Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Anthelmintic Drugs for Repurposing against Gram-Negative Bacilli Infections

Author(s): Andrea Miró Canturri and Younes Smani*

Volume 30, Issue 1, 2023

Published on: 09 September, 2022

Page: [59 - 71] Pages: 13

DOI: 10.2174/0929867329666220714092916

Price: $65

Abstract

Bacterial infections are among the leading causes of death worldwide. The emergence of antimicrobial resistance factors threatens the efficacy of all current antimicrobial agents, with some already made ineffective, and, as a result, there is an urgent need for new treatment approaches. International organizations, such as the World Health Organization and the European Centre for Diseases Control, have recognized infections caused by multi-drug-resistant (MDR) bacteria as a priority for global health action.

Classical antimicrobial drug discovery involves in vitro screening for antimicrobial candidates, Structure-Activity Relationship analysis, followed by in vivo testing for toxicity. Bringing drugs from the bench to the bedside involves huge expenditures in time and resources. This, along with the relatively short window of therapeutic application for antibiotics attributed to the rapid emergence of drug resistance, has, at least until recently, resulted in a waning interest in antibiotic discovery among pharmaceutical companies. In this environment, “repurposing” (defined as investigating new uses for existing approved drugs) has gained renewed interest, as reflected by several recent studies, and may help to speed up the drug development process and save years of expensive research invested in antimicrobial drug development.

The goal of this review is to provide an overview of the scientific evidence on potential anthelmintic drugs targeting Gram-negative bacilli (GNB). In particular, we aim to: (i) highlight the potential of anthelmintic drugs for treatments of GNB infections, (ii) review their mechanisms of action against these bacteria, (iii) summarize the outcome of preclinical studies investigating approved anthelmintic drugs that target these bacteria, (iv) provide critical challenges for further anthelmintic repurposing drugs development, and (v) list the specific anthelmintic drugs that may be more likely to be repurposed.

Keywords: Repurposing drugs, anthelmintic drugs, bacteria, infection, antimicrobial resistance and therapy, drugresistant pathogens.

« Previous
[1]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N.; Aboderin, A.O.; Al-Abri, S.S.; Awang Jalil, N.; Benzonana, N.; Bhattacharya, S.; Brink, A.J.; Burkert, F.R.; Cars, O.; Cornaglia, G.; Dyar, O.J.; Friedrich, A.W.; Gales, A.C.; Gandra, S.; Giske, C.G.; Goff, D.A.; Goossens, H.; Gottlieb, T.; Guzman Blanco, M.; Hryniewicz, W.; Kattula, D.; Jinks, T.; Kanj, S.S.; Kerr, L.; Kieny, M-P.; Kim, Y.S.; Kozlov, R.S.; Labarca, J.; Laxminarayan, R.; Leder, K.; Leibovici, L.; Levy-Hara, G.; Littman, J.; Malhotra-Kumar, S.; Manchanda, V.; Moja, L.; Ndoye, B.; Pan, A.; Paterson, D.L.; Paul, M.; Qiu, H.; Ramon-Pardo, P.; Rodríguez-Baño, J.; Sanguinetti, M.; Sengupta, S.; Sharland, M.; Si-Mehand, M.; Silver, L.L.; Song, W.; Steinbakk, M.; Thomsen, J.; Thwaites, G.E.; van der Meer, J.W.M.; Van Kinh, N.; Vega, S.; Villegas, M.V.; Wechsler-Fördös, A.; Wertheim, H.F.L.; Wesangula, E.; Woodford, N.; Yilmaz, F.O.; Zorzet, A. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[2]
O’ Neill, J. Tackling drug-resistant infections globally: Final report and recommendations. Review on Antimicrobial resistance, 2016.
[3]
Antimicrobial resistance. 2021. Available from: https://www.who.int/news-room/fact- sheets/detail/antimicrobial-resistance (Accessed date:17 November 2021).
[4]
Viderman, D.; Brotfain, E.; Khamzina, Y.; Kapanova, G.; Zhumadilov, A.; Poddighe, D. Bacterial resistance in the intensive care unit of developing countries: Report from a tertiary hospital in Kazakhstan. J. Glob. Antimicrob. Resist., 2019, 17, 35-38.
[http://dx.doi.org/10.1016/j.jgar.2018.11.010] [PMID: 30448518]
[5]
Simeon, P.; Godman, B.; Kalemeera, F. Antibiotics’ susceptibility patterns of bacterial isolates causing lower respiratory tract infections in ICU patients at referral hospitals in Namibia. Hosp. Pract., 2021, 49(5), 356-363.
[http://dx.doi.org/10.1080/21548331.2021.1973825] [PMID: 34436942]
[6]
Blasco, L.; Bleriot, I.; González de Aledo, M.; Fernández-García, L.; Pacios, O.; Oliveira, H.; López, M.; Ortiz-Cartagena, C.; Fernández-Cuenca, F.; Pascual, Á.; Martínez-Martínez, L.; Pachón, J.; Azeredo, J.; Tomás, M. Development of an Anti-Acinetobacter baumannii biofilm phage cocktail: Genomic adaptation to the host. Antimicrob. Agents Chemother., 2022, 66(3), e01923-21.
[http://dx.doi.org/10.1128/aac.01923-21] [PMID: 35041503]
[7]
Hegarty, J.P.; Stewart, D.B., Sr Advances in therapeutic bacterial antisense biotechnology. Appl. Microbiol. Biotechnol., 2018, 102(3), 1055-1065.
[http://dx.doi.org/10.1007/s00253-017-8671-0] [PMID: 29209794]
[8]
Li, Z.; Lu, W.; Jia, S.; Yuan, H. Backbone-regulated cationic conjugated polymers for combating and monitoring pathogenic bacteria. ACS Appl. Polym. Mater., 2022, 4(1), 29-35.
[http://dx.doi.org/10.1021/acsapm.1c01672]
[9]
Miró-Canturri, A.; Ayerbe-Algaba, R.; Smani, Y. Drug repurposing for the treatment of bacterial and fungal infections. Front. Microbiol., 2019, 10, 41.
[http://dx.doi.org/10.3389/fmicb.2019.00041] [PMID: 30745898]
[10]
Fischbach, M.A.; Walsh, C.T. Antibiotics for emerging pathogens. Science, 2009, 325(5944), 1089-1093.
[http://dx.doi.org/10.1126/science.1176667] [PMID: 19713519]
[11]
Brown, D. Antibiotic resistance breakers: Can repurposed drugs fill the antibiotic discovery void? Nat. Rev. Drug Discov., 2015, 14(12), 821-832.
[http://dx.doi.org/10.1038/nrd4675] [PMID: 26493767]
[12]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[13]
Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol., 2020, 18(5), 275-285.
[http://dx.doi.org/10.1038/s41579-019-0288-0] [PMID: 31745331]
[14]
Farha, M.A.; Brown, E.D. Drug repurposing for antimicrobial discovery. Nat. Microbiol., 2019, 4(4), 565-577.
[http://dx.doi.org/10.1038/s41564-019-0357-1] [PMID: 30833727]
[15]
Swan, G.E. The pharmacology of halogenated salicylanilides and their anthelmintic use in animals : Review article. J. S. Afr. Vet. Assoc., 1999, 70(2), 61-70.
[http://dx.doi.org/10.4102/jsava.v70i2.756] [PMID: 10855824]
[16]
Costabile, G.; d’Angelo, I.; Rampioni, G.; Bondì, R.; Pompili, B.; Ascenzioni, F.; Mitidieri, E.; d’Emmanuele di Villa Bianca, R.; Sorrentino, R.; Miro, A.; Quaglia, F.; Imperi, F.; Leoni, L.; Ungaro, F. Toward repositioning niclosamide for antivirulence therapy of Pseudomonas aeruginosa lung infections: Development of inhalable formulations through nanosuspension technology. Mol. Pharm., 2015, 12(8), 2604-2617.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00098] [PMID: 25974285]
[17]
Imperi, F.; Massai, F.; Ramachandran Pillai, C.; Longo, F.; Zennaro, E.; Rampioni, G.; Visca, P.; Leoni, L. New life for an old drug: The anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob. Agents Chemother., 2013, 57(2), 996-1005.
[http://dx.doi.org/10.1128/AAC.01952-12] [PMID: 23254430]
[18]
Tam, J.; Hamza, T.; Ma, B.; Chen, K.; Beilhartz, G.L.; Ravel, J.; Feng, H.; Melnyk, R.A. Host-targeted niclosamide inhibits C. difficile virulence and prevents disease in mice without disrupting the gut microbiota. Nat. Commun., 2018, 9(1), 5233.
[http://dx.doi.org/10.1038/s41467-018-07705-w] [PMID: 30531960]
[19]
Xu, J.; Pachón-Ibáñez, M.E.; Cebrero-Cangueiro, T.; Chen, H.; Sánchez-Céspedes, J.; Zhou, J. Discovery of niclosamide and its O-alkylamino-tethered derivatives as potent antibacterial agents against carbapenemase-producing and/or colistin resistant Enterobacteriaceae isolates. Bioorg. Med. Chem. Lett., 2019, 29(11), 1399-1402.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.032] [PMID: 30954430]
[20]
D’Angelo, F.; Baldelli, V.; Halliday, N.; Pantalone, P.; Polticelli, F.; Fiscarelli, E.; Williams, P.; Visca, P.; Leoni, L.; Rampioni, G. Identification of FDA-approved drugs as antivirulence agents targeting the pqs quorum sensing system of Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2018, 62(11), e01296-18.
[http://dx.doi.org/10.1128/AAC.01296-18] [PMID: 30201815]
[21]
Singh, S.; Bhatia, S. In silico identification of albendazole as a quorum sensing inhibitor and its in vitro verification using CviR and LasB receptors based assay systems. Bioimpacts, 2018, 8(3), 201-209.
[http://dx.doi.org/10.15171/bi.2018.23] [PMID: 30211080]
[22]
Seleem, N.M.; Abd El Latif, H.K.; Shaldam, M.A.; El-Ganiny, A. Drugs with new lease of life as quorum sensing inhibitors: For combating MDR Acinetobacter baumannii infections. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(9), 1687-1702.
[http://dx.doi.org/10.1007/s10096-020-03882-z] [PMID: 32328851]
[23]
Sambanthamoorthy, K.; Gokhale, A.A.; Lao, W.; Parashar, V.; Neiditch, M.B.; Semmelhack, M.F.; Lee, I.; Waters, C.M. Identification of a novel benzimidazole that inhibits bacterial biofilm formation in a broad-spectrum manner. Antimicrob. Agents Chemother., 2011, 55(9), 4369-4378.
[http://dx.doi.org/10.1128/AAC.00583-11] [PMID: 21709104]
[24]
Czerwonka, G.; Gmiter, D.; Guzy, A.; Rogala, P.; Jabłońska-Wawrzycka, A.; Borkowski, A.; Cłapa, T.; Narożna, D.; Kowalczyk, P.; Syczewski, M.; Drabik, M.; Dańczuk, M.; Kaca, W. A benzimidazole-based ruthenium(IV) complex inhibits Pseudomonas aeruginosa biofilm formation by interacting with siderophores and the cell envelope, and inducing oxidative stress. Biofouling, 2019, 35(1), 59-74.
[http://dx.doi.org/10.1080/08927014.2018.1564818] [PMID: 30727772]
[25]
Steadman, D.; Lo, A.; Waksman, G.; Remaut, H. Bacterial surface appendages as targets for novel antibacterial therapeutics. Future Microbiol., 2014, 9(7), 887-900.
[http://dx.doi.org/10.2217/fmb.14.46] [PMID: 25156378]
[26]
Chahales, P.; Hoffman, P.S.; Thanassi, D.G. Nitazoxanide inhibits pilus biogenesis by interfering with folding of the usher protein in the outer membrane. Antimicrob. Agents Chemother., 2016, 60(4), 2028-2038.
[http://dx.doi.org/10.1128/AAC.02221-15] [PMID: 26824945]
[27]
Psonis, J.J.; Chahales, P.; Henderson, N.S.; Rigel, N.W.; Hoffman, P.S.; Thanassi, D.G. The small molecule nitazoxanide selectively disrupts BAM-mediated folding of the outer membrane usher protein. J. Biol. Chem., 2019, 294(39), 14357-14369.
[http://dx.doi.org/10.1074/jbc.RA119.009616] [PMID: 31391254]
[28]
Shamir, E.R.; Warthan, M.; Brown, S.P.; Nataro, J.P.; Guerrant, R.L.; Hoffman, P.S. Nitazoxanide inhibits biofilm production and hemagglutination by enteroaggregative Escherichia coli strains by blocking assembly of AafA fimbriae. Antimicrob. Agents Chemother., 2010, 54(4), 1526-1533.
[http://dx.doi.org/10.1128/AAC.01279-09] [PMID: 20086145]
[29]
Ayerbe-Algaba, R.; Gil-Marqués, M.L.; Jiménez-Mejías, M.E.; Sánchez-Encinales, V.; Parra-Millán, R.; Pachón-Ibáñez, M.E.; Pachón, J.; Smani, Y. Synergistic activity of niclosamide in combination with colistin against colistin-susceptible and colistin-resistant Acinetobacter baumannii and Klebsiella pneumoniae. Front. Cell. Infect. Microbiol., 2018, 8, 348.
[http://dx.doi.org/10.3389/fcimb.2018.00348] [PMID: 30338245]
[30]
Miró-Canturri, A.; Ayerbe-Algaba, R.; Villodres, Á.R.; Pachón, J.; Smani, Y. Repositioning rafoxanide to treat Gram-negative bacilli infections. J. Antimicrob. Chemother., 2020, 75(7), 1895-1905.
[http://dx.doi.org/10.1093/jac/dkaa103] [PMID: 32240294]
[31]
Maiden, M.M.; Zachos, M.P.; Waters, C.M. The ionophore oxyclozanide enhances tobramycin killing of Pseudomonas aeruginosa biofilms by permeabilizing cells and depolarizing the membrane potential. J. Antimicrob. Chemother., 2019, 74(4), 894-906.
[http://dx.doi.org/10.1093/jac/dky545] [PMID: 30624737]
[32]
Ayerbe-Algaba, R.; Gil-Marqués, M.L.; Miró-Canturri, A.; Parra-Millán, R.; Pachón-Ibáñez, M.E.; Jiménez-Mejías, M.E.; Pachón, J.; Smani, Y. The anthelmintic oxyclozanide restores the activity of colistin against colistin-resistant Gram-negative bacilli. Int. J. Antimicrob. Agents, 2019, 54(4), 507-512.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.07.006] [PMID: 31299296]
[33]
Miró-Canturri, A.; Ayerbe-Algaba, R.; Pachón-Ibáñez, M.E.; Pachon-Díaz, J.; Smani, Y. In vitro activity of ivermectin in combination with colistin against Gram negative bacilli. 29th European Congress of Clinical Microbiology and Infectious Diseases, Amsterdam, Netherlands 2019.
[34]
Copp, J.N.; Pletzer, D.; Brown, A.S.; Van der Heijden, J.; Miton, C.M.; Edgar, R.J.; Rich, M.H.; Little, R.F.; Williams, E.M.; Hancock, R.E.W.; Tokuriki, N.; Ackerley, D.F. Mechanistic understanding enables the rational design of salicylanilide combination therapies for Gram-negative infections. MBio, 2020, 11(5), e02068-20.
[http://dx.doi.org/10.1128/mBio.02068-20] [PMID: 32934086]
[35]
Wu, C.S.; Li, Y.R.; Chen, J.J.W.; Chen, Y.C.; Chu, C.L.; Pan, I.H.; Wu, Y.S.; Lin, C.C. Antihelminthic niclosamide modulates dendritic cells activation and function. Cell. Immunol., 2014, 288(1-2), 15-23.
[http://dx.doi.org/10.1016/j.cellimm.2013.12.006] [PMID: 24561310]
[36]
Zhang, X.; Song, Y.; Ci, X.; An, N.; Ju, Y.; Li, H.; Wang, X.; Han, C.; Cui, J.; Deng, X. Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice. Inflamm. Res., 2008, 57(11), 524-529.
[http://dx.doi.org/10.1007/s00011-008-8007-8] [PMID: 19109745]
[37]
Zhang, X.; Song, Y.; Xiong, H.; Ci, X.; Li, H.; Yu, L.; Zhang, L.; Deng, X. Inhibitory effects of ivermectin on nitric oxide and prostaglandin E2 production in LPS-stimulated RAW 264.7 macrophages. Int. Immunopharmacol., 2009, 9(3), 354-359.
[http://dx.doi.org/10.1016/j.intimp.2008.12.016] [PMID: 19168156]
[38]
Csóka, B.; Németh, Z.H.; Szabó, I.; Davies, D.L.; Varga, Z.V.; Pálóczi, J.; Falzoni, S.; Di Virgilio, F.; Muramatsu, R.; Yamashita, T.; Pacher, P.; Haskó, G. Macrophage P2X4 receptors augment bacterial killing and protect against sepsis. JCI Insight, 2018, 3(11), e99431.
[http://dx.doi.org/10.1172/jci.insight.99431] [PMID: 29875325]
[39]
Zhang, X.; Li, J.; Chen, C.; Ci, X.; Yu, Q.; Zhang, X.; Deng, X. Protective effect of abamectin on acute lung injury induced by lipopolysaccharide in mice. Fundam. Clin. Pharmacol., 2011, 25(6), 700-707.
[http://dx.doi.org/10.1111/j.1472-8206.2010.00896.x] [PMID: 21118302]
[40]
Garnacho-Montero, J.; Timsit, J.F. Managing Acinetobacter baumannii infections. Curr. Opin. Infect. Dis., 2019, 32(1), 69-76.
[http://dx.doi.org/10.1097/QCO.0000000000000518] [PMID: 30520737]
[41]
Garnacho-Montero, J.; Ortiz-Leyba, C.; Jiménez-Jiménez, F.J.; Barrero-Almodóvar, A.E.; García-Garmendia, J.L.; Bernabeu-WittelI, M.; Gallego-Lara, S.L.; Madrazo-Osuna, J. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: A comparison with imipenem-susceptible VAP. Clin. Infect. Dis., 2003, 36(9), 1111-1118.
[http://dx.doi.org/10.1086/374337] [PMID: 12715304]
[42]
Markou, N.; Markantonis, S.L.; Dimitrakis, E.; Panidis, D.; Boutzouka, E.; Karatzas, S.; Rafailidis, P.; Apostolakos, H.; Baltopoulos, G. Colistin serum concentrations after intravenous administration in critically ill patients with serious multidrug-resistant, gram-negative bacilli infections: A prospective, open-label, uncontrolled study. Clin. Ther., 2008, 30(1), 143-151.
[http://dx.doi.org/10.1016/j.clinthera.2008.01.015] [PMID: 18343250]
[43]
Álvarez-Marín, R.; López-Rojas, R.; Márquez, J.A.; Gómez, M.J.; Molina, J.; Cisneros, J.M.; Ortiz-Leyba, C.; Aznar, J.; Garnacho-Montero, J.; Pachón, J. Colistin dosage without loading dose is efficacious when treating carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia caused by strains with high susceptibility to colistin. PLoS One, 2016, 11(12), e0168468.
[http://dx.doi.org/10.1371/journal.pone.0168468] [PMID: 27992528]
[44]
Domalaon, R.; De Silva, P.M.; Kumar, A.; Zhanel, G.G.; Schweizer, F. The anthelmintic drug niclosamide synergizes with colistin and reverses colistin resistance in Gram-negative bacilli. Antimicrob. Agents Chemother., 2019, 63(4), e02574-18.
[http://dx.doi.org/10.1128/AAC.02574-18] [PMID: 30917988]
[45]
Domalaon, R.; Okunnu, O.; Zhanel, G.G.; Schweizer, F. Synergistic combinations of anthelmintic salicylanilides oxyclozanide, rafoxanide, and closantel with colistin eradicates multidrug-resistant colistin-resistant Gram-negative bacilli. J. Antibiot. (Tokyo), 2019, 72(8), 605-616.
[http://dx.doi.org/10.1038/s41429-019-0186-8] [PMID: 31028351]
[46]
Tran, T.B.; Cheah, S.E.; Yu, H.H.; Bergen, P.J.; Nation, R.L.; Creek, D.J.; Purcell, A.; Forrest, A.; Doi, Y.; Song, J.; Velkov, T.; Li, J. Anthelmintic closantel enhances bacterial killing of polymyxin B against multidrug-resistant Acinetobacter baumannii. J. Antibiot. (Tokyo), 2016, 69(6), 415-421.
[http://dx.doi.org/10.1038/ja.2015.127] [PMID: 26669752]
[47]
Schweizer, L.; Ramirez, D.; Schweizer, F. Effects of lysine N-zeta-methylation in ultrashort tetrabasic lipopeptides (UTBLPs) on the potentiation of rifampicin, novobiocin, and niclosamide in Gram-negative bacteria. Antibiotics (Basel), 2022, 11(3), 335.
[http://dx.doi.org/10.3390/antibiotics11030335] [PMID: 35326798]
[48]
Dokla, E.M.E.; Abutaleb, N.S.; Milik, S.N.; Li, D.; El-Baz, K.; Shalaby, M.A.W.; Al-Karaki, R.; Nasr, M.; Klein, C.D.; Abouzid, K.A.M.; Seleem, M.N. Development of benzimidazole-based derivatives as antimicrobial agents and their synergistic effect with colistin against gram-negative bacteria. Eur. J. Med. Chem., 2020, 186, 111850.
[http://dx.doi.org/10.1016/j.ejmech.2019.111850] [PMID: 31735572]
[49]
Gellatly, S.L.; Hancock, R.E.W. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis., 2013, 67(3), 159-173.
[http://dx.doi.org/10.1111/2049-632X.12033] [PMID: 23620179]
[50]
Kang, C.I.; Kim, S.H.; Kim, H.B.; Park, S.W.; Choe, Y.J.; Oh, M.; Kim, E.C.; Choe, K.W. Pseudomonas aeruginosa bacteremia: Risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin. Infect. Dis., 2003, 37(6), 745-751.
[http://dx.doi.org/10.1086/377200] [PMID: 12955633]
[51]
Vidal, F.; Mensa, J.; Almela, M.; Martínez, J.A.; Marco, F.; Casals, C.; Gatell, J.M.; Soriano, E.; Jimenez de Anta, M.T. Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment. Analysis of 189 episodes. Arch. Intern. Med., 1996, 156(18), 2121-2126.
[http://dx.doi.org/10.1001/archinte.1996.00440170139015] [PMID: 8862105]
[52]
Vincent, J.L. Nosocomial infections in adult intensive-care units. Lancet, 2003, 361(9374), 2068-2077.
[http://dx.doi.org/10.1016/S0140-6736(03)13644-6] [PMID: 12814731]
[53]
Ali, Z.; Mumtaz, N.; Naz, S.A.; Jabeen, N.; Shafique, M. Multi-drug resistant pseudomonas aeruginosa: A threat of nosocomial infections in tertiary care hospitals. J. Pak. Med. Assoc., 2015, 65(1), 12-16.
[PMID: 25831667]
[54]
Micek, S.T.; Wunderink, R.G.; Kollef, M.H.; Chen, C.; Rello, J.; Chastre, J.; Antonelli, M.; Welte, T.; Clair, B.; Ostermann, H.; Calbo, E.; Torres, A.; Menichetti, F.; Schramm, G.E.; Menon, V. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: Impact of multidrug resistance. Crit. Care, 2015, 19(1), 219.
[http://dx.doi.org/10.1186/s13054-015-0926-5] [PMID: 25944081]
[55]
Kaye, K.S.; Pogue, J.M. Infections caused by resistant Gram-negative bacteria: Epidemiology and management. Pharmacotherapy, 2015, 35(10), 949-962.
[http://dx.doi.org/10.1002/phar.1636] [PMID: 26497481]
[56]
Wright, H.; Bonomo, R.A.; Paterson, D.L. New agents for the treatment of infections with Gram-negative bacteria: Restoring the miracle or false dawn? Clin. Microbiol. Infect., 2017, 23(10), 704-712.
[http://dx.doi.org/10.1016/j.cmi.2017.09.001] [PMID: 28893690]
[57]
Lu, T.; Zheng, X.; Mao, F.; Cao, Q.; Cao, Q.; Zhu, J.; Li, X.; Lan, L.; Li, B.; Li, J. Novel niclosamide-derived adjuvants elevating the efficacy of polymyxin B against MDR Pseudomonas aeruginosa DK2. Eur. J. Med. Chem., 2022, 236, 114318.
[http://dx.doi.org/10.1016/j.ejmech.2022.114318]
[58]
Berry, L.; Brizuela, M.; Jackson, G.; Schweizer, F. A niclosamide–tobramycin hybrid adjuvant potentiates cefiderocol against P. aeruginosa. RSC Medicinal Chemistry, 2021, 12(9), 1565-1573.
[http://dx.doi.org/10.1039/D1MD00206F] [PMID: 34671738]
[59]
Vila, J.; Sáez-López, E.; Johnson, J.R.; Römling, U.; Dobrindt, U.; Cantón, R.; Giske, C.G.; Naas, T.; Carattoli, A.; Martínez-Medina, M.; Bosch, J.; Retamar, P.; Rodríguez-Baño, J.; Baquero, F.; Soto, S.M. Escherichia coli : An old friend with new tidings. FEMS Microbiol. Rev., 2016, 40(4), 437-463.
[http://dx.doi.org/10.1093/femsre/fuw005] [PMID: 28201713]
[60]
Manges, A.R.; Geum, H.M.; Guo, A.; Edens, T.J.; Fibke, C.D.; Pitout, J.D.D. Globalextraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin. Microbiol. Rev., 2019, 32(3), e00135-18.
[http://dx.doi.org/10.1128/CMR.00135-18] [PMID: 31189557]
[61]
Solomkin, J.S.; Mazuski, J.E.; Bradley, J.S.; Rodvold, K.A.; Goldstein, E.J.C.; Baron, E.J.; O’Neill, P.J.; Chow, A.W.; Dellinger, E.P.; Eachempati, S.R.; Gorbach, S.; Hilfiker, M.; May, A.K.; Nathens, A.B.; Sawyer, R.G.; Bartlett, J.G. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin. Infect. Dis., 2010, 50(2), 133-164.
[http://dx.doi.org/10.1086/649554] [PMID: 20034345]
[62]
Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the offense with a strong defense. Microbiol. Mol. Biol. Rev., 2016, 80(3), 629-661.
[http://dx.doi.org/10.1128/MMBR.00078-15] [PMID: 27307579]
[63]
Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev., 2017, 30(2), 557-596.
[http://dx.doi.org/10.1128/CMR.00064-16] [PMID: 28275006]
[64]
Li, H.; Mattingly, A.E.; Jania, L.A.; Smith, R.; Melander, R.J.; Ernst, R.K.; Koller, B.H.; Melander, C. Benzimidazole isosteres of salicylanilides are highly active colistin adjuvants. ACS Infect. Dis., 2021, 7(12), 3303-3313.
[http://dx.doi.org/10.1021/acsinfecdis.1c00463] [PMID: 34752055]
[65]
Pacios, O.; Fernández-García, L.; Bleriot, I.; Blasco, L.; Ambroa, A.; López, M.; Ortiz-Cartagena, C.; González de Aledo, M.; Fernández-Cuenca, F.; Oteo-Iglesias, J.; Pascual, Á.; Martínez-Martínez, L.; Tomás, M. Adaptation of clinical isolates of Klebsiella pneumoniae to the combination of niclosamide with the efflux pump inhibitor phenyl-arginine-β-naphthylamide (PaβN): Co-resistance to antimicrobials. J. Antimicrob. Chemother., 2022, 77(5), 1272-1281.
[http://dx.doi.org/10.1093/jac/dkac044] [PMID: 35238930]
[66]
Racané, L.; Zlatar, I.; Perin, N.; Cindrić, M.; Radovanović, V.; Banjanac, M.; Shanmugam, S.; Stojković, M.R.; Brajša, K.; Hranjec, M. Biological activity of newly synthesized benzimidazole and benzothizole 2,5- disubstituted furane derivatives. Molecules, 2021, 26(16), 4935.
[http://dx.doi.org/10.3390/molecules26164935] [PMID: 34443523]
[67]
Chaurasia, H.; Singh, V.K.; Mishra, R.; Yadav, A.K.; Ram, N.K.; Singh, P.; Singh, R.K. Molecular modelling, synthesis and antimicrobial evaluation of benzimidazole nucleoside mimetics. Bioorg. Chem., 2021, 115, 105227.
[http://dx.doi.org/10.1016/j.bioorg.2021.105227] [PMID: 34399320]
[68]
Bolick, D.T.; Roche, J.K.; Hontecillas, R.; Bassaganya-Riera, J.; Nataro, J.P.; Guerrant, R.L. Enteroaggregative Escherichia coli strain in a novel weaned mouse model: Exacerbation by malnutrition, biofilm as a virulence factor and treatment by nitazoxanide. J. Med. Microbiol., 2013, 62(6), 896-905.
[http://dx.doi.org/10.1099/jmm.0.046300-0] [PMID: 23475903]
[69]
Grayson, M.L.; Cosgrove, S.E.; Crowe, S.; Hope, W.; McCarthy, J.S.; Mills, J. Kucers’ The use of antibiotics: A clinical review of antibacterial, antifungal, antiparasitic and antiviral drugs; 7th; 2017, pp. 1-4841.
[70]
Niclosamide for mild to moderate COVID-19. NCT04399356, 2017.
[71]
Sars-CoV-2/COVID-19 Ivermectin Navarra-ISGlobal Trial (SAINT). NCT04390022, 2017.
[72]
Musher, D.M.; Logan, N.; Hamill, R.J.; DuPont, H.L.; Lentnek, A.; Gupta, A.; Rossignol, J.F. Nitazoxanide for the treatment of Clostridium difficile colitis. Clin. Infect. Dis., 2006, 43(4), 421-427.
[http://dx.doi.org/10.1086/506351] [PMID: 16838229]
[73]
Musher, D.M.; Logan, N.; Bressler, A.M.; Johnson, D.P.; Rossignol, J.F. Nitazoxanide versus vancomycin in Clostridium difficile infection: A randomized, double-blind study. Clin. Infect. Dis., 2009, 48(4), e41-e46.
[http://dx.doi.org/10.1086/596552] [PMID: 19133801]
[74]
Lee, S.; Sneed, G.T.; Brown, J.N. Treatment of Helicobacter pylori with nitazoxanide-containing regimens: A systematic review. Infect. Dis. (Lond.), 2020, 52(6), 381-390.
[http://dx.doi.org/10.1080/23744235.2019.1708454] [PMID: 31900002]
[75]
A unique regimen for treatment of Helicobacter pylori infection. NCT03491995, 2017.
[76]
Study of nitazoxanide (NTZ) for Helicobacter pylori in children. NCT04415983, 2017.
[77]
Inhaled sodium nitrite as an antimicrobial for cystic fibrosis. NCT02694393, 2017.
[78]
Reducing antibiotic tolerance using nitric oxide in CF - a phase 2 pilot study (RATNO). NCT02295566,
[79]
Atorvastatin in bronchiectasis in patients with Pseudomonas aeruginosa. NCT01299194, 2011.
[80]
Anti-inflammatory effects of GTS-21 after LPS. NCT00783068, 2017.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy