Skip to main content
Log in

Advances in Liver Cancer Antibody Therapies

A Focus on Glypican-3 and Mesothelin

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Liver cancer is one of the most common malignancies worldwide. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the two most common primary liver cancers, yet there have been no significant advances in effective therapeutics. There is an urgent need to identify molecular targets for the development of novel therapeutic approaches. In this review, glypican-3 (GPC3) and mesothelin are discussed, with a focus on their potential as targets for antibody therapy in liver cancer. GPC3 and mesothelin are glycosylphosphatidylinositol-anchored proteins present on the cell surface. They are attractive candidates for liver cancer therapy given that GPC3 and mesothelin show high expression in HCC and CCA, respectively. Antibody drugs targeting GPC3 or mesothelin have shown anti-cancer activity in mice. Humanized or chimeric IgG molecules based on first-generation murine monoclonal antibodies against these antigens are being evaluated in clinical studies. Recently, fully human monoclonal antibodies against GPC3 and mesothelin have been isolated by antibody phage display technology that may provide opportunities for novel cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II

Similar content being viewed by others

References

  1. American Cancer Society. Liver cancer [online]. Available from URL: http://www.cancer.org/Cancer/LiverCancer/DetailedGuide/index [Accessed 2011 Sep 6]

  2. Ho M, Kim H. Glypican-3: a new target for cancer immunotherapy. Eur J Cancer 2011 Feb; 47 (3): 333–8

    Article  PubMed  CAS  Google Scholar 

  3. Kojima T, Oh-eda M, Hattori K, et al. Molecular cloning and expression of megakaryocyte potentiating factor cDNA. J Biol Chem 1995 Sep 15; 270 (37): 21984–90

    Article  PubMed  CAS  Google Scholar 

  4. Chang K, Pastan I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc Natl Acad Sci U S A 1996 Jan 9; 93 (1): 136–40

    Article  PubMed  CAS  Google Scholar 

  5. Hassan R, Ho M. Mesothelin targeted cancer immunotherapy. Eur J Cancer 2008 Jan; 44 (1): 46–53

    Article  PubMed  CAS  Google Scholar 

  6. Ordóñez NG. Application of mesothelin immunostaining in tumor diagnosis. Am J Surg Pathol 2003 Nov; 27 (11): 1418–28

    Article  PubMed  Google Scholar 

  7. Hassan R, Laszik ZG, Lerner M, et al. Mesothelin is overexpressed in pancreaticobiliary adenocarcinomas but not in normal pancreas and chronic pancreatitis. Am J Clin Pathol 2005 Dec; 124 (6): 838–45

    Article  PubMed  CAS  Google Scholar 

  8. Yu L, Feng M, Kim H, et al. Mesothelin as a potential therapeutic target in human cholangiocarcinoma. J Cancer 2010 Oct 1; 1: 141–9

    Article  PubMed  CAS  Google Scholar 

  9. Filmus J, Church JG, Buick RN. Isolation of a cDNA corresponding to a developmentally regulated transcript in rat intestine. Mol Cell Biol 1988 Oct; 8 (10): 4243–9

    PubMed  CAS  Google Scholar 

  10. De Cat B, Muyldermans SY, Coomans C, et al. Processing by proprotein convertases is required for glypican-3 modulation of cell survival, Wnt signaling, and gastrulation movements. J Cell Biol 2003 Nov 10; 163 (3): 625–35

    Article  PubMed  Google Scholar 

  11. Capurro MI, Shi W, Sandal S, et al. Processing by convertases is not required for glypican-3-induced stimulation of hepatocellular carcinoma growth. J Biol Chem 2005 Dec 16; 280 (50): 41201–6

    Article  PubMed  CAS  Google Scholar 

  12. Hippo Y, Watanabe K, Watanabe A, et al. Identification of soluble NH2-terminal fragment of glypican-3 as a serological marker for early-stage hepatocellular carcinoma. Cancer Res 2004 Apr 1; 64 (7): 2418–23

    Article  PubMed  CAS  Google Scholar 

  13. Capurro M, Wanless IR, Sherman M, et al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 2003 Jul; 125 (1): 89–97

    Article  PubMed  CAS  Google Scholar 

  14. Matthews DJ, Goodman LJ, Gorman CM, et al. A survey of furin substrate specificity using substrate phage display. Protein Sci 1994 Aug; 3 (8): 1197–205

    Article  PubMed  CAS  Google Scholar 

  15. Feng M, Kim H, Phung Y, et al. Recombinant soluble glypican 3 protein inhibits the growth of hepatocellular carcinoma in vitro. Int J Cancer 2011 May 1; 128 (9): 2246–7

    Article  PubMed  CAS  Google Scholar 

  16. Pilia G, Hughes-Benzie RM, MacKenzie A, et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet 1996 Mar; 12 (3): 241–7

    Article  PubMed  CAS  Google Scholar 

  17. Cano-Gauci DF, Song HH, Yang H, et al. Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol 1999 Jul 12; 146 (1): 255–64

    Article  PubMed  CAS  Google Scholar 

  18. Song HH, Shi W, Filmus J. OCI-5/rat glypican-3 binds to fibroblast growth factor-2 but not to insulin-like growth factor-2. J Biol Chem 1997 Mar 21; 272 (12): 7574–7

    Article  PubMed  CAS  Google Scholar 

  19. Chiao E, Fisher P, Crisponi L, et al. Overgrowth of a mouse model of the Simpson-Golabi-Behmel syndrome is independent of IGF signaling. Dev Biol 2002 Mar 1; 243 (1): 185–206

    Article  PubMed  CAS  Google Scholar 

  20. Paine-Saunders S, Viviano BL, Zupicich J, et al. Glypican-3 controls cellular responses to Bmp4 in limb patterning and skeletal development. Dev Biol 2000 Sep 1; 225 (1): 179–87

    Article  PubMed  CAS  Google Scholar 

  21. Song HH, Shi W, Xiang YY, et al. The loss of glypican-3 induces alterations in Wnt signaling. J Biol Chem 2005 Jan 21; 280 (3): 2116–25

    Article  PubMed  CAS  Google Scholar 

  22. Cheng W, Tseng CJ, Lin TT, et al. Glypican-3-mediated oncogenesis involves the insulin-like growth factor-signaling pathway. Carcinogenesis 2008 Jul; 29 (7): 1319–26

    Article  PubMed  CAS  Google Scholar 

  23. Capurro MI, Xiang YY, Lobe C, et al. Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res 2005 Jul 15; 65 (14): 6245–54

    Article  PubMed  CAS  Google Scholar 

  24. Capurro MI, Xu P, Shi W, et al. Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev Cell 2008 May; 14 (5): 700–11

    Article  PubMed  CAS  Google Scholar 

  25. Capurro MI, Li F, Filmus J. Overgrowth of a mouse model of Simpson-Golabi-Behmel syndrome is partly mediated by Indian hedgehog. EMBO Rep 2009 Aug; 10 (8): 901–7

    Article  PubMed  CAS  Google Scholar 

  26. Midorikawa Y, Ishikawa S, Iwanari H, et al. Glypican-3, overexpressed in hepatocellular carcinoma, modulates FGF2 and BMP-7 signaling. Int J Cancer 2003 Feb 10; 103 (4): 455–65

    Article  PubMed  CAS  Google Scholar 

  27. Lai JP, Sandhu DS, Yu C, et al. Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology 2008 Apr; 47 (4): 1211–22

    Article  PubMed  CAS  Google Scholar 

  28. Lai JP, Oseini AM, Moser CD, et al. The oncogenic effect of sulfatase 2 in human hepatocellular carcinoma is mediated in part by glypican 3-dependent Wnt activation. Hepatology 2010 Nov; 52 (5): 1680–9

    Article  PubMed  CAS  Google Scholar 

  29. Malinauskas T, Aricescu AR, Lu W, et al. Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1. Nat Struct Mol Biol. Epub 2011 Jul 10

  30. Zittermann SI, Capurro MI, Shi W, et al. Soluble glypican 3 inhibits the growth of hepatocellular carcinoma in vitro and in vivo. Int J Cancer 2010 Mar 15; 126 (6): 1291–301

    PubMed  CAS  Google Scholar 

  31. Hsu HC, Cheng W, Lai PL. Cloning and expression of a developmentally regulated transcript MXR7 in hepatocellular carcinoma: biological significance and temporospatial distribution. Cancer Res 1997 Nov 15; 57 (22): 5179–84

    PubMed  CAS  Google Scholar 

  32. Nakatsura T, Yoshitake Y, Senju S, et al. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun 2003 Jun 20; 306 (1): 16–25

    Article  PubMed  CAS  Google Scholar 

  33. Shirakawa H, Suzuki H, Shimomura M, et al. Glypican-3 expression is correlated with poor prognosis in hepatocellular carcinoma. Cancer Sci 2009 Aug; 100 (8): 1403–7

    Article  PubMed  CAS  Google Scholar 

  34. Yamauchi N, Watanabe A, Hishinuma M, et al. The glypican 3 oncofetal protein is a promising diagnostic marker for hepatocellular carcinoma. Mod Pathol 2005 Dec; 18 (12): 1591–8

    PubMed  CAS  Google Scholar 

  35. Yasuda E, Kumada T, Toyoda H, et al. Evaluation for clinical utility of GPC3, measured by a commercially available ELISA kit with Glypican-3 (GPC3) antibody, as a serological and histological marker for hepatocellular carcinoma. Hepatol Res 2010 May; 40 (5): 477–85

    Article  PubMed  CAS  Google Scholar 

  36. Ishiguro T, Sugimoto M, Kinoshita Y, et al. Anti-glypican 3 antibody as a potential antitumor agent for human liver cancer. Cancer Res 2008 Dec 1; 68 (23): 9832–8

    Article  PubMed  CAS  Google Scholar 

  37. Nakano K, Orita T, Nezu J, et al. Anti-glypican 3 antibodies cause ADCC against human hepatocellular carcinoma cells. Biochem Biophys Res Commun 2009 Jan 9; 378 (2): 279–84

    Article  PubMed  CAS  Google Scholar 

  38. Nakano K, Ishiguro T, Konishi H, et al. Generation of a humanized antiglypican 3 antibody by CDR grafting and stability optimization. Anticancer Drugs 2010 Nov; 21 (10): 907–16

    Article  PubMed  CAS  Google Scholar 

  39. Ishiguro T, Kinoshita Y, Sugimoto M, et al. Anti-glypican3 antibody for treatment of human liver cancer [abstract no. A2426]. Proceedings of the 101st Annual Meeting of the AACR; 2010 Apr 17–21; Washington, DC

  40. Takai H, Kato A, Kinoshita Y, et al. Histopathological analyses of the antitumor activity of anti-glypican-3 antibody (GC33) in human liver cancer xenograft models: the contribution of macrophages. Cancer Biol Ther 2009 May; 8 (10): 930–8

    Article  PubMed  CAS  Google Scholar 

  41. Chugai Pharmaceutical. A phase I study of GC33 in advanced or metastatic liver cancer (hepatocellular carcinoma) [ClinicalTrials.gov identifier: NCT00746317]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2011 Jul 18]

  42. Chugai Pharmaceutical. Study of GC33 and sorafenib in combination in advanced or metastatic liver cancer (hepatocellular carcinoma) [ClinicalTrials.gov identifier: NCT00976170]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2011 Sep5]

  43. Ho M. Targeting glypican-3 and mesothelin for liver cancer therapy. Proceedings of the 7th Annual Meeting of the PEGS; 2011 May 9–13; Boston (MA)

  44. Chang K, Pastan I, Willingham MC. Isolation and characterization of a monoclonal antibody, K1, reactive with ovarian cancers and normal mesothelium. Int J Cancer 1992 Feb 1; 50 (3): 373–81

    Article  PubMed  CAS  Google Scholar 

  45. Ho M, Onda M, Wang QC, et al. Mesothelin is shed from tumor cells [letter]. Cancer Epidemiol Biomarkers Prev 2006 Sep; 15 (9): 1751

    Article  PubMed  Google Scholar 

  46. Hellstrom I, Raycraft J, Kanan S, et al. Mesothelin variant 1 is released from tumor cells as a diagnostic marker. Cancer Epidemiol Biomarkers Prev 2006 May; 15 (5): 1014–20

    Article  PubMed  CAS  Google Scholar 

  47. Ho M, Hassan R, Zhang J, et al. Humoral immune response to mesothelin in mesothelioma and ovarian cancer patients. Clin Cancer Res 2005 May 15; 11 (10): 3814–20

    Article  PubMed  CAS  Google Scholar 

  48. Hellstrom I, Friedman E, Verch T, et al. Anti-mesothelin antibodies and circulating mesothelin relate to the clinical state in ovarian cancer patients. Cancer Epidemiol Biomarkers Prev 2008 Jun; 17 (6): 1520–6

    Article  PubMed  CAS  Google Scholar 

  49. Pastan I, Hassan R, Fitzgerald DJ, et al. Immunotoxin therapy of cancer. Nat Rev Cancer 2006 Jul; 6 (7): 559–65. Review

    Article  PubMed  CAS  Google Scholar 

  50. Hassan R, Bullock S, Premkumar A, et al. Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin Cancer Res 2007 Sep 1; 13 (17): 5144–9

    Article  PubMed  CAS  Google Scholar 

  51. Kreitman RJ, Hassan R, Fitzgerald DJ, et al. Phase I trial of continuous infusion anti-mesothelin recombinant immunotoxin SS1P. Clin Cancer Res 2009 Aug 15; 15 (16): 5274–9

    Article  PubMed  CAS  Google Scholar 

  52. Hassan R, Cohen SJ, Phillips M, et al. Phase I clinical trial of the chimeric antimesothelin monoclonal antibody MORAb-009 in patients with mesothelin-expressing cancers. Clin Cancer Res 2010 Dec 15; 16 (24): 6132–8

    Article  PubMed  CAS  Google Scholar 

  53. Bera TK, Pastan I. Mesothelin is not required for normal mouse development or reproduction. Mol Cell Biol 2000 Apr; 20 (8): 2902–6

    Article  PubMed  CAS  Google Scholar 

  54. Yin BW, Lloyd KO. Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16. J Biol Chem 2001 Jul 20; 276 (29): 27371–5

    Article  PubMed  CAS  Google Scholar 

  55. Bast Jr RC, Klug TL, St John E, et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Engl J Med 1983 Oct 13; 309 (15): 883–7

    Article  PubMed  Google Scholar 

  56. Rump A, Morikawa Y, Tanaka M, et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem 2004 Mar 5; 279 (10): 9190–8

    Article  PubMed  CAS  Google Scholar 

  57. Gubbels JA, Belisle J, Onda M, et al. Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol Cancer 2006 Oct 26; 5 (1): 50

    Article  PubMed  Google Scholar 

  58. Kaneko O, Gong L, Zhang J, et al. A binding domain on mesothelin for CA125/MUC16. J Biol Chem 2009 Feb 6; 284 (6): 3739–49

    Article  PubMed  CAS  Google Scholar 

  59. Xiang X, Feng M, Felder M, et al. HN125: a novel immunoadhesin targeting MUC16 with potential for cancer therapy. J Cancer 2011; 2: 280–91

    Article  PubMed  CAS  Google Scholar 

  60. Prieve MG, Moon RT. Stromelysin-1 and mesothelin are differentially regulated by Wnt-5a and Wnt-1 in C57mg mouse mammary epithelial cells. BMC Dev Biol 2003 Apr 7; 3: 2

    Article  PubMed  Google Scholar 

  61. Uehara N, Matsuoka Y, Tsubura A. Mesothelin promotes anchorage-independent growth and prevents anoikis via extracellular signal-regulated kinase signaling pathway in human breast cancer cells. Mol Cancer Res 2008 Feb; 6 (2): 186–93

    Article  PubMed  CAS  Google Scholar 

  62. Li M, Bharadwaj U, Zhang R, et al. Mesothelin is a malignant factor and therapeutic vaccine target for pancreatic cancer. Mol Cancer Ther 2008 Feb; 7 (2): 286–96

    Article  PubMed  CAS  Google Scholar 

  63. Bharadwaj U, Li M, Chen C, et al. Mesothelin-induced pancreatic cancer cell proliferation involves alteration of cyclin E via activation of signal transducer and activator of transcription protein 3. Mol Cancer Res 2008 Nov; 6 (11): 1755–65

    Article  PubMed  CAS  Google Scholar 

  64. Bharadwaj U, Marin-Muller C, Li M, et al. Mesothelin overexpression promotes autocrine IL-6/sIL-6R trans-signaling to stimulate pancreatic cancer cell proliferation. Carcinogenesis 2011 Jul; 32 (7): 1013–24

    Article  PubMed  CAS  Google Scholar 

  65. Chang K, Pai LH, Pass H, et al. Monoclonal antibody K1 reacts with epithelial mesothelioma but not with lung adenocarcinoma. Am J Surg Pathol 1992 Mar; 16 (3): 259–68

    Article  PubMed  CAS  Google Scholar 

  66. Ho M, Bera TK, Willingham MC, et al. Mesothelin expression in human lung cancer. Clin Cancer Res 2007 Mar 1; 13 (5): 1571–5

    Article  PubMed  CAS  Google Scholar 

  67. Scholler N, Fu N, Yang Y, et al. Soluble member (s) of the mesothelin/ megakaryocyte potentiating factor family are detectable in sera from patients with ovarian carcinoma. Proc Natl Acad Sci U S A 1999 Sep 28; 96 (20): 11531–6

    Article  PubMed  CAS  Google Scholar 

  68. Chowdhury PS, Viner JL, Beers R, et al. Isolation of a high-affinity stable single-chain Fv specific for mesothelin from DNA-immunized mice by phage display and construction of a recombinant immunotoxin with anti-tumor activity. Proc Natl Acad Sci U S A 1998 Jan 20; 95 (2): 669–74

    Article  PubMed  CAS  Google Scholar 

  69. Chowdhury PS, Pastan I. Improving antibody affinity by mimicking somatic hypermutation in vitro. Nat Biotechnol 1999 Jun; 17 (6): 568–72

    Article  PubMed  CAS  Google Scholar 

  70. Hassan R, Ebel W, Routhier EL, et al. Preclinical evaluation of MORAb-009, a chimeric antibody targeting tumor-associated mesothelin. Cancer Immun 2007 Dec 19; 7: 20

    PubMed  Google Scholar 

  71. Onda M, Willingham M, Nagata S, et al. New monoclonal antibodies to mesothelin useful for immunohistochemistry, fluorescence-activated cell sorting, Western blotting, and ELISA. Clin Cancer Res 2005 Aug 15; 11 (16): 5840–6

    Article  PubMed  CAS  Google Scholar 

  72. Hassan R, Remaley AT, Sampson ML, et al. Detection and quantitation of serum mesothelin, a tumor marker for patients with mesothelioma and ovarian cancer. Clin Cancer Res 2006 Jan 15; 12 (2): 447–53

    Article  PubMed  CAS  Google Scholar 

  73. Onda M, Nagata S, Ho M, et al. Megakaryocyte potentiation factor cleaved from mesothelin precursor is a useful tumor marker in the serum of patients with mesothelioma. Clin Cancer Res 2006 Jul 15; 12 (14 Pt 1): 4225–31

    Article  PubMed  CAS  Google Scholar 

  74. Shiomi K, Miyamoto H, Segawa T, et al. Novel ELISA system for detection of N-ERC/mesothelin in the sera of mesothelioma patients. Cancer Sci 2006 Sep; 97 (9): 928–32

    Article  PubMed  CAS  Google Scholar 

  75. Feng Y, Xiao X, Zhu Z, et al. A novel human monoclonal antibody that binds with high affinity to mesothelin-expressing cells and kills them by antibody-dependent cell-mediated cytotoxicity. Mol Cancer Ther 2009 May; 8 (5): 1113–8

    Article  PubMed  CAS  Google Scholar 

  76. Ho M, Feng M, Fisher RJ, et al. A novel high-affinity human monoclonal antibody to mesothelin. Int J Cancer 2011 May 1; 128 (9): 2020–30

    Article  PubMed  CAS  Google Scholar 

  77. Xiang X, Phung Y, Feng M, et al. The development and characterization of a human mesothelioma in vitro 3D model to investigate immunotoxin therapy. PLoS One 2011 Jan 31; 6 (1): e14640

    Article  PubMed  CAS  Google Scholar 

  78. Feng M, Zhang J, Anver M, et al. In vivo imaging of human malignant mesothelioma grown orthotopically in the peritoneal cavity of nude mice. J Cancer 2011 Mar 1; 2: 123–31

    Article  PubMed  CAS  Google Scholar 

  79. Zhang Y, Xiang L, Hassan R, et al. Synergistic antitumor activity of taxol and immunotoxin SS1P in tumor-bearing mice. Clin Cancer Res 2006 Aug 1; 12 (15): 4695–701

    Article  PubMed  CAS  Google Scholar 

  80. Zhang Y, Xiang L, Hassan R, et al. Immunotoxin and Taxol synergy results from a decrease in shed mesothelin levels in the extracellular space of tumors. Proc Natl Acad Sci U S A 2007 Oct 23; 104 (43): 17099–104

    Article  PubMed  CAS  Google Scholar 

  81. Hassan R, Broaddus VC, Wilson S, et al. Anti-mesothelin immunotoxin SS1P in combination with gemcitabine results in increased activity against mesothelin-expressing tumor xenografts. Clin Cancer Res 2007 Dec 1; 13 (23): 7166–71

    Article  PubMed  CAS  Google Scholar 

  82. Zhang Y, Pastan I. High shed antigen levels within tumors: an additional barrier to immunoconjugate therapy. Clin Cancer Res 2008 Dec 15; 14 (24): 7981–6

    Article  PubMed  CAS  Google Scholar 

  83. Zhang Y, Hansen JK, Xiang L, et al. A flow cytometry method to quantitate internalized immunotoxins shows that taxol synergistically increases cellular immunotoxins uptake. Cancer Res 2010 Feb 1; 70 (3): 1082–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute (NCI), Center for Cancer Research. Dr Mitchell Ho is also supported by an Ovarian Cancer Research Fund Individual Investigator Award, a Mesothelioma Applied Research Foundation Grant in Honor of Craig Kozicki, a Zi-jiang Lecture Professorship from East China Normal University (Shanghai, China), and the NCI Director’s Intramural Innovation Award for Principal Investigators. Dr Ho is a co-inventor on patents assigned to the US, as represented by the Department of Health and Human Services, for the investigational products. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US Government. The author has no conflict of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, M. Advances in Liver Cancer Antibody Therapies. BioDrugs 25, 275–284 (2011). https://doi.org/10.2165/11595360-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11595360-000000000-00000

Keywords

Navigation