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Abstract

We consider a model for a three phase flow in a reservoir, in an ideal-
ized situation where water and gas are miscible, but both are immiscible
relative to oil. We assume that the hysteresis effects occur in the oil
phase permeability only. This permeability varies irreversibly along two
extreme curves ( imbibition and drainage ) bounding a region foliated by
reversible permeability curves. We describe the structure of the funda-
mental waves and establish the existence of the Riemann solution.

Resumo

Neste trabalho consideramos um modelo de escoamento trifisico num
reservatfio petrolifero, numa situagao idealizada onde as fases dgua e gis
sao consideradas misciveis, porém ambas imisciveis com relagdo & fase
6leo. Supomos também que os efeitos de histerese ocorrem apenas na
permeabilidade do 6leo. Esta permeabilidade varia irreversivelmente ao
longo de duas curvas extremas (embebimento e drenagem) delimitando
uma regidao folheada por curvas de permeabilidade reversiveis. Final-
mente, descrevemos a estrutura de ondas fundamentais e estabelecemos
um teorema de existéncia para a solugio do problema de Riemann.

1. Introduction

In this work we consider the Riemann problem for an idealized model of three
phase flow (water/oil/gas) in porous media, taking into account hysteresis ef-
fects in the permeability of the oil phase. Hysteresis may be the most important
phenomenon in multiphase flows lacking rigorous mathematical analysis in the

literature.
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When capillary forces predominate, they determine the distribution of the
several phases in the porous space.

If the distribution of phases over pore space at a certain time were unique
and independent of the distribution at earlier times, then changes of any phase
quantity would cause redistribution of the phases according to the rule described
above, and physical properties such as relative permeabilities would depend only
on saturations.

Unfortunately, this is not the case, and the past history of saturation in the
porous medium affects strongly the current phase distributions.

We propose a model for the flow of three phases, which we call water, gas
and oil. We assume that the hysteresis effects are expressed in the oil phase
only. This model does not have a direct physical interpretation.

Mathematically, the hysteresis effects are modeled by assuming that there
are two extreme permeability curves for the oil, called the imbibition and
drainage curves, which describe the flow when oil saturation is decreasing and
increasing, respectively, in an irreversible fashion. Within the extreme curves
we assume that the oil permeability increases or decreases reversibly, following a
family of permeability curves which foliates this region. These curves are called
scanning curves. This model for two phase flow, proposed in [3, 4, 5] and fur-
ther studied in [2], takes into account the extreme curves as well as the scanning
curves. The independent variables are saturation and a hysteresis parameter
for the family of scanning curves.

For two phase flow the first attempt to obtain a Riemann solution with
hysteresis effects containing some of the features above was made in [6] and
continued in [7]. In these papers only the two extreme imbibition and drainage
permeability curves where the flow is irreversible were considered.

Our aim in this paper is to extend the technique applied in [2, 3, 4, 5] for two
phase flow to the three phase flow model. Besides difficulties in the calculations,
one of the main obstacles is understanding the fundamental wave structure in
a three dimensional state space. As a first step towards understanding this

geometry, in this work we consider a simple situation where the water and gas
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permeability functions are taken to be linear while the oil permeability satisfies
generic conditions, except for the scanning permeability curves, which give rise
to contact waves by means of a simplification to avoid technicalities. With this
simplification, we were able to obtain the complete structure of the elementary
waves and to put them together to describe the Riemann solution. There are
three kinds of elementary waves: stationary waves originating from the fact
that the hysteresis parameter is time independent in the scanning region; con-
tact scanning waves; and saturation waves corresponding to a Buckley-Leverett
solution for a scalar conservation law obtained by combining the saturation
equations in different regimes.

The paper is subdivided in six sections and an Appendix. The Appendix
is independent; its purpose is to remind the reader of the Riemann solution
construction for the two phase flow model with hysteresis effects [2, 3, 4, 5]. In
Section 2, the Buckley-Leverett system for three phase flow without hysteresis
is derived, based on the conservation of mass and on Darcy’s law of force. In
Section 3 the hysteresis parameter 7 is introduced in the equations obtained
in Section 2 to obtain the three phase flow model with hysteresis. In this
section the generic assumptions on the oil permeability curves are also stated.
In Section 4 a formalism for the extended flow functions is introduced, preparing
for the description of elementary waves and of the Riemann solution. Extended
flow functions relate states in distinct flow regimes, drainage, imbibition and
scanning. In Section 5 the model is analyzed. Linear water and gas permeability
functions are employed. In the subsections of Section 5, wave resonance is
discussed and the structure of the elementary waves is analyzed, comprising
stationary waves, contact scanning waves and saturation waves. Each regime
of the fluid is discussed; these regimes are connected by using extended flow
functions. The Riemann solution based on the results of Section 5 is constructed
in Section 6. It is shown that there are three possible wave sequences in the
Riemann solution connecting a left state to a right state. The sequences always
start by a stationary wave, which is followed by a contact or a saturation wave.

The order of the latter two waves depends on the location of the left and right
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states.
Thus our main result is the existence of the Riemann solution for all initial

data.

2. The Buckley-Leverett System for Three-Phase Flow

We consider one-dimensional, horizontal flow of three fluid phases in a porous
medium. We assume that a certain infinitesimal volume of reservoir at position
z and time ¢t has water saturation s, oil saturation s, and gas saturation s,.
The differences among these phases lie in some flow properties. We assume
that the whole pore space is occupied by the fluid and that there are no sources
or sinks. Compressibility, thermal and gravitational effects are neglected.
The equations expressing conservation of mass of water, gas, and oil are in

one spatial dimension

0 0

respectively, where ¢ denotes the porosity of the porous medium and for the
phase «, p, denotes the density and v, is the seepage velocity (the product of
the saturation by the particle velocity of the phase ). Since the fluid occupies

the whole pore space, the saturations satisfy

> s =1 (2.2)

The theory of multiphase flow in porous media is based on the following

form of Darcy’s law of force [1, 8]:

Vo = —K)\a(%pm for a=w,g,o. (2.3)

where K denotes the absolute permeability of the porous medium, A, is the
mobility of phase «, and p, is the pressure of phase a. The mobility is usually
expressed as A\, = ko/pa, the ratio of the relative permeability k, and the
viscosity ji, of phase .. In the discussion now, we assume that the pressures in

the water, oil and gas are the same, that is p, = p,, = p, = p. This is the same
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as neglecting capillary pressure effects among the fluids; this approximation is
valid in special circumstances.

The porosity ¢ and absolute permeability K are associated to the rock; we
will take them to be constant. Neglecting thermal effects and compressibility,
Ue and p, are constant too, and we can rewrite (2.1) without p,.

Let us denote the total mobility by

A=) A (2.4)

and define the fractional flows by
fa=2a/\, for a=w,g,o0. (2.5)

Of course,

> F=i (2.6)

Introducing the total seepage velocity v = )" v, We can write that
Vo = Vg (2.7)
Therefore, by (2.1) and (2.7), the equations governing the flow are
0 0
a(qﬁsa) + %(Ufa) = 07 for a= w, g, o. (28)

Summing (2.1) on & we find Zv = 0, so that v is a function of ¢ alone.
Assuming that v never vanishes, it is possible to change the variable ¢ so that v
is constant. As v is nonzero, we can set t = (K /v?)t and 2 = (K /v)Z, thereby
removing v, ¢, and K from system (2.8). For simplicity of notation, we drop
the tildes.

If we choose s, and s, as the dependent variables, the Buckley-Leverett
system for three-phase flow may be written as:

aﬁ + afw(sw7 sg)

ot ox =90,
(2.9)

85, | fylsus) _

ot Ox G
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3. Hysteretic Scanning Flow for Three Phases in Porous
Media

In this model, we assume that the oil phase exhibits hysteresis phenomena in
its permeability, while the water and gas phases do not. Thus the internal
distribution of the three fluids in an infinitesimal volume, resulting from its
past evolution, is described by the value of a parameter 7, which is a hysteresis
parameter. This is the case when the fluid mixture is in “scanning” mode.

In the “scanning” mode, in general, the corresponding expression for oil
permeability &, depends on both s, and on the hysteresis parameter 7, varying
in some interval. See [2, 3, 4, 5]. Thus Darcy’s law for the seepage flow speed
of oil may be written as:

K

Up = —Zkf(so; W)é (scanning). (3.1)
where k7 is the oil relative permeability function in the scanning mode, repre-
sented in Fig. 3.2.

Equation (3.1) is valid in the “scanning” range of oil saturations, s!(r) <
$o < 82(m), shown in Fig. 3.1, which will be discussed later. Let us start with
circumstances such that the mixture of fluids is in a “scanning”, or reversible,
state. If the saturation is changed, the value of 7 describing the fluid state stays
fixed, and the oil permeability changes with saturation following the “scanning
curve” determined by the initial configuration (see Fig. 3.1, with 7 = 7).

Movement along the interior of a scanning curve is reversible. However, if the
oil saturation increases too much, the internal configuration of the fluid changes.
This takes place when the state reaches the intersection of the scanning curve
with the rightmost curve in Fig. 3.1. This intersection occurs when s, = s2 (7).

As long as the oil saturation continues to increase in time, the oil perme-
ability follows this rightmost curve. Since water (and/or gas) “drains” when oil
saturation increases, this curve defines the drainage oil permeability function,

denoted by k2 (s,), which also is represented in Fig. 3.2. Thus we have Darcy’s
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During drainage, the hysteresis parameter 7 changes. From the above dis-
cussion, it follows that this happens so that s, = sP(w) is defined implicitly
by

kD (s,) = kZ(sp;m) (drainage). (3.3)

Similarly, after starting in a scanning mode, if the oil saturation decreases
too much, the state reaches the intersection of the scanning curve with the
leftmost curve in Fig. 3.1. This intersection occurs when s, = sI().

As long as the oil saturation continues decreasing in time, the oil perme-
ability follows this leftmost curve and defines the imbibition oil permeability

function, denoted by k!(s,), which also is represented in Fig. 3.2. We have
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Darcy’s law
_ K I ap : R 8So s o .
Up = =i ky(s0) pe if s,=s,(m) and 5 < 0 (imbibition);  (3.4)

we also have that s, = si() is defined implicitly by
kl(s,) = k2 (so;m) (imbibition). (3.5)

Finally, when the fluid state is initially in drainage or in imbibition mode
and then the oil saturation tendencies reverse sign the fluid goes back into a
scanning mode. Only at the end states where the drainage and imbibition curves
intersect the state can change directly between imbibition and drainage upon
saturation tendency reversals.

In order to be more precise about the state space variables we will make
the following assumptions keeping in mind the example k,(s,) = s,2 and the
assumptions in [3, 4, 5]. Let S be the closure of the scanning region in state space

for variables s, and , defined as § = {(s,;7) [s}(7) < s, < sP(m), 0 < 7 < 1},

see Fig. 3.1.
k* € C?0,1], for a=D,]I, (3.6)
dke
kX(0) =0, k¥(1)=1, 7 (0)=0, for a=D,I, (3.7)
So
kD(so) < kl(s,), for 0<s,<1, (3.8)
dk& ke
>0 and >0, for s,€(0,1)anda=D,I. (3.9
ds, ds?

Hypothesis (3.8) is true for most reservoirs. One physical mechanism to
explain it is related to the change in the angle made by microscopic oil/water
interface at pore walls when flow reverses between imbibition and drainage. We
also assume that the scanning curves foliate the scanning region as 7 varies

and that the graphs of the oil permeability functions in the scanning region are
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smooth and intersect the graphs of the imbibition and drainage oil permeability

functions transversally:

s8(0)=0, s§(1)=1, for «a=D,I, (3.10)
k3 € C3(S), (3.11)
5
kS >0, and Ok; >0, in &, (3.12)
on
ok gl 4 .
D5, >0, and 92 >0, in &, (3.13)
Oky | a ks (o
s (s¥(m);m) < s (s¥(m)) for 7€ (0,1), and =D, I. (3.14)

The assumptions (3.14) guarantee that in the drainage and in the imbibition

‘f;g > 0, for « = D, I. This means that in the drainage and

regimes we have
in the imbibition regimes the relations (3.3) and (3.5) also define (implicitly)
7w = m(s,) for a = D, I, respectively.
Finally we make the technical assumptions that
2L 21.8 219 21.8
T a2t W 50

(3.15)

along the curves s, = s%(m), for a = D,I. These assumptions simplify the

geometry of the foliation and its relationship with the boundary of S.

Calculations show that the assumptions in (3.15) imply that a;;g* > 0, for
« = D, I and that the boundary curves of the domain S have the form exhibited
in Fig. 3.1.
In order to unify the nomenclature let us define the “global” oil permeability
function in the domain S:
k3 (857)s if 7P(s,) <m<nl(s,) (scanning),

ko(s0;7) = ¢ kP (s,), if 7=mP(s,) (drainage), (3.16)
kL(so), if 7=m(s,) (imbibition).
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With this notation we have Ay(Sy) = Kw(Sw)/tw, Ag(Sw) = ko(sg)/ g and
Ao(S0;m) = ko(S0;m)/1to. Thus the flow with hysteresis for three phases in
porous media may be modeled by the 2-equation system (2.9), augmented in
the scanning mode by one equation, or augmented in the drainage or in the

imbibition modes by specific restrictions, as follows:

85y | Ofuw(suisgim) _
{ + 0 (3.17)

¢
dsg + afg(swyxsgiﬂ') =0
ot ox -

a) & = if ko(s0; ) = k3 (505 7) (scanning),
b)m=7P(s0), ifko(s0;7) = kP (s,) and %2 > 0 (drainage), (3.18)
o)m=ml(s,), ifko(so;m) =kl(s,) and %2 <0 (imbibition),
where the flow functions f,, and f, were defined in (2.4-2.5).
The state space for system (3.17 - 3.18) can be defined as

Q={(sw,89;m) ER*|0<5,<1,0<5,<1,0<8,+5 <1,

TP(1 = (s +59)) <7 <7/ (1— (50 + 50))} - (3.19)

4. The Extended Flow Functions

In the construction of the Riemann solution of system (3.17-3.18), besides the
waves connecting two initial states states in the same regime, scanning, imbibi-
tion or drainage, we have also to consider the possibility of connecting states in
distinct regimes. This is done by considering the extended fractional flow func-
tion, introduced in [2] for two phase flow, which we reintroduce here for three
phase flow. For reader convenience, they are described briefly in the Appendix.

To a fixed value of the hysteresis parameter 7 = 7 in the interval [0, 1], we
associate the following piecewise smooth function, denoted by ., the graph of

which is represented in bold in Fig. 3.1 in (s,;7) space. We define:

7l (s,), if 0<s,<sl(r) (imbibition),
Pel8e) =4 7 if si(7) <s,<sP(r) (scanning), (4.1)
P (s,), if sP(r)<s,<1 (drainage) .

The T—extended flow functions relative to the oil phase correspond to the

restrictions of the standard flow functions, defined in Section 2, to the curve
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(805 % (80)). For example, the T—extended oil permeability function k], repre-

sented in bold in Fig. 3.2 in (s,; k,) space, is defined as:

ki(so),  if 0 <s,<si(T) (imbibition)
k7 (S0) = koS0, ¥r(80)) = k5 (s0;7), if sL(T) < 8o < sZ(7) (scanning),
kP(s,), if sP(r)<s,<1 (drainage) .
(4.2)

Similarly, we define the extended mobility of phase oil, AT = k7 /41, and the
total extended mobility as AT = A, + Ay + A7.
Finally, the T—extended fractional flow functions are defined in terms of A™

as follows:

oo e e A (4.3)
b g9 AT o AT

In the particular case of two phase flow (for example, s, =0, and s = s, =
1—3,), the extended fractional flow function f7(s) is represented in Fig. 7.1 of
the Appendix. Notice that the fractional flow function f; is piecewise smooth
and consists of three portions: drainage, scanning and imbibition, represented
in bold in Fig. 7.1 by fP, f¥ and f!, respectively. The construction of the

Riemann problem for two phase flow also is shown in the Appendix.

5. The Simple Model

We construct a simple three phase model with hysteresis, whose Riemann solu-
tion is easily described. From now on we use the notation u for water saturation
and v for gas saturation. Let us define z = u + v. With this notation the oil
saturation is s, = 1 — 2. We also define the functions 22(7) = 1 — sP(n),
ZI(m) =1 — si(r). In the simple model, defined by equation (5.1), we will as-
sume that water and gas are miscible; that is, we will make use of linear relative
permeability functions for water and gas, k,(u) = u, k4(v) = v, respectively,
with corresponding viscosity p,, = py. Without loss of generality, the common

value ., = g can be set to 1. Thus the mobilities are

() =u, Ag(v) =v, Ao(2;57) = pko(l — 2;7m), (5.1)
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where 0 < p < 1 is the gas-oil viscosity ratio and k, is defined in (3.16), under
the assumptions (3.6-3.15).
Notice that the total mobility A, defined by equation (2.4), depends on z

and 7 only. Thus for simplicity, we define the function

k(z;m) = ko(1 — 2y m), (5.2)
we write
A=Azm) =2+ pk(zm), (5.3)
and we introduce
=X (5.4)

The relations in (3.17-3.18) may be written as

u+ (ug)z =0

{ v+ vqe=0 (5.5)
a) & =0 (scanning),
b)r =7P(1—2) and & <0  (drainage), (5.6)

or=nl(1-2) and & >0 (imbibition).

5.1. The waves in the scanning regime. In the scanning regime the three
phase flow for the simple hysteresis model is governed by equations (5.5-5.6a).
Let us begin our analysis by taking 7 to be constant. Thus on this plane
with constant 7 in Q the system (5.5-5.6a) reduces to the system (5.5), which
means that two of the three characteristic speeds of the complete system (5.5-
5.6a) are the characteristic speeds of system (5.5). It is well known [9] that for
each constant 7 the system (5.5) possesses a linearly degenerate characteristic
field with speed a. = ¢, which corresponds to contact discontinuities in the
Riemann solution of (5.5), with associated characteristic field r, = (q,, —gu,0)T.
We call the contact waves c—waves. Also, the other characteristic speed is
iz

a, = g+ ugy + vq,, which is associated to the characteristic field r, = (u, v;0)".

We call the waves associated to this characteristic field z—waves.
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The orbits of the z—waves in the scanning regime may be parameterized by
z, taking a constant 7w and a constant 6 such that

u = zcos §/(cosf +sinh),

v = zsin 0/(cos @ + sin 6). (5.7)

Then along the orbits of the z—waves the equations in (5.5-5.6a) reduce to

the following scalar conservation law
z + f(zv ’/T)a: =0, (58)
where

f(z;m) = 2q(2; ). (5.9)

Thus, the z—waves may be obtained as solutions of the scalar equation (5.8)
with flux function given by (5.9). Such z—waves are obtained as in Buckley-
Leverett solution by using Oleinik’s construction, with z restricted to the inter-

val (zP(r), 2! (7)), for each constant 7.

Remark 1. We call z € [0,1] the “equivalent saturation”. Denoting the
z—derivative by the superscript “prime” we have that q, = q, = ¢, and we

can write for z > 0 and any 7 in the closure of the scanning region.

ac(z;m) = f(z5m) [ 2, re(zim) = (1, _170)T7 (5‘10)

a.(z;m) = fl(z;7), r.(z;7) = (u,v;0)7. (5.11)
Notice that lim, o a.(z;7) ezists; it allows us to define a,(0;).

From (5.10), we obtain that the orbits of the c—waves (contact waves) are
straight lines with constant = and constant z in €, along which a, is constant.
Now let us take into account the variation of the parameter 7 in equations
(5.5-5.6a). Condition (5.6.a), in the scanning mode, gives rise to a stationary
contact wave in the Riemann solution, which was discussed in [2, 3, 4]. We

have:
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Lemma 5.1. In the scanning region, the system (5.5-5.6a) possesses a station-
ary contact wave. The orbits for such stationary waves are contained in planes

with constant 6 in 2. They are curves along which f(z;m) is constant.

Proof: The Rankine-Hugoniot condition for equation (5.6.a) yields the exis-
tence of the stationary wave. Substituting this zero shock speed in the Rankine-
Hugoniot condition for (5.5) we obtain that the associated orbits are contained
in planes with constant 6. Finally, restricting (5.5) to planes with constant 0,
as in (5.7), and rewriting the Rankine-Hugoniot condition for equation (5.8) we
obtain that f(z;7) is constant.

O

Remark 2. (Implications for the construction of Riemann solutions). Summa-
rizing the results of this subsection, the orbits of the characteristic fields in the
scanning regime, given by system (5.5-5.6a), consist (i) of segments of straight
lines with constant z (i.e. constant equivalent saturation) and constant 7, along
which the characteristic speed a. (in (5.10)) is constant; (ii) of segments of
straight lines through the origin with constant 0, and constant w, along which
the equivalent saturation varies, the equations in (5.8), (5.9) are satisfied and
the characteristic speed is a, (in (5.11)); and (iii) of curves with constant 0

along which f(z;7) is constant and the characteristic speed is zero.

5.2. Wave resonance in the scanning regime. To solve the Riemann
problem for system (5.5-5.6a), we have to compare wave speeds associated to

the three distinct characteristic fields.

Lemma 5.2. Assume m € (0,1) and z € (2P(w), 2! (n)). There are neither
resonances between stationary waves and z—waves nor between stationary waves
and c—waves. The z—waves and the c—waves are resonant at the straight line

{z = z¢;m =7}, if and only if,

Klegmg =~ (5.12)
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Proof: Because g’f > 0 (see 3.13) we have that k' < 0 for z € (2P (7), 2! (7)).
ot

A direct calculation in (5.11) yields a, = M Since z > 0, the function
(z + pk)?

k is positive and pk’ is negative, within the scanning region we have a, > 0.

This implies that there is no resonance between stationary waves and z—waves.

Similarly, since pk > 0 we have that a, = ¢ = (z + pk)~! > 0, and again there

is no resonance between stationary waves and c—waves within the scanning
region. Finally, equating a, to a., we complete the proof.

d

Now let us consider the final possibility of resonance in the scanning regime,

between z—shocks and c—waves.

Lemma 5.3. Let 7 and 0 be constant and z € (zP(w),z'(x)). For equation
(5.8) with f given by (5.9), consider a shock between (zr,0;7) and (zg,0;7)
with shock speed o. There are two possibilities. Fither the shock speed coincides
with neither contact speed at sides (z,0;m) and (zgr,0;7), or else the shock
speed coincides with the contact speeds at both sides (zr,0;7) and (zg,0;7),
that is

oo Teum _ flrT) (5.13)
21 2R

In the latter case, the coincidence in the (z,0; ) space occurs along two straight
lines on the plane with constant w. They are defined by z = zy, and z = zg,

respectively.

Proof: The shock speed for (5.8) is
_ fam) = faim)

14
p—— (5.14)

Equating ¢ to a. in Eq. (5.10) we conclude (5.13).
|

Remark 3. (Implications for the construction of Riemann solutions). Equa-

tion (5.18) says that for each value of 7, the coincidence of shock speeds o (given
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by slopes of secants) with contact speeds (given by slopes of lines through the ori-
gin) can be found by plotting the graph of the function f given in (5.9) in the
plane (z, f). The double coincidence given by Eq. (5.13) locates changes from
z-waves (lines in (u,v; ) space through the origin of the plane with constant )
to c-waves (lines in (u,v; ) space parallel to the hypotenuse of the saturation

triangle on the plane with constant 7).

5.3. The waves in the drainage and in the imbibition regimes. When
the fluid movement is restricted to a drainage (with %" > 0) or to an imbibition
regime (with %1 < 0), we call it a “pure” regime. In such a case the flow with
hysteresis is modeled by the system in (5.5) together the restrictions in (5.6b)
in the drainage regime or (5.6¢) in the imbibition regime.

The main difference between the scanning regime and a pure drainage or
imbibition regime is that in the scanning regime there are stationary waves as
consequence of equation (5.6a), while in a pure regime there are only c—waves
and z—waves, since equation (5.6a) is replaced by relations (5.6b) or (5.6¢).
Thus the results of subsections (5.1-5.2), such as Remark 1, Lemma 5.2 and
Lemma 5.3, relative to the characteristic speeds a. and a, are maintained, with
the restrictions 7 = 7%(1 — 2), a = D, I.

We omit the proofs in this subsection and in the next ones, because they
that are similar to those in the subsections (5.1) and (5.2).

For (z, 0, 7) in a pure regime we have a.(z;7) = f(z;7%(1 — 2)) / z,a = D, I,
and since the first two components of r.(z;7) in (5.10) reflect the fact that the
orbits of the c—waves lie on planes with constant z in (z, 6, ) space, it follows
that 7%(1 — 2) is constant and the third component of r.(z;7) is also zero.
Thus, in a pure regime too the orbits of the c—waves consist of straight lines
parallel to the hypotenuse of the saturation triangle with constant 7. The other
characteristic speed is a,(z;7) = f'(z;7*(1 — 2)). The first two components
of r, are the same as in (5.11), but the third component is not zero, because
7*(1— z) varies with z along the orbits of r,. Thus the orbits of the z—waves in

a pure regime consist of curves with constant 6 along the surface 7 = 7*(1 — z)
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with « = D, I. The z—waves also may be obtained as solutions of equation
(5.8), with f given in (5.9).

5.4. Wave resonance in a pure regime. The version of Lemmas (5.2) and

(5.3) for a pure regime are given in Lemmas (5.4) and (5.5), which follow.

Lemma 5.4. Consider flow in a pure regime. Then z—rarefactions and the

c—waves are resonant at a straight line {z = z,;m = .}, if and only if,
K (2g;m) = —pt, (5.15)

where 7, = (1 —2.), « = D, I for drainage or imbibition regime, respectively.

Remark 4. We will assume in this work that in each pure regime equation
(5.15) possesses exactly one solution z.. This means that in each pure regime
there is a straight line where the c—waves and the z—rarefaction are resonant.
See Fig. 5.1 with z. = z¢r, corresponding to a resonance in the imbibition

regime.

Lemma 5.5. Consider flow in a pure regime o (where o = D or a = I,
for drainage or imbibition, respectively) and 6 constant. Consider the states
(21,0;7) and (zg;0;7g) with 7, = 7*(1 — 2z) and 7gp = 7*(1 — zg). Con-
sider a shock for equation (5.8) with f = f(z;7*(1 — z)) given by (5.9) between
(21,0;7L) and (zg,0;7r) with associated shock speed o. There are two pos-
sibilities. FEither the shock speed coincides with neither contact speed at sides
(21,0;7) and (zg,0;7R), or else the shock speed coincides with the contact

speeds at both sides (z,0;7L) and (zg,0;7r), that is

o= fleanim) f(ZRQWR)'

Zr ZR

(5.16)

In the latter case, the coincidence in (z,0;7) space occurs along the two straight

lines {z = z,, m =71 —2z1)} and {z = zr, 7 = 7*(1 — zgr)}.
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5.5. Waves connecting distinct regimes. In the previous subsections we
discussed the waves and their coincidence when the fluid flow is restricted to
the scanning, or to the drainage, or to the imbibition regimes. Now we discuss
the possibility of waves connecting states in distinct regimes. To do so, we will
make use of the concept of extended flow functions, introduced in Section 4.
Because we use the variable z = 1 — s, here, we redefine the extended

functions in the variable z. We have:

aP(1—2z), if 0<2z<2P(7) (drainage) ,
¢ ()=, (1—2)=1¢ T, if 2P(7) <z <2!(r) (scanning),
al(1—2), if Z(r)<2<1 (imbibition).
(5.17)
The 7—extended oil permeability function £7(z) is defined as:
k" (2) = k(z; 6-(2)) (5.18)

Similarly, the 7—extended fractional flow function for equation (5.8) is de-
fined in terms of £7(z) as follows:

z

7(2) = f(20:(2)) = = (5.19)

The graph of function f7 is represented in Fig. 5.1 in bold.

Remark 5. According to assumptions in (3.10), if T = 0 then zP(0) = 2!(0) =
1 and f° coincides with the drainage flow function fP, since k* = kP. Ifr =1
then zP(1) = 27(1) = 0 and f' coincides with the imbibition flow function f7,
since k' = k', If 7 € (0, 1), then from assumptions (5.6 - 3.14) f7 is piecewise

smooth with finite lateral z— derivative at the joining points zP (1) and 2%(7).

From the Remark 5 above, the functions a.(z; ¢,(z)) and r.(z; ¢, (2)) are
continuous when the fluid flow changes from one regime to the other, but a,
and r, are only piecewise continuous, since they depend on the z—derivative.

The resonances between the speeds a, and «, restricted to the curve (z; ¢,(z))
must be considered for z in each of the disjoint intervals [0, 2 (7)], (2P (1), 21(7))
and [2!(7), 1]. In each interval, the resonances behave as in Lemmas 5.2 and 5.4,

but at the points z”(7) and 2!(7) the lateral z—derivatives must be considered.
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The results of Lemmas 5.3 and 5.5 about coincidence of shock speeds are
also maintained, but we may have left states and right states in distinct regimes.
We have:

Lemma 5.6. Consider a fized T € [0,1] and a constant . Consider (zr,0; )
and (zg,0;7r) such that mp, = ¢,(z1) and mr = ¢-(2r). Consider a shock for
equation (5.8) with f given by f7 in (5.19), between (zr,0;7L) and (zg,0;7R)
with associated shock speed o. There are two possibilities. Either the shock speed
coincides with neither contact speed at sides (zp,0;7) and (zg,0;7g), or else
the shock speed coincides with the contact speeds at both sides (zr,0;7) and

(zr,0;TR), that is

_ f(z0) _ f7(zR)

2L ZR

: (5.20)

In the latter case, the coincidence in the (u,v;m) space occurs along the two

straight lines {z = zp, m = ¢;(z21)} and {z = zg, ® = ¢, (21)}.

From (3.9), (3.13) and (3.14) it is easy to see that there are no resonances be-
tween imbibition or drainage rarefaction waves with scanning rarefaction waves,

nor with stationary waves.

Remark 6. Since the graph of the function f™ possesses two points with dis-
continuous derivative, there may exist a triple coincidence of shock speeds, as

shown in Fig. 5.2 with 2z = 2P and 2z = 2L.

Remark 7. (Implications for the construction of Riemann solutions). Equa-
tion (5.20) says that for each value of T, the coincidence of shock speeds o
(given by slopes of secants) with contact speeds (given by slopes of lines through
the origin) can be found by plotting the graph of the function f™ given in (5.19)
in the plane (z, f7). The double coincidence given by Eq. (5.20) locates changes
from z-waves (curves in (u,v; ) space along planes with constant 8) to c-waves

(lines in (u,v;m) parallel to the hypotenuse of the saturation triangle).
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I

I f

o 1 z
Figure 5.1: The 7 extended Figure 5.2: Triple coinci-

flow function. dence of shocks.

6. The Riemann solution

6.1. Preliminaries. In order to reduce the complexity of the example of Rie-
mann solution to be described in the Subsection 6.3, we make some simplifying
assumptions.

First off all, we assume that the problem to be solved has weak drainage-
imbibition hysteresis strength, which means that for each value of the parameter
7 we have that s, varies in a small interval (s(7), (s2(7)).

Second, we assume that: % < i for (so;m) € S. One of the consequences is
that the equation (5.12) does not possess any solution, which means that there
are no resonances in the scanning regime. Consequently there is no generic
scanning shock with speed coinciding with a contact speed analogous to Eq.
(5.13), for any value of 7.

Third, just to simplify the description of the Riemann solution, for each value
of m = 7 we assume that the graph portion of the function f” corresponding

to z in the interval (22 (1), 21(7)) is a straight line segment (with slope a, less
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than a.). This means that the scanning z—waves will also be contact waves in
this work. In this way, we avoid some technicalities in analyzing the internal
structure of the scanning waves.

In general, each level set with constant 7 defines a two dimensional scanning
leaf of the scanning foliation in (u, v;7) space. We call this surface a scanning
surface. For the simple model each leaf is a surface ruled by lines with constant
z and in particular, under the third simplifying assumption the scanning surface
reduces to a planar surface.

We recall that according to the Remarks and Lemmas of subsections 5.1-5.5
the fundamental waves in the Riemann solution are stationary waves, z—waves
and c—waves. As we saw in the proof of the Lemma 5.2 for the scanning
regime the speeds of z—waves and c—waves are positive. An analogous proof
for the drainage and imbibition regimes shows that the wave speeds a, and a,
are positive, except for the extremities z = 0 and z = 1. Thus, given a left
state L = (up, v, 7)) = (21,01;7) generically the first wave in the Riemann
solution from state L to a state R = (ug, vr; 7r) = (2r, 0r;7Tr) is a stationary
wave.

If R lies on the orbit of the characteristic field associated to the stationary
wave through L, then the Riemann solution is complete and consists only of the
stationary wave. In this case, according to Lemma 5.1, we must have 0 = 0,
and f(zg; 7r) = f(20;7L).

If R does not belong to the orbit associated to the stationary wave through
L, then the c—waves and z—waves may be present in the Riemann solution, after
a constant state M on the stationary wave through L. Thus we have to consider
a two dimensional surface in state space 2 consisting of intermediate states M
such that the Riemann problem with generic left state M and right state R is
solved by a sequence of c—waves and z—waves under the compatibility condition
that wave speed must increase from left to right in the physical space (x,t). We
call this surface the M —surface associated to R, or only the M —surface, when
it is clear which R is being considered.

Once we have obtained the M —surface associated to R, because of transver-
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sality between the stationary orbit and the M —surface, the Riemann problem
with left state L and right state R may be solved uniquely by determining the
intermediate state M defined by the intersection of the stationary orbit through
L with the M —surface.

6.2. The R—regions. The states R for which the wave structure and topology
of the M —surface are similar are lumped into an R-region. From the Remarks
2, 3 and 7 the orbits of the c—waves consist of straight lines with constant z
and constant 7, but the orbits of the z—waves depend on 7 and z and lie along
planes with constant €. It turns out that it is more convenient to represent
the R—regions in (z, f7) variables. Each point in (z, f7) space corresponds
to a straight line segment in (u,v;w) space for which u + v = z = constant
and m = constant, and each curve corresponds to a surface ruled by such
straight lines. Each section 6 = constant of the state space boundary is given
by m = 7P(1—2) and m = 71 (1 — 2); one such section is shown in Fig. 3.1 in the
(80; ) space and corresponds in the (z, f7) space to the graph of the drainage
flow function f” = f° and to the graph of the imbibition flow function ff = f!,

respectively, shown in Fig. 5.1.

For this problem, there are 3 disjoint R-regions, represented in Fig. 6.1 as
Scan(1), Scan(12) and Scan(2). The regions Scan(1) and Scan(2) are volumes.
They are separated by the ruled surface Scan(12). This surface Scan(12),
represented in Fig. 6.1 as the segment of the straight line tangent to the point
C! (which continuation through the origin is not drawn), is defined as the set
of states R in state space 2 such that a.(zg;mr) = a,(z; 7 (1 — 2z.)), where z,
is the z—coordinate of point C!. The point C! in Fig. 6.1 corresponds to the
resonant straight line {z =zgm=nl(l- zc)} established in Lemma 5.4 and in

Remark 4 for the imbibition regime.

We also represent in Fig. 6.1 the boundary surfaces Drain(1) and Imb(1)
of the R—region Scan(1) and the boundary surfaces Drain(2), Drain(2'),
and Imb(2) of the R—region Scan(2). They correspond to the pure regimes,
drainage or imbibition, for the right state R. The boundary between Drain(2)
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Drain(2))
R — Scan(2)__ - 1
2
. CD ! \(’E‘EL)
Drain(2) i
|
Scan(12) i
|
|
Scan(1) |
Imb(1) 1
|
|
|
Drain(1) |
|
|
L Z
0] 1

Figure 6.1: R—Regions for the Riemann
solution.

and Drain(2') is defined by the resonant straight line {z = z¢o, 7 = 7(1 — z¢0) }
while the boundary between Imb(1) and Imb(2) is defined by the resonant

straight line {z = z¢r, m = 7! (1 — 2¢1)}, as established in Lemma 5.4.

Remark 8. The relative size of a. and a, in the three R—regions and their
boundaries shown in Fig. 6.1 is the following (the relationship is based on
assumptions (8.6-3.14) and on the equations (5.3), (5.4), (5.9), (5.10), (5.11)

and on the simplifying assumptions considered in the Subsection .

In Scan(1), Scan(12), Scan(2), Imb(2) and Drain(2'), a. > a,.
In Imb(1), Drain(1l) and Drain(2), a. < a,.

6.3. The construction of the M —surfaces. Let R = (ug,vr;7r) =
(2r, 0r; mr) in the R—region Scan(1).

In order to describe the sequence of c—waves and z—waves that define the
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Figure 6.2: Construction
of the M—surface for
R € Scan(1), represented in
(z, f7) space.

Figure 6.3: Projection of the
M —surface for R € Scan(1)
in saturation triangle # =
TR-

M —surface consider the 7-extended fractional flow function with 7 = 7g, de-
noted here by f®. The graph of the extended flow function f¥ is represented
in bold in Fig. 6.2 as the curve [0JPRN1]. As 6 varies the portion [0, P] corre-
sponds to states in 2 in the drainage regime; the portion (PRN) corresponds
to states in the scanning regime and the portion [/N1] corresponds to states in

the imbibition regime.

In order to determine all sequences of waves connecting M in the M —surface
to R, we have to compare the speeds of c—waves (given by slopes of straight
lines through the origin and through a state on the curve [0PRN1] in Fig. 6.2),
with speeds of z—waves (given by the slope a, in each segment [0P], (PRN) or
[V1] of the graph of f£). To do so, consider the straight line with slope given by
a.(R) = f%(zr) / zr through the origin 0 and through the state R in Fig. 6.2.

Since a,(R) < a.(R), this line crosses the drainage portion [0P] and crosses the
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imbibition portion [N1]. These intersections define the points R? and R! in
Fig. 6.2, respectively. The z—coordinates of R”, R! and C! are denoted by
zgp, zgpr and z¢1, respectively. The states RP and R’ in Fig. 6.2 correspond to
the states with z—coordinates 2P and 2! in Fig. 5.2 established in Lemma 5.6
and Remark 6, where contact speeds and z—shock speeds coincide.

According to Lemma 5.5, another change in speed order may occur at the
point CT of Fig. 6.2, where there is a coincidence between the speeds a, and a,
in the imbibition regime.

Thus the graph of the extended flow function f% is divided into four disjoint
portions represented in bold in Fig. 6.2 as [0RP], [RPR!], [R! C'] and [C11].

Lemma 6.1. The M—surface for any state R in R—region Scan(l) is a
ruled surface, which is piecewise smooth, and consists of four components cor-
responding to the portions [ORP], [RPR!], [R'C'] and [C'1] of the graph of
f® in Fig. 6.2. The sequence of waves connecting an intermediate state M =

(2ar, Onr; Tar) to the state R is defined in terms of the coordinate zps as follows:

(a) For 0 < zpy < zgp, the sequence is: (zar,0ar;Tar) — (2ar, Or; Tar) ——

(2R, Or; TR), denoted by cz in Figs. 6.2 and 6.3;

(b) For zgp < zy < 2z, the sequence is: (2ar, Oar; Tar) — (2R, Orr; TR) —
(2R, Or; TR), denoted by zc(R) in Figs. 6.2 and 6.3;

(c) For zpr < zy < zgr1, the sequence is: (2ar, Onr; Tar) — (2ar, Or; Tar) —

(2R, O0r; TR), also denoted by cz in Figs. 6.2 and 6.3;

(d) For z¢r < zpr < 1, the sequence is:
(za1, 0013 01) == (201,005 or) — (2¢1,0R;Tcr) — (28, 0R;TR), de-

noted by [zc(C1)z] in Figs. 6.2 and 6.3, where mgr = 7l (1 — z¢1).

Proof: (a) Since 0 < zp; < zgp the state M belongs to the component of the
M —surface corresponding to the portion [0R”] in Fig. 6.2 and a.(M) < a,(M).
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Thus, consider the c-contact orbit through the state M, given by the straight
line {z = zp; ™ = mar} (see Fig. 6.3).

Consider the state M, the intersection of this c—orbit with the plane 6 = 0.
The speed of the c—wave connecting M to M is a.(M) = a.(M) = f*(za) / 2u-
Now, following Oleinik’s construction, consider the z—shock wave connecting
M to R with speed 0. As we know M corresponds to a point on the graph
of f in the segment [0RP] in Fig. 6.2. Since the secant to the graph of f£
joining any state in the segment [0RP] to R has slope larger than a.(M), the
shock speed o is larger than the contact speed a.(M). Thus the state M can be
connected to the state R by a contact wave followed by a z—shock wave, which
proves item (a).

(b) The state M belongs to the component of the M—surface corresponding
to the portion [RPR!] of the graph of f® in Fig. 6.2. Thus we have a,(M) =
TEB(zar)/ 20 > [fB(2r) — fR(211)] / [28— 22r)- Thus consider the c—orbit through
R, which is the straight line given by {2 = zg; 7 = g} drawn in Fig. 6.3. Let M
be the state defined by the intersection of this c—orbit with the plane 6 = 0,,.
Now consider Oleinik’s construction for equation (5.8) with f = f£ in the
plane 6 = 6y, with left state (zar; war) and right state (zg; 7g). If M is either
a state in the drainage regime corresponding to a point in the portion [RP P]
or a state in the imbibition regime corresponding to a point in the portion
[NRI] of the graph f® in Fig. 6.2, then the z—wave is a shock wave with
speed (f®(zr) — f®(2um))/(2r — 2m); if M is a state in the scanning regime
corresponding to a point in the portion [PN] of the graph f%, then the z—wave
is a contact wave with speed a,(M) = a,(R). In both cases the speed of the
c—wave connecting M to R is larger that the speed of the z—wave connecting
M to M and item (b) is proved.

(c) The state M belongs to the component of the M —surface corresponding to
the portion [R!C] of the graph f% in Fig. 6.2. Thus a.(M) < a,(M) and the
sequence of waves is the same as that obtained in item (a).

(d) The state M belongs to the component of the M —surface corresponding to
the portion [CT1] of the graph of f% in Fig. 6.2. We have a.(M) > a,(M). Thus
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the first wave connecting M to R is a z—wave. By Oleinik’s construction for
equation (5.8) with f given by f% in the plane 6 = 0y, with left state (zpr;7as)
and right state (zg; 7g), this first wave is an imbibition rarefaction wave. Since
the state C! on the graph of f® corresponds to a state (zgr,Ou; 7o), With
mer = 7 (1 — 2¢1), where the c—wave and the z—wave are resonant, it follows
that the z—wave changes to a c—wave at this state. Thus, consider the c—orbit
through the state (z¢r, Oa; mer), which is the straight line {z = z¢r; 7 = wer}
represented in Fig. 6.2 as the state C! and in Fig. 6.3 as part of the vertical
straight line through C'!. Consider the state defined by the intersection of this
c—orbit with the plane 6 = 0 given by (z¢r,0g; m¢r) and represented by the
same point C! in Fig. 6.2. Since the speed a, and the speed a, coincide at
(z¢1,0r; mor), there is another change in wave order from the c-wave to the
z—wave. Following Oleinik’s construction for equation (5.8) with f given by
fE in the plane 0 = 0, with left state (z¢r;m¢r) and right state (zg;Tg), this
last z—wave is a “composite” wave consisting of an imbibition rarefaction wave

followed by a scanning shock wave. This completes the proof of the Lemma.

O

Remark 9. The sequence of waves in item (d) of Lemma 6.1 is only one wave
with a single speed in physical space, represented in state space by four waves
(an imbibition rarefaction, an imbibition contact, an imbibition rarefaction and
a scanning shock) that propagate as a single object, without any intermediate

state in physical space (x,t) separating the state M from the state R.

The M —surface for right states R in the other R—regions and boundaries

may be obtained as limit cases for R in Scan(1) as follows.

If R moves from Scan(1) to Imb(1) the points R, N and R! in Fig. 6.2
coincide. Similarly, if R moves from Scan(1l) to Drain(1) the points R, P

and RP coincide. In both cases, the components of the M —surface remain
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unchanged.
Case R € Scan(12).

If R moves from Scan(1) to Scan(12), according to the definition of surface
Scan(12) the points R and C7 in Fig. 6.2 coincide. In this case, the component
of the M—surface defined by [R!, C!] in Fig. 6.2 with wave sequence given in
Lemma 6.1 ¢ disappears. The other three components of the M —surface remain

unchanged.
Case R € Scan(2).

If R moves from Scan(12) to Scan(2) the point C! in Fig. 6.2 does not exist
because the straight line through 0 and R does not intersect the portion [N1]
of the graph f® any more. Thus the component of the M—surface defined by
the portion [C7,1] in Fig. 6.2 disappears, and we are left with only two com-
ponents of the M —surface, defined by [0, RP] and [R”, 1] with wave sequences

corresponding to items (a) and (b) of Lemma 6.1.

If R moves from Scan(2) or from I'mb(1) to Imb(2) the points R and N of
Fig. 6.2 move over the point C! and coincide. On the other hand, if R moves
from Scan(2) or from Drain(1) to Drain(2) the points R and P of Fig. 6.2
coincide. In both cases the M —surface possesses only two components with
waves sequence corresponding to items (a) and (b) of Lemma 6.1, which are the

same as in case R € Scan(2).

6.4. The transversality. As we said before, in order to complete the Riemann
solution we have to establish the transversality between the stationary orbit
(0—orbit) through L and the M —surface associated to R.

According to Lemma 5.1 the 0—orbits are curves with constant 6 such that
f(z; ) is also constant as z and 7 vary. This means that the 0—orbit through L
corresponds to a horizontal straight line through L in space (z; f7) in Fig. 6.2.
Since d f®/d z = a, > 0 it follows that the horizontal straight line through state
L will never be tangent to the graph of f projected on the plane 6 = 0, which
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means that the 0—orbit is transversal to the ruled M —surface.

Thus we have proved the following

Theorem 6.2. For a given left state L and a given right state R in state space
2, the Riemann solution for the simple model (5.5-5.6) exists and generically
consists of a stationary wave connecting L to an intermediate state M followed
by a sequence of c—waves and z—waves connecting M to R. The sequence is

determined by with component of the M —surface the state M belongs to.

Under the assumption that the two phase Riemann problem in the Appendix
has a unique solution for each initial data, we believe that the arguments in this
section could be used to establish the uniqueness of solution for each initial data,

but we do not do it here.

7. Appendix - Solution of the Riemann Problem for the
Two-Phase Flow Model

In this Appendix we obtain the Riemann solution for the two phase hysteresis
model (water-oil). This solution was proposed in [3], [4], [5], and in [2]. The
dependent variable is the water saturation s = s,, = 1—s,. We will use notation
introduced in Sections 3 and 4. We assume that the fractional flow functions,
fP and f7, for the drainage and the imbibition regimes are C? functions and

possess only one inflection point, respectively, with

0 < f(s) < fP(s), for se(0,1),
£10)= 1°0) =0,
=0 =1.
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In this case the flow is modeled by the system

s+ f(s;m)p =0 (7.1)
on g
Vi 0 (scanning), (7.2)
7=7P(1~-3s) and % < 0 (drainage), (7.3)
m=7'(1-3s) and g—i >0 (imbibition), (7.4)
where
fP(s), ifr=xP(1-3) (drainage),
fs;m) =2 fS(s;m), ifwP(1—s) <w<7l(l-35s) (scanning), (7.5)
fi(s), ifm=nl(1-5s) (imbibition),

is a continuous function, piecewise C2 and f°(s;) is the scanning fractional
flow function.
For a fixed value of 7 = 7 € (0,1), the 7—extended fractional function

(defined in Section 4) is given by

P(s), if 0<s<sP(r),
Fley=¢ Plex), =K L)< s<dilr); (7.6)
F(s), if sf(r) <s<1,

where sP(7) and s!(7) are implicitly defined by the first equation in (7.3) and
(7.4), respectively.

In the scanning mode the characteristic speeds of system (7.1)-(7.2) are
given by ay = 0 and a; = f,. The waves associated to aq are stationary waves
(contact waves); the waves associated to as are called saturation waves.

From equation (7.2) it follows that the contact curves associated to ag
(0—curves) are represented in space (s, f), as horizontal straight lines, because
the Hugoniot condition gives us that f(s,7) is constant along such orbits.

Since a; = f; > 0 (for s # 0), for a given left state uy, = (sg;mz) and a
given right state ur = (sg;7r), the corresponding Riemann solution consists of
the stationary wave connecting the state uy to some intermediate state uy =

(sar; mar), followed by a saturation wave connecting uys to ug. See Fig. 7.2.
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Figure 7.1: The 7 extended Figure 7.2: Ilustration of the
flow function for the two construction of the Riemann
phase flow. solution.

In order to determine the state uj;, we consider the 7—extended fractional
function f7(s), with 7 = 7g, represented as a bold solid curve in Figs. 7.1 and

7.2.

In the space (s, f), we identify the state uy, with the point L = (s, f(sp;7L))
and the state ur with the point R = (sg, f"(sr)). See Fig. 7.2 for a particular

left state (sp;mL).

Since the graph of f7 is never horizontal (f7 > 0, for s # 0), the horizontal
straight line through L, corresponding to the O—orbit through uy, crosses the
graph of f7 at some point that we define as M = (sar; f7(sar)). For the partic-
ular state (sp;7y), this orbit is represented as the bold horizontal dashed line
through L in Fig. 7.2. This defines the coordinate sy, of the state uy;. The

value of the component 7, depends on which segment of the graph of f7 the
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point M belongs to. We have

mar = 7T2(1 — sp1) for 0 < sy <sP(1); (7.7)
M =T=Tg for sP(1) < sy < s'(7); (7.8)
= 72 (1 — spr) for s'(r) <sy <1 (7.9)

Once we have determined the state ups = (sar;7ar), the saturation wave con-
necting uys to upg is determined by solving the Riemann problem with left state

sy and right state sg, for the scalar conservation law
si+ f7(s)s =0, (7.10)

by using a generalization of the Oleinik’s envelope construction for the contin-
uous piecewise smooth flux function f7(s). In Fig 7.2, such a Riemann solution
is a shock wave connecting sps to sg. This shock is represented by the bold
dashed line connecting the points M and R.

In this way we obtain the values of the water saturation s connecting sps to
sg. The corresponding values of 7 connecting 7y to mg, are obtained according
to equations (7.2-7.4) and (7.7-7.9), that is, mpr = 7g, for sP(ng) < sy <
sl(mg), or m = 7*(1 — s), a = D, I, for s defined by the saturation wave

connecting sys to sg.
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