2001; 132(7): 1574–80

    Article  PubMed  CAS  Google Scholar 

  98. Schmuck K, Ullmer C, Kalkman HO, et al. Activation of meningeal 5-HT2B receptors: an early step in the generation of migraine headache? Eur J Neurosci 1996; 8(5): 959–67

    Article  PubMed  CAS  Google Scholar 

  99. Hopwood SE, Stamford JA. Multiple 5-HT (1) autoreceptor subtypes govern serotonin release in dorsal and median raphe nuclei. Neuropharmacology 2001; 40(4): 508–19

    Article  PubMed  CAS  Google Scholar 

  100. Johnson KW, Phebus LA, Cohen ML. Serotonin in migraine: theories, animal models and emerging therapies. Prog Drug Res 1998; 51(2): 219–44

    Article  PubMed  CAS  Google Scholar 

  101. Shepheard S, Edvinsson L, Cumberbatch M, et al. Possible antimigraine mechanisms of action of the 5HT1F receptor agonist LY334370. Cephalalgia 1999; 19(10): 851–8

    Article  PubMed  CAS  Google Scholar 

  102. Goadsby PJ, Knight Y. Inhibition of trigeminal neurones after intravenous administration of naratriptan through an action at 5-hydroxy-tryptamine (5-HT (1B/1D)) receptors. Br J Pharmacol 1997; 122(5): 918–22

    Article  PubMed  CAS  Google Scholar 

  103. Storer RJ, Goadsby PJ. Microiontophoretic application of serotonin (5HT)1B/1D agonists inhibits trigeminal cell firing in the cat. Brain 1997; 120 (Pt 12) (5): 2171–7

    Article  PubMed  Google Scholar 

  104. Olpe HR. The cortical projection of the dorsal raphe nucleus: some electrophysiological and pharmacological properties. Brain Res 1981; 216(1): 61–71

    Article  PubMed  CAS  Google Scholar 

  105. Sakai K, Crochet S. Serotonergic dorsal raphe neurons cease firing by disfacilitation during paradoxical sleep. Neuroreport 2000; 11(14): 3237–41

    Article  PubMed  CAS  Google Scholar 

  106. McGinty DJ, Harper RM. Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 1976; 101(3): 569–75

    Article  PubMed  CAS  Google Scholar 

  107. Chugani DC, Niimura K, Chaturvedi S, et al. Increased brain serotonin synthesis in migraine. Neurology 1999; 53(7): 1473–9

    Article  PubMed  CAS  Google Scholar 

  108. Ribeiro CA, Cotrim MD, Morgadinho MT, et al. Migraine, serum serotonin and platelet 5-HT2 receptors. Cephalalgia 1990; 10(5): 213–9

    Article  PubMed  CAS  Google Scholar 

  109. Ma QP, Hill R, Sirinathsinghji D. Colocalization of CGRP with 5-HT1B/1D receptors and substance P in trigeminal ganglion neurons in rats. Eur J Neurosci 2001; 13(11): 2099–104

    Article  PubMed  CAS  Google Scholar 

  110. Haddjeri N, Lucas G, Blier P. Role of cholinergic and GABAergic systems in the feedback inhibition of dorsal raphe 5-HT neurons. Neuroreport 2000; 11(15): 3397–401

    Article  PubMed  CAS  Google Scholar 

  111. Tao R, Auerbach SB. Differential effect of NMDA on extracellular serotonin in rat midbrain raphe and forebrain sites. J Neurochem 1996; 66(3): 1067–75

    Article  PubMed  CAS  Google Scholar 

  112. Montiel C, Herrero CJ, Garcia-Palomero E, et al. Serotonergic effects of dotarizine in coronary artery and in oocytes expressing 5-HT2 receptors. Eur J Pharmacol 1997; 332(2): 183–93

    Article  PubMed  CAS  Google Scholar 

  113. Nishio H, Nagakura Y, Segawa T. Interactions of carteolol and other betaadrenoceptor blocking agents with serotonin receptor subtypes. Arch Int Pharmacodyn Ther 1989; 302: 96–106

    PubMed  CAS  Google Scholar 

  114. Peroutka SJ. Antimigraine drug interactions with serotonin receptor subtypes in human brain. Ann Neurol 1988; 23(5): 500–4

    Article  PubMed  CAS  Google Scholar 

  115. Hjorth S, Suchowski CS, Galloway MP. Evidence for 5-HT autoreceptor-mediated, nerve impulse-independent, control of 5-HT synthesis in the rat brain. Synapse 1995; 19(3): 170–6

    Article  PubMed  CAS  Google Scholar 

  116. Hjorth S, Carlsson A. (-)-Pindolol stereospecifically inhibits rat brain serotonin (5-HT) synthesis. Neuropharmacology 1985; 24(11): 1143–6

    Article  PubMed  CAS  Google Scholar 

  117. Gruffyd-Jones K, Kies B, Middleton A, et al. Zolmitriptan versus sumatriptan for the acute oral treatment of migraine: a randomized, double-blind, international study. Eur J Neurol 2001; 8(3): 237–45

    Article  PubMed  CAS  Google Scholar 

  118. Monari L, Mochi M, Valentino ML, et al. Searching for migraine genes: exclusion of 290 cM out of the whole human genome. Ital J Neurol Sci 1997; 18(5): 277–82

    Article  PubMed  CAS  Google Scholar 

  119. Burnet PW, Harrison PJ, Goodwin GM, et al. Allelic variation in the serotonin 5-HT2C receptor gene and migraine. Neuroreport 1997; 8(12): 2651–3

    Article  PubMed  CAS  Google Scholar 

  120. Nyholt DR, Curtain RP, Gaffney PT, et al. Migraine association and linkage analyses of the human 5-hydroxytryptamine (5HT2A) receptor gene. Cephalalgia 1996; 16(7): 463–7

    Article  PubMed  CAS  Google Scholar 

  121. Buchwalder A, Welch SK, Peroutka SJ. Exclusion of 5-HT2A and 5-HT2C receptor genes as candidate genes for migraine. Headache 1996; 36(4): 254–8

    Article  PubMed  CAS  Google Scholar 

  122. Nyholt DR, Lea RA, Goadsby PJ, et al. Familial typical migraine: linkage to chromosome 19p13 and evidence for genetic heterogeneity. Neurology 1998; 50(5): 1428–32

    Article  PubMed  CAS  Google Scholar 

  123. Terwindt GM, Ophoff RA, van Eijk R, et al. Involvement of the CACNA1A gene containing region on 19p13 in migraine with and without aura. Neurology 2001; 56(8): 1028–32

    Article  PubMed  CAS  Google Scholar 

  124. Lea RA, Curtain RP, Hutchins C, et al. Investigation of the CACNA1A gene as a candidate for typical migraine susceptibility. Am J Med Genet 2001; 105(8): 707–12

    Article  PubMed  CAS  Google Scholar 

  125. Srikiatkhachorn A, Tarasub N, Govitrapong P. Effect of chronic analgesic exposure on the central serotonin system: a possible mechanism of analgesic abuse headache. Headache 2000; 40(5): 343–50

    Article  PubMed  CAS  Google Scholar 

  126. Barbanti P, Fabbrini G, Ricci A, et al. Migraine patients show an increased density of dopamine D3 and D4 receptors on lymphocytes. Cephalalgia 2000; 20(1): 15–9

    Article  PubMed  CAS  Google Scholar 

  127. Evers S, Quibeldey F, Grotemeyer KH, et al. Dynamic changes of cognitive habituation and serotonin metabolism during the migraine interval. Cephalalgia 1999; 19(5): 485–91

    Article  PubMed  CAS  Google Scholar 

  128. Benedetto C, Allais G, Ciochetto D, et al. Pathophysiological aspects of menstrual migraine. Cephalalgia 1997; 17Suppl 20 (1): 32–4

    PubMed  Google Scholar 

  129. Fioroni L, Andrea GD, Alecci M, et al. Platelet serotonin pathway in menstrual migraine. Cephalalgia 1996; 16(6): 427–30

    Article  PubMed  CAS  Google Scholar 

  130. D’Andrea G, Hasselmark L, Alecci M, et al. Platelet secretion from dense and alpha-granules in vitro in migraine with or without aura. J Neurol Neurosurg Psychiatry 1994; 57(5): 557–61

    Article  PubMed  Google Scholar 

  131. Govitrapong P, Limthavon C, Srikiatkhachorn A. 5-HT2 serotonin receptor on blood platelet of migraine patients. Headache 1992; 32(10): 480–4

    Article  PubMed  CAS  Google Scholar 

  132. D’Andrea G, Welch KM, Riddle JM, et al. Platelet serotonin metabolism and ultrastructure in migraine. Arch Neurol 1989; 46(11): 1187–9

    Article  PubMed  Google Scholar 

  133. Joseph R, Welch KM, D’Andrea G. Serotonergic hypofunction in migraine: a synthesis of evidence based on platelet dense body dysfunction. Cephalalgia 1989; 9(4): 293–9

    PubMed  CAS  Google Scholar 

  134. Mishima K, Takeshima T, Shimomura T, et al. Platelet ionized magnesium, cyclic AMP, and cyclic GMP levels in migraine and tension-type headache. Headache 1997; 37(9): 561–4

    Article  PubMed  CAS  Google Scholar 

  135. Sarchielli P, Tognoloni M, Russo S, et al. Variations in the platelet arginine/nitric oxide pathway during the ovarian cycle in females affected by menstrual migraine. Cephalalgia 1996; 16(7): 468–75

    Article  PubMed  CAS  Google Scholar 

  136. Tozzi-Ciancarelli MG, DeMatteis G, Di Massimo C, et al. Oxidative stress and platelet responsiveness in migraine. Cephalalgia 1997; 17(5): 580–4

    Article  PubMed  CAS  Google Scholar 

  137. Mezei Z, Kis B, Gecse A, et al. Platelet arachidonate cascade of migraineurs in the interictal phase. Platelets 2000; 11(4): 222–5

    Article  PubMed  CAS  Google Scholar 

  138. Koudstaal PJ, Koudstaal A. Neurologic and visual symptoms in essential thrombocythemia: efficacy of low-dose aspirin. Semin Thromb Hemost 1997; 23(4): 365–70

    Article  PubMed  CAS  Google Scholar 

  139. Joseph R, Tsering C, Grunfeld S, et al. Further studies on platelet-mediated neurotoxicity. Brain Res 1992; 577(2): 268–75

    Article  PubMed  CAS  Google Scholar 

  140. Pukhal’skaya TG, Kolosova OA, Men’shikov MY, et al. Effects of calcium antagonists on serotonin-dependent aggregation and serotonin transport in platelets of patients with migraine. Bull Exp Biol Med 2000; 130(7): 633–5

    Article  PubMed  Google Scholar 

  141. Alarayyed NA, Cooper MB, Prichard BN, et al. In vitro adrenaline and collagen-induced mobilization of platelet calcium and its inhibition by naftopidil, doxazosin and nifedipine. Br J Clin Pharmacol 1997; 43(4): 415–20

    Article  PubMed  CAS  Google Scholar 

  142. Diener HC, Foh M, Iaccarino C, et al. Cyclandelate in the prophylaxis of migraine: a randomized, parallel, double-blind study in comparison with placebo and propranolol: the Study Group. Cephalalgia 1996; 16(6): 441–7

    Article  PubMed  CAS  Google Scholar 

  143. Tozzi-Ciancarelli MG, DiMassimo C, Tozzi E, et al. Influence of a selective 5HT1-receptor agonist GR43175 on platelet responsiveness. Cephalalgia 1995; 15(6): 472–36

    PubMed  CAS  Google Scholar 

  144. Ding YA, Chou TC, Lin KC. Effects of long-acting propranolol and verapamil on blood pressure, platelet function, metabolic and rheological properties in hypertension. J Hum Hypertens 1994; 8(4): 273–8

    PubMed  CAS  Google Scholar 

  145. Pirich C, Schmid P, Fitscha P, et al. Influence of calcium antagonists on platelet function and vascular prostacyclin production. Blood Press Suppl 1994; 1: 75–80

    PubMed  CAS  Google Scholar 

  146. Blache D, Ojeda C. Comparative inhibitory effects of dihydropyridines on platelet aggregation, calcium uptake and cyclic AMP concentration. Pharmacology 1992; 45(5): 250–9

    Article  PubMed  CAS  Google Scholar 

  147. Gasser JA, Betterridge DJ. Comparison of the effects of carvedilol, propranolol, and verapamil on in vitro platelet function in healthy volunteers. J Cardiovasc Pharmacol 1991; 18Suppl. 4: S29–34

    PubMed  CAS  Google Scholar 

  148. Zahavi M, Welzel D, Wolf H, et al. Effect of heparin and dihydroergotamine on platelet adenosine-3’,5’-cyclic monophosphate. Arzneimittel Forschung 1987; 37(6): 669–74

    PubMed  CAS  Google Scholar 

  149. Reed GL, Fitzgerald ML, Polgar J. Molecular mechanisms of platelet exocytosis: insights into the ‘secrete’ life of thrombocytes. Blood 2000; 96(10): 3334–42

    PubMed  CAS  Google Scholar 

  150. Lemons PP, Chen D, Bernstein AM, et al. Regulated secretion in platelets: identification of elements of the platelet exocytosis machinery. Blood 1997; 90(4): 1490–500

    PubMed  CAS  Google Scholar 

  151. Chen D, Bernstein AM, Lemons PP, et al. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 in dense core granule release. Blood 2000; 95(3): 921–9

    PubMed  CAS  Google Scholar 

  152. Martin-Martin B, Nabokina SM, Blasi J, et al. Involvement of SNAP-23 and syntaxin 6 in human neutrophil exocytosis. Blood 2000; 96(7): 2574–83

    PubMed  CAS  Google Scholar 

  153. Bernstein AM, Whiteheart SW. Identification of a cellubrevin/vesicle associated membrane protein 3 homologue in human platelets. Blood 1999; 93(2): 571–9

    PubMed  CAS  Google Scholar 

  154. Reed GL, Houng AK, Fitzgerald ML. Human platelets contain SNARE proteins and a Sec1p homologue that interacts with syntaxin 4 and is phosphorylated after thrombin activation: implications for platelet secretion. Blood 1999; 93(8): 2617–26

    PubMed  CAS  Google Scholar 

  155. Bahler M, Cesura AM, Fischer G, et al. Serotonin organelles of rabbit platelets contain synaptophysin. Eur J Biochem 1990; 194(3): 825–9

    Article  PubMed  CAS  Google Scholar 

  156. Chen D, Minger SL, Honer WG, et al. Organization of the secretory machinery in the rodent brain: distribution of the t-SNAREs, SNAP-25 and SNAP-23. Brain Res 1999; 831(1-2): 11–24

    Article  PubMed  CAS  Google Scholar 

  157. Sheehan D, Ray GS, Calhoun BC, et al. A somatodendritic distribution of Rab11 in rabbit brain neurons. Neuroreport 1996; 7(7): 1297–300

    Article  PubMed  CAS  Google Scholar 

  158. Rausch JL, Hobby HM, Shendarkar N, et al. Fluvoxamine treatment of mixed anxiety and depression: evidence for serotonergically mediated anxiolysis. J Clin Psychopharmacol 2001; 21(2): 139–42

    Article  PubMed  CAS  Google Scholar 

  159. Galeotti N, Ghelardini C, Zoppi M, et al. Hypofunctionality of Gi proteins as aetiopathogenic mechanism for migraine and cluster headache. Cephalalgia 2001; 21(1): 38–45

    Article  PubMed  CAS  Google Scholar 

  160. Kaiya H. Second messenger imbalance hypothesis of schizophrenia. Prostaglandins Leukot Essent Fatty Acids 1992; 46(1): 33–8

    Article  PubMed  CAS  Google Scholar 

  161. Caggiano AO, Breder CD, Kraig RP. Long-term elevation of cyclooxygenase-2, but not lipoxygenase, in regions synaptically distant from spreading depression. J Comp Neurol 1996; 376(3): 447–62

    Article  PubMed  CAS  Google Scholar 

  162. Lauritzen M, Hansen AJ, Kronborg D, et al. Cortical spreading depression is associated with arachidonic acid accumulation and preservation of energy charge. J Cereb Blood Flow Metab 1990; 10(1): 115–22

    Article  PubMed  CAS  Google Scholar 

  163. Ophoff RA, Terwindt GM, Vergouwe MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996; 87(3): 543–52

    Article  PubMed  CAS  Google Scholar 

  164. Birnbaumer L, Campbell KP, Catterall WA, et al. The naming of voltage-gated calcium channels. Neuron 1994; 13(3): 505–6

    Article  PubMed  CAS  Google Scholar 

  165. Ducros A, Joutel A, Vahedi K, et al. Mapping of a second locus for familial hemiplegic migraine to 1q21-q23 and evidence of further heterogeneity. Ann Neurol 1997; 42(6): 885–90

    Article  PubMed  CAS  Google Scholar 

  166. Gardner K, Barmada MM, Ptacek LJ, et al. A new locus for hemiplegic migraine maps to chromosome 1q31. Neurology 1997; 49(5): 1231–8

    Article  PubMed  CAS  Google Scholar 

  167. May A, Ophoff RA, Terwindt GM, et al. Familial hemiplegic migraine locus on 19pl3 is involved in the common forms of migraine with and without aura. Hum Genet 1995; 96(5): 604–8

    Article  PubMed  CAS  Google Scholar 

  168. Nyholt DR, Dawkins JL, Brimage PJ, et al. Evidence for an X-linked genetic component in familial typical migraine. Hum Mol Genet 1998; 7(3): 459–63

    Article  PubMed  CAS  Google Scholar 

  169. Nyholt DR, Curtain RP, Griffiths LR. Familial typical migraine: significant linkage and localization of a gene to Xq24-28. Hum Genet 2000; 107(1): 18–23

    Article  PubMed  CAS  Google Scholar 

  170. Lea RA, Dohy A, Jordan K, et al. Evidence for allelic association of the dopamine beta-hydroxylase gene (DBH) with susceptibility to typical migraine. Neurogenetics 2000; 3(1): 35–40

    PubMed  CAS  Google Scholar 

  171. Kim JS, Yue Q, Jen JC, et al. Familial migraine with vertigo: no mutations found in CACNA1A. Am J Med Genet 1998; 79(2): 148–51

    Article  PubMed  CAS  Google Scholar 

  172. Jones KW, Ehm MG, Boyd PR, et al. Migraine with aura susceptibility locus on chromosome 19pl3 is distinct from the familial hemiplegic migraine locus. Genomics 2001; 78(3): 150–4

    Article  PubMed  CAS  Google Scholar 

  173. McCarthy LC, Hosford DA, Riley JH, et al. Single nucleotide polymorphism (SNP) alleles in the Insulin Receptor (INSR) gene are associated with typical migraine. Genomics 2001; 78(3): 135–49

    Article  PubMed  CAS  Google Scholar 

  174. Zhao W, Alkon DL. Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 2001; 177(1-2): 125–34

    Article  PubMed  CAS  Google Scholar 

  175. Chen C, Leonard JP. Protein tyrosine kinase-mediated potentiation of currents from cloned NMDA receptors. J Neurochem 1996; 67(1): 194–200

    Article  PubMed  CAS  Google Scholar 

  176. Tfelt-Hansen P. Sumatriptan for the treatment of migraine attacks: a review of controlled clinical trials. Cephalalgia 1993; 13(4): 238–44

    Article  PubMed  CAS  Google Scholar 

  177. Johnson MP, Lea RA, Curtain RP, et al. An investigation of the 5-HT2c receptor gene as a migraine candidate gene. Am J Med Genet 2002; 117: 86–9

    Google Scholar 

  178. Leone M, Attanasio A, Croci D, et al. 5-HT1A receptor hypersensitivity in migraine is suggested by the m-chlorophenylpiperazine test. Neuroreport 1998; 9(11): 2605–8

    Article  PubMed  CAS  Google Scholar 

  179. Breslau N, Rasmussen BK. The impact of migraine: epidemiology, risk factors, and co-morbidities. Neurology 2001; 56 (6 Suppl. 1): S4–12

    Article  PubMed  CAS  Google Scholar 

  180. Merikangas KR, Merikangas JR, Angst J. Headache syndromes and psychiatric disorders: association and familial transmission. J Psychiatr Res 1993; 27(2): 197–210

    Article  PubMed  CAS  Google Scholar 

  181. Piccini P, Pavese N, Palombo C, et al. Transcranial doppler ultrasound in migraine and tension-type headache after apomorphine administration: double-blind crossover versus placebo study. Cephalalgia 1995; 15(5): 399–403

    PubMed  CAS  Google Scholar 

  182. Fanciullacci M, Michelacci S, Curradi C, et al. Hyperresponsiveness of migraine patients to the hypotensive action of bromocriptine. Headache 1980; 20(2): 99–102

    Article  PubMed  CAS  Google Scholar 

  183. Fanciullacci M, Alessandri M, Del Rosso A. Dopamine involvement in the migraine attack. Funct Neurol 2000; 15Suppl 3 (2): 171–81

    PubMed  Google Scholar 

  184. Barbanti P, Bronzetti E, Ricci A, et al. Increased density of dopamine D5 receptor in peripheral blood lymphocytes of migraineurs: a marker for migraine? Neurosci Lett 1996; 207(2): 73–6

    Article  PubMed  CAS  Google Scholar 

  185. Calabresi P, Silvestrini M, Stratta F, et al. 1-Deprenyl test in migraine: neuroendocrinological aspects. Cephalalgia 1993; 13(6): 406–9

    Article  PubMed  CAS  Google Scholar 

  186. Fisher H. A new approach to emergency department therapy of migraine headache with intravenous haloperidol: a case series. J Emerg Med 1995; 13(1): 119–22

    Article  PubMed  CAS  Google Scholar 

  187. Peroutka SJ, Wilhoit T, Jones K. Clinical susceptibility to migraine with aura is modified by dopamine D2 receptor (DRD2) NcoI alleles. Neurology 1997; 49(1): 201–6

    Article  PubMed  CAS  Google Scholar 

  188. DelZompo M, Cherchi A, Palmas MA, et al. Association between dopamine receptor genes and migraine without aura in a Sardinian sample. Neurology 1998; 51(3): 781–6

    Article  PubMed  Google Scholar 

  189. Craig SP, Buckle VJ, Lamouroux A, et al. Localization of the human dopamine beta hydroxylase (DBH) gene to chromosome 9q34. Cytogenet Cell Genet 1988; 48(1): 48–50

    Article  PubMed  CAS  Google Scholar 

  190. Gallai V, Gaiti A, Sarchielli P, et al. Evidence for an altered dopamine betahydroxylase activity in migraine and tension-type headache. Acta Neurol Scand 1992; 86(4): 403–6

    Article  PubMed  CAS  Google Scholar 

  191. Magos A, Brincat M, Zilkha KJ, et al. Serum dopamine beta-hydroxylase activity in menstrual migraine. J Neurol Neurosurg Psychiatry 1985; 48(4): 328–31

    Article  PubMed  CAS  Google Scholar 

  192. Gotoh F, Kanda T, Sakai F, et al. Serum dopamine-beta-hydroxylase activity in migraine. Arch Neurol 1976; 33(9): 656–7

    Article  PubMed  CAS  Google Scholar 

  193. Ren K, Dubner R. Central nervous system plasticity and persistent pain. J Orofac Pain 1999; 13(3): 155–63

    PubMed  CAS  Google Scholar 

  194. Burstein R. Deconstructing migraine headache into peripheral and central sensitization. Pain 2001; 89(2-3): 107–10

    Article  PubMed  CAS  Google Scholar 

  195. Maude S, Curtin J, Breen G, et al. The −141C Ins/Del polymorphism of the dopamine D2 receptor gene is not associated with either migraine or Parkinson’s disease. Psychiatr Genet 2001; 11(1): 49–52

    Article  PubMed  CAS  Google Scholar 

  196. Dichgans M, Forderreuther S, Deiterich M, et al. The D2 receptor NcoI allele: absence of allelic association with migraine with aura [letter]. Neurology 1998; 51(3): 928

    Article  PubMed  CAS  Google Scholar 

  197. Silberstein S, Mathew N, Saper J, et al. Botulinum toxin type A as a migraine preventive treatment. For the BOTOX Migraine Clinical Research Group. Headache 2000; 40(6): 445–50

    CAS  Google Scholar 

  198. Binder WJ, Brin MF, Blitzer A, et al. Botulinum toxin type A (BOTOX) for treatment of migraine headaches: an open-label study. Otolaryngol Head Neck Surg 2000; 123(6): 669–76

    Article  PubMed  CAS  Google Scholar 

  199. Wissel J, Muller J, Dressnandt J, et al. Management of spasticity associated pain with botulinum toxin A. J Pain Symptom Manage 2000; 20(1): 44–9

    Article  PubMed  CAS  Google Scholar 

  200. Barwood S, Baillieu C, Boyd R, et al. Analgesic effects of botulinum toxin A: a randomized, placebo-controlled clinical trial. Dev Med Child Neurol 2000; 42(2): 116–21

    Article  PubMed  CAS  Google Scholar 

  201. Watanabe Y, Bakheit AM, McLellan DL. A study of the effectiveness of botulinum toxin type A (Dysport) in the management of muscle spasticity. Disabil Rehabil 1998; 20(2): 62–5

    Article  PubMed  CAS  Google Scholar 

  202. Heinen F, Wissel J, Philipsen A, et al. Interventional neuropediatrics: treatment of dystonic and spastic muscular hyperactivity with botulinum toxin A. Neuropediatrics 1997; 28(6): 307–13

    Article  PubMed  CAS  Google Scholar 

  203. Pullman SL, Greene P, Fahn S, et al. Approach to the treatment of limb disorders with botulinum toxin A: experience with 187 patients. Arch Neurol 1996; 53(7): 617–24

    Article  PubMed  CAS  Google Scholar 

  204. Grazko MA, Polo KB, Jabbari B. Botulinum toxin A for spasticity, muscle spasms, and rigidity. Neurology 1995; 45(4): 712–7

    Article  PubMed  CAS  Google Scholar 

  205. Blasi J, Chapman ER, Link E, et al. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 1993; 365(6442): 160–3

    Article  PubMed  CAS  Google Scholar 

  206. Nakov R, Habermann E, Hertting G, et al. Effects of botulinum A toxin on presynaptic modulation of evoked transmitter release. Eur J Pharmacol 1989; 164(1): 45–53

    Article  PubMed  CAS  Google Scholar 

  207. Black JD, Dolly JO. Selective location of acceptors for botulinum neurotoxin A in the central and peripheral nervous systems. Neuroscience 1987; 23(2): 767–79

    Article  PubMed  CAS  Google Scholar 

  208. Herrero I, Castro E, Miras-Portugal MT, et al. Two components of glutamate exocytosis differentially affected by presynaptic modulation. J Neurochem 1996; 67(6): 2346–54

    Article  PubMed  CAS  Google Scholar 

  209. Ishikawa H, Mitsui Y, Yoshitomi T, et al. Presynaptic effects of botulinum toxin type A on the neuronally evoked response of albino and pigmented rabbit iris sphincter and dilator muscles. Jpn J Ophthalmol 2000; 44(2): 106–9

    Article  PubMed  CAS  Google Scholar 

  210. Najib A, Pelliccioni P, Gil C, et al. Clostridium neurotoxins influence serotonin uptake and release differently in rat brain synaptosomes. J Neurochem 1999; 72(5): 1991–8

    Article  PubMed  CAS  Google Scholar 

  211. Grafstein-Dunn E, Young KH, Cockett MI, et al. Regional distribution of regulators of G-protein signaling (RGS) 1, 2, 13, 14, 16, and GAIP messenger ribonucleic acids by in situ hybridization in rat brain. Brain Res Mol Brain Res 2001; 88(1-2): 113–23

    Article  PubMed  CAS  Google Scholar 

  212. Ingi T, Krumins AM, Chidiac P, et al. Dynamic regulation of RGS2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. J Neurosci 1998; 18(18): 7178–88

    PubMed  CAS  Google Scholar 

  213. Chung KM, Lee KC, Song DK, et al. Differential modulatory roles of cholera toxin and pertussis toxin in the regulation of pain responses induced by excitatory amino acids administered intrathecally in mice. Brain Res 2000; 867(1-2): 246–9

    Article  PubMed  CAS  Google Scholar 

  214. Womer DE, DeLapp NW, Shannon HE. Intrathecal pertussis toxin produces hyperalgesia and allodynia in mice. Pain 1997; 70(2-3): 223–8

    Article  PubMed  CAS  Google Scholar 

  215. Gardiner IM, Ahmed F, Steiner TJ, et al. A study of adaptive responses in cell signaling in migraine and cluster headache: correlations between headache type and changes in gene expression. Cephalalgia 1998; 18(4): 192–6

    Article  PubMed  CAS  Google Scholar 

  216. Moratz C, Kang VH, Druey KM, et al. Regulator of G protein signaling 1 (RGS1) markedly impairs Gi alpha signaling responses of B lymphocytes. J Immunol 2000; 164(4): 1829–38

    PubMed  CAS  Google Scholar 

  217. Denecke B, Meyerdierks A, Bottger EC. RGS1 is expressed in monocytes and acts as a GTPase-activating protein for G-protein-coupled chemoattractant receptors. J Biol Chem 1999; 274(38): 26860–8

    Article  PubMed  CAS  Google Scholar 

  218. Reif K, Cyster JG. RGS molecule expression in murine B lymphocytes and ability to down-regulate chemotaxis to lymphoid chemokines. J Immunol 2000; 164(9): 4720–9

    PubMed  CAS  Google Scholar 

  219. Heximer SP, Cristillo AD, Russell L, et al. Expression and processing of G0/G1 switch gene 24 (G0S24/TIS11/TTP/NUP475) RNA in cultured human blood mononuclear cells. DNA Cell Biol 1998; 17(3): 249–63

    Article  PubMed  CAS  Google Scholar 

  220. Heximer SP, Cristillo AD, Forsdyke DR. Comparison of mRNA expression of two regulators of G-protein signaling, RGS1/BL34/1R20 and RGS2/G0S8, in cultured human blood mononuclear cells. DNA Cell Biol 1997; 16(5): 589–98

    Article  PubMed  CAS  Google Scholar 

  221. Potenza MN, Gold SJ, Roby-Shemkowitz A, et al. Effects of regulators of G protein-signaling proteins on the functional response of the mu-opioid receptor in a melanophore-based assay. J Pharmacol Exp Ther 1999; 291(2): 482–91

    PubMed  CAS  Google Scholar 

  222. Gerth WC, Carides GW, Dasbach EJ, et al. The multinational impact of migraine symptoms on healthcare utilisation and work loss. Pharmacoeconomics 2001; 19(2): 197–206

    Article  PubMed  CAS  Google Scholar 

  223. Stang P, Cady R, Batenhorst A, et al. Workplace productivity: a review of the impact of migraine and its treatment. Pharmacoeconomics 2001; 19(3): 231–44

    Article  PubMed  CAS  Google Scholar 

  224. Caro JJ, Caro G, Getsios D, et al. The migraine ACE model: evaluating the impact on time lost and medical resource use. Headache 2000; 40(4): 282–91

    Article  PubMed  CAS  Google Scholar 

  225. Terwindt GM, Ferrari MD, Tijhuis M, et al. The impact of migraine on quality of life in the general population: the GEM study. Neurology 2000; 55(5): 624–9

    Article  PubMed  CAS  Google Scholar 

  226. Hu XH, Markson LE, Lipton RB, et al. Burden of migraine in the United States: disability and economic costs. Arch Intern Med 1999; 159(8): 813–8

    Article  PubMed  CAS  Google Scholar 

  227. Yates R, Nairn K, Dixon R, et al. Preliminary studies of the pharmacokinetics and tolerability of zolmitriptan nasal spray in healthy volunteers. J Clin Pharmacol 2002; 42(11): 1237–43

    Article  PubMed  CAS  Google Scholar 

  228. Weitzel KW, Strickland JM, Smith KM, et al. Gender-specific issues in the treatment of migraine. J Gend Specif Med 2001; 4(1): 64–74

    PubMed  CAS  Google Scholar 

  229. Kaube H, Herzog J, Kaufer T, et al. Aura in some patients with familial hemiplegic migraine can be stopped by intranasal ketamine. Neurology 2000; 55(1): 139–41

    Article  PubMed  CAS  Google Scholar 

  230. Gorji A, Scheller D, Straub H, et al. Spreading depression in human neocortical slices. Brain Res 2001; 906(1-2): 74–83

    Article  PubMed  CAS  Google Scholar 

  231. Ophoff RA, van den Maagdenberg AM, Roon KI, et al. The impact of pharmacogenetics for migraine. Eur J Pharmacol 2001; 413(1): 1–10

    Article  PubMed  CAS  Google Scholar 

  232. Kiel S, Bruss M, Bonisch H, et al. Pharmacological properties of the naturally occurring Phe-124-Cys variant of the human 5-HT1B receptor: changes in ligand binding, G-protein coupling and second messenger formation. Pharmacogenetics 2000; 10(7): 655–66

    Article  PubMed  CAS  Google Scholar 

  233. Maassen VanDen Brink A, Vergouwe MN, Ophoff RA, et al. 5-HT1B receptor polymorphism and clinical response to sumatriptan. Headache 1998; 38(4): 288–91

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for the authors’ research into the molecular genetics of migraines has been provided by the National Health and Medical Research Council of Australia and also from GlaxoSmithKline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyn R. Griffiths.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, K.L., Lea, R.A. & Griffiths, L.R. Molecular Mechanisms of Migraine. Am J Pharmacogenomics 3, 329–343 (2003). https://doi.org/10.2165/00129785-200303050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200303050-00004

Keywords

Navigation