Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Peroxisome Proliferator-activated Receptor Gamma Coactivator-1 Alpha: A Double-edged Sword in Prostate Cancer

Author(s): Kun Zheng, Suzhen Chen* and Xiaoyong Hu*

Volume 22, Issue 7, 2022

Published on: 23 May, 2022

Page: [541 - 559] Pages: 19

DOI: 10.2174/1568009622666220330194149

Price: $65

Abstract

Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC- 1α/PPARGC1A) is a pivotal transcriptional coactivator involved in the regulation of mitochondrial metabolism, including biogenesis and oxidative metabolism. PGC-1α is finely regulated by AMPactivated protein kinases (AMPKs), the role of which in tumors remains controversial to date. In recent years, a growing amount of research on PGC-1α and tumor metabolism has emphasized its importance in a variety of tumors, including prostate cancer (PCA). Compelling evidence has shown that PGC-1α may play dual roles in promoting and inhibiting tumor development under certain conditions. Therefore, a better understanding of the critical role of PGC-1α in PCA pathogenesis will provide new insights into targeting PGC-1α for the treatment of this disease. In this review, we highlight the procancer and anticancer effects of PGC-1α in PCA and aim to provide a theoretical basis for targeting AMPK/PGC-1α to inhibit the development of PCA. In addition, our recent findings provide a candidate drug target and theoretical basis for targeting PGC-1α to regulate lipid metabolism in PCA.

Keywords: Prostate cancer, peroxisome proliferator-activated receptor gamma coactivator-1 alpha, AMP-activated protein kinases, mitochondrial metabolism, adipocyte thermogenesis, Warburg effect.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of inci-dence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[3]
Yuan, X.; Cai, C.; Chen, S.; Chen, S.; Yu, Z.; Balk, S.P. Androgen receptor functions in castration-resistant prostate cancer and mecha-nisms of resistance to new agents targeting the androgen axis. Oncogene, 2014, 33(22), 2815-2825.
[http://dx.doi.org/10.1038/onc.2013.235] [PMID: 23752196]
[4]
Taylor, B.S.; Schultz, N.; Hieronymus, H.; Gopalan, A.; Xiao, Y.; Carver, B.S.; Arora, V.K.; Kaushik, P.; Cerami, E.; Reva, B.; Antipin, Y.; Mitsiades, N.; Landers, T.; Dolgalev, I.; Major, J.E.; Wilson, M.; Socci, N.D.; Lash, A.E.; Heguy, A.; Eastham, J.A.; Scher, H.I.; Reuter, V.E.; Scardino, P.T.; Sander, C.; Sawyers, C.L.; Gerald, W.L. Integrative genomic profiling of human prostate cancer. Cancer Cell, 2010, 18(1), 11-22.
[http://dx.doi.org/10.1016/j.ccr.2010.05.026] [PMID: 20579941]
[5]
de Wit, R.; de Bono, J.; Sternberg, C.N.; Fizazi, K.; Tombal, B.; Wülfing, C.; Kramer, G.; Eymard, J.C.; Bamias, A.; Carles, J.; Iacovelli, R.; Melichar, B.; Sverrisdóttir, Á.; Theodore, C.; Feyerabend, S.; Helissey, C.; Ozatilgan, A.; Geffriaud-Ricouard, C.; Castellano, D.; Investiga-tors, C. Cabazitaxel versus abiraterone or enzalutamide in metastatic prostate cancer. N. Engl. J. Med., 2019, 381(26), 2506-2518.
[http://dx.doi.org/10.1056/NEJMoa1911206] [PMID: 31566937]
[6]
Conteduca, V.; Wetterskog, D.; Sharabiani, M.T.A.; Grande, E.; Fernandez-Perez, M.P.; Jayaram, A.; Salvi, S.; Castellano, D.; Romanel, A.; Lolli, C.; Casadio, V.; Gurioli, G.; Amadori, D.; Font, A.; Vazquez-Estevez, S.; González Del Alba, A.; Mellado, B.; Fernandez-Calvo, O.; Méndez-Vidal, M.J.; Climent, M.A.; Duran, I.; Gallardo, E.; Rodriguez, A.; Santander, C.; Sáez, M.I.; Puente, J.; Gasi Tandefelt, D.; Win-gate, A.; Dearnaley, D.; Demichelis, F.; De Giorgi, U.; Gonzalez-Billalabeitia, E.; Attard, G. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: A multi-institution correlative bi-omarker study. Ann. Oncol., 2017, 28(7), 1508-1516.
[http://dx.doi.org/10.1093/annonc/mdx155] [PMID: 28472366]
[7]
de Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; Thiery-Vuillemin, A.; Twardowski, P.; Mehra, N.; Goessl, C.; Kang, J.; Burgents, J.; Wu, W.; Kohlmann, A.; Adelman, C.A.; Hussain, M. Olaparib for metastatic castration-resistant prostate cancer. N. Engl. J. Med., 2020, 382(22), 2091-2102.
[http://dx.doi.org/10.1056/NEJMoa1911440] [PMID: 32343890]
[8]
Hussain, M.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; Thiery-Vuillemin, A.; Twardowski, P.; Roubaud, G. Özgüroğlu, M.; Kang, J.; Burgents, J.; Gresty, C.; Corcoran, C.; Adelman, C.A.; de Bono, J.; Investigators, P.R.T. Survival with olaparib in metastatic castration-resistant prostate cancer. N. Engl. J. Med., 2020, 383(24), 2345-2357.
[http://dx.doi.org/10.1056/NEJMoa2022485] [PMID: 32955174]
[9]
Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; Grivas, N.; Grummet, J.; Henry, A.M.; der Kwast, T.H.V.; Lam, T.B.; Lardas, M.; Liew, M.; Mason, M.D.; Moris, L.; Oprea-Lager, D.E.; der Poel, H.G.V.; Rouvière, O.; Schoots, I.G.; Tilki, D.; Wiegel, T.; Willemse, P.M.; Mottet, N. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer. Part II-2020 update: Treatment of relapsing and metastatic prostate cancer. Eur. Urol., 2021, 79(2), 263-282.
[http://dx.doi.org/10.1016/j.eururo.2020.09.046] [PMID: 33039206]
[10]
Teo, M.Y.; Rathkopf, D.E.; Kantoff, P. Treatment of advanced prostate cancer. Annu. Rev. Med., 2019, 70(1), 479-499.
[http://dx.doi.org/10.1146/annurev-med-051517-011947] [PMID: 30691365]
[11]
Aly, M.; Leval, A.; Schain, F.; Liwing, J.; Lawson, J.; Vágó, E.; Nordström, T.; Andersson, T.M.; Sjöland, E.; Wang, C.; Eloranta, S.; Akre, O. Survival in patients diagnosed with castration-resistant prostate cancer: A population-based observational study in Sweden. Scand. J. Urol., 2020, 54(2), 115-121.
[http://dx.doi.org/10.1080/21681805.2020.1739139] [PMID: 32266854]
[12]
Puigserver, P.; Wu, Z.; Park, C.W.; Graves, R.; Wright, M.; Spiegelman, B.M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 1998, 92(6), 829-839.
[http://dx.doi.org/10.1016/S0092-8674(00)81410-5] [PMID: 9529258]
[13]
Koppenol, W.H.; Bounds, P.L.; Dang, C.V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer, 2011, 11(5), 325-337.
[http://dx.doi.org/10.1038/nrc3038] [PMID: 21508971]
[14]
Tennakoon, J.B.; Shi, Y.; Han, J.J.; Tsouko, E.; White, M.A.; Burns, A.R.; Zhang, A.; Xia, X.; Ilkayeva, O.R.; Xin, L.; Ittmann, M.M.; Rick, F.G.; Schally, A.V.; Frigo, D.E. Androgens regulate prostate cancer cell growth via an AMPK-PGC-1α-mediated metabolic switch. Oncogene, 2014, 33(45), 5251-5261.
[http://dx.doi.org/10.1038/onc.2013.463] [PMID: 24186207]
[15]
DeBerardinis, R.J.; Lum, J.J.; Hatzivassiliou, G.; Thompson, C.B. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab., 2008, 7(1), 11-20.
[http://dx.doi.org/10.1016/j.cmet.2007.10.002] [PMID: 18177721]
[16]
Vaughan, R.A.; Garcia-Smith, R.; Trujillo, K.A.; Bisoffi, M. Tumor necrosis factor alpha increases aerobic glycolysis and reduces oxida-tive metabolism in prostate epithelial cells. Prostate, 2013, 73(14), 1538-1546.
[http://dx.doi.org/10.1002/pros.22703] [PMID: 23818177]
[17]
Eidelman, E.; Twum-Ampofo, J.; Ansari, J.; Siddiqui, M.M. The metabolic phenotype of prostate cancer. Front. Oncol., 2017, 7, 131.
[http://dx.doi.org/10.3389/fonc.2017.00131] [PMID: 28674679]
[18]
Sauer, A.K.; Vela, H.; Vela, G.; Stark, P.; Barrera-Juarez, E.; Grabrucker, A.M. Zinc deficiency in men over 50 and its implications in prostate disorders. Front. Oncol., 2020, 10, 1293.
[http://dx.doi.org/10.3389/fonc.2020.01293] [PMID: 32850402]
[19]
Costello, L.C.; Franklin, R.B. Aconitase activity, citrate oxidation, and zinc inhibition in rat ventral prostate. Enzyme, 1981, 26(6), 281-287.
[http://dx.doi.org/10.1159/000459195] [PMID: 7308179]
[20]
Bader, D.A.; McGuire, S.E. Tumour metabolism and its unique properties in prostate adenocarcinoma. Nat. Rev. Urol., 2020, 17(4), 214-231.
[http://dx.doi.org/10.1038/s41585-020-0288-x] [PMID: 32112053]
[21]
Costello, L.C.; Franklin, R.B.; Feng, P. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion, 2005, 5(3), 143-153.
[http://dx.doi.org/10.1016/j.mito.2005.02.001] [PMID: 16050980]
[22]
Latonen, L.; Afyounian, E.; Jylhä, A.; Nättinen, J.; Aapola, U.; Annala, M.; Kivinummi, K.K.; Tammela, T.T.L.; Beuerman, R.W.; Uu-sitalo, H.; Nykter, M.; Visakorpi, T. Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic ab-errations during disease progression. Nat. Commun., 2018, 9(1), 1176.
[http://dx.doi.org/10.1038/s41467-018-03573-6] [PMID: 29563510]
[23]
Shao, Y.; Ye, G.; Ren, S.; Piao, H.L.; Zhao, X.; Lu, X.; Wang, F.; Ma, W.; Li, J.; Yin, P.; Xia, T.; Xu, C.; Yu, J.J.; Sun, Y.; Xu, G. Metabo-lomics and transcriptomics profiles reveal the dysregulation of the tricarboxylic acid cycle and related mechanisms in prostate cancer. Int. J. Cancer, 2018, 143(2), 396-407.
[http://dx.doi.org/10.1002/ijc.31313] [PMID: 29441565]
[24]
Andersen, M.K.; Krossa, S.; Høiem, T.S.; Buchholz, R.; Claes, B.S.R.; Balluff, B.; Ellis, S.R.; Richardsen, E.; Bertilsson, H.; Heeren, R.M.A.; Bathen, T.F.; Karst, U.; Giskeødegård, G.F.; Tessem, M.B. Simultaneous detection of zinc and its pathway metabolites using MALDI MS imaging of prostate tissue. Anal. Chem., 2020, 92(4), 3171-3179.
[http://dx.doi.org/10.1021/acs.analchem.9b04903] [PMID: 31944670]
[25]
Fong, L.Y.; Jing, R.; Smalley, K.J.; Wang, Z.X.; Taccioli, C.; Fan, S.; Chen, H.; Alder, H.; Huebner, K.; Farber, J.L.; Fiehn, O.; Croce, C.M. Human-like hyperplastic prostate with low ZIP1 induced solely by Zn deficiency in rats. Proc. Natl. Acad. Sci. USA, 2018, 115(47), E11091-E11100.
[http://dx.doi.org/10.1073/pnas.1813956115] [PMID: 30397150]
[26]
Franz, M.C.; Anderle, P.; Bürzle, M.; Suzuki, Y.; Freeman, M.R.; Hediger, M.A.; Kovacs, G. Zinc transporters in prostate cancer. Mol. Aspects Med., 2013, 34(2-3), 735-741.
[http://dx.doi.org/10.1016/j.mam.2012.11.007] [PMID: 23506906]
[27]
Massie, C.E.; Lynch, A.; Ramos-Montoya, A.; Boren, J.; Stark, R.; Fazli, L.; Warren, A.; Scott, H.; Madhu, B.; Sharma, N.; Bon, H.; Zec-chini, V.; Smith, D.M.; Denicola, G.M.; Mathews, N.; Osborne, M.; Hadfield, J.; Macarthur, S.; Adryan, B.; Lyons, S.K.; Brindle, K.M.; Griffiths, J.; Gleave, M.E.; Rennie, P.S.; Neal, D.E.; Mills, I.G. The androgen receptor fuels prostate cancer by regulating central metabo-lism and biosynthesis. EMBO J., 2011, 30(13), 2719-2733.
[http://dx.doi.org/10.1038/emboj.2011.158] [PMID: 21602788]
[28]
Kelly, R.S.; Sinnott, J.A.; Rider, J.R.; Ebot, E.M.; Gerke, T.; Bowden, M.; Pettersson, A.; Loda, M.; Sesso, H.D.; Kantoff, P.W.; Martin, N.E.; Giovannucci, E.L.; Tyekucheva, S.; Heiden, M.V.; Mucci, L.A. The role of tumor metabolism as a driver of prostate cancer progres-sion and lethal disease: Results from a nested case-control study. Cancer Metab., 2016, 4(1), 22.
[http://dx.doi.org/10.1186/s40170-016-0161-9] [PMID: 27980733]
[29]
Costello, L.C.; Franklin, R.B.; Zou, J.; Feng, P.; Bok, R.; Swanson, M.G.; Kurhanewicz, J. Human prostate cancer ZIP1/zinc/citrate genet-ic/metabolic relationship in the TRAMP prostate cancer animal model. Cancer Biol. Ther., 2011, 12(12), 1078-1084.
[http://dx.doi.org/10.4161/cbt.12.12.18367] [PMID: 22156800]
[30]
Costello, L.C.; Franklin, R.B. Decreased zinc in the development and progression of malignancy: An important common relationship and potential for prevention and treatment of carcinomas. Expert Opin. Ther. Targets, 2017, 21(1), 51-66.
[http://dx.doi.org/10.1080/14728222.2017.1265506] [PMID: 27885880]
[31]
Costello, L.C.; Franklin, R.B. A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch. Biochem. Biophys., 2016, 611, 100-112.
[http://dx.doi.org/10.1016/j.abb.2016.04.014] [PMID: 27132038]
[32]
Khan, A.S.; Frigo, D.E. A spatiotemporal hypothesis for the regulation, role, and targeting of AMPK in prostate cancer. Nat. Rev. Urol., 2017, 14(3), 164-180.
[http://dx.doi.org/10.1038/nrurol.2016.272] [PMID: 28169991]
[33]
Bost, F.; Kaminski, L. The metabolic modulator PGC-1α in cancer. Am. J. Cancer Res., 2019, 9(2), 198-211.
[PMID: 30906622]
[34]
Chambers, J.M.; Wingert, R.A. PGC-1α in disease: Recent renal insights into a versatile metabolic regulator. Cells, 2020, 9(10), E2234.
[http://dx.doi.org/10.3390/cells9102234] [PMID: 33022986]
[35]
Luo, X.; Liao, C.; Quan, J.; Cheng, C.; Zhao, X.; Bode, A.M.; Cao, Y. Posttranslational regulation of PGC-1α and its implication in cancer metabolism. Int. J. Cancer, 2019, 145(6), 1475-1483.
[http://dx.doi.org/10.1002/ijc.32253] [PMID: 30848477]
[36]
Tan, Z.; Luo, X.; Xiao, L.; Tang, M.; Bode, A.M.; Dong, Z.; Cao, Y. The role of PGC1α in cancer metabolism and its therapeutic implica-tions. Mol. Cancer Ther., 2016, 15(5), 774-782.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0621] [PMID: 27197257]
[37]
Perotti, V.; Baldassari, P.; Molla, A.; Vegetti, C.; Bersani, I.; Maurichi, A.; Santinami, M.; Anichini, A.; Mortarini, R. NFATc2 is an intrin-sic regulator of melanoma dedifferentiation. Oncogene, 2016, 35(22), 2862-2872.
[http://dx.doi.org/10.1038/onc.2015.355] [PMID: 26387540]
[38]
Vazquez, F.; Lim, J.H.; Chim, H.; Bhalla, K.; Girnun, G.; Pierce, K.; Clish, C.B.; Granter, S.R.; Widlund, H.R.; Spiegelman, B.M.; Puigserv-er, P. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell, 2013, 23(3), 287-301.
[http://dx.doi.org/10.1016/j.ccr.2012.11.020] [PMID: 23416000]
[39]
Haq, R.; Shoag, J.; Andreu-Perez, P.; Yokoyama, S.; Edelman, H.; Rowe, G.C.; Frederick, D.T.; Hurley, A.D.; Nellore, A.; Kung, A.L.; Wargo, J.A.; Song, J.S.; Fisher, D.E.; Arany, Z.; Widlund, H.R. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell, 2013, 23(3), 302-315.
[http://dx.doi.org/10.1016/j.ccr.2013.02.003] [PMID: 23477830]
[40]
Luo, C.; Lim, J.H.; Lee, Y.; Granter, S.R.; Thomas, A.; Vazquez, F.; Widlund, H.R.; Puigserver, P.A. PGC1α-mediated transcriptional axis suppresses melanoma metastasis. Nature, 2016, 537(7620), 422-426.
[http://dx.doi.org/10.1038/nature19347] [PMID: 27580028]
[41]
Gelato, K.A.; Schöckel, L.; Klingbeil, O.; Rückert, T.; Lesche, R.; Toedling, J.; Kalfon, E.; Héroult, M.; Lejeune, P.; Mönning, U.; Fernán-dez-Montalván, A.E.; Bäurle, S.; Siegel, S.; Haendler, B. Super-enhancers define a proliferative PGC-1α-expressing melanoma subgroup sensitive to BET inhibition. Oncogene, 2018, 37(4), 512-521.
[http://dx.doi.org/10.1038/onc.2017.325] [PMID: 28991225]
[42]
Piskounova, E.; Agathocleous, M.; Murphy, M.M.; Hu, Z.; Huddlestun, S.E.; Zhao, Z.; Leitch, A.M.; Johnson, T.M.; DeBerardinis, R.J.; Morrison, S.J. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature, 2015, 527(7577), 186-191.
[http://dx.doi.org/10.1038/nature15726] [PMID: 26466563]
[43]
McGuirk, S.; Gravel, S.P.; Deblois, G.; Papadopoli, D.J.; Faubert, B.; Wegner, A.; Hiller, K.; Avizonis, D.; Akavia, U.D.; Jones, R.G.; Giguère, V.; St-Pierre, J. PGC-1α supports glutamine metabolism in breast cancer. Cancer Metab., 2013, 1(1), 22.
[http://dx.doi.org/10.1186/2049-3002-1-22] [PMID: 24304688]
[44]
Klimcakova, E.; Chénard, V.; McGuirk, S.; Germain, D.; Avizonis, D.; Muller, W.J.; St-Pierre, J. PGC-1α promotes the growth of ErbB2/Neu-induced mammary tumors by regulating nutrient supply. Cancer Res., 2012, 72(6), 1538-1546.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2967] [PMID: 22266114]
[45]
LeBleu, V.S.; O’Connell, J.T.; Gonzalez Herrera, K.N.; Wikman, H.; Pantel, K.; Haigis, M.C.; de Carvalho, F.M.; Damascena, A.; Domingos Chinen, L.T.; Rocha, R.M.; Asara, J.M.; Kalluri, R. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in can-cer cells to promote metastasis. Nat. Cell Biol., 2014, 16(10), 992-1003.
[http://dx.doi.org/10.1038/ncb3039]
[46]
Deblois, G.; Smith, H.W.; Tam, I.S.; Gravel, S.P.; Caron, M.; Savage, P.; Labbé, D.P.; Bégin, L.R.; Tremblay, M.L.; Park, M.; Bourque, G.; St-Pierre, J.; Muller, W.J.; Giguère, V. ERRα mediates metabolic adaptations driving lapatinib resistance in breast cancer. Nat. Commun., 2016, 7(1), 12156.
[http://dx.doi.org/10.1038/ncomms12156] [PMID: 27402251]
[47]
Andrzejewski, S.; Klimcakova, E.; Johnson, R.M.; Tabariès, S.; Annis, M.G.; McGuirk, S.; Northey, J.J.; Chénard, V.; Sriram, U.; Papado-poli, D.J.; Siegel, P.M.; St-Pierre, J. PGC-1α promotes breast cancer metastasis and confers bioenergetic flexibility against metabolic drugs. Cell Metab., 2017, 26(5), 778-787.e5.
[http://dx.doi.org/10.1016/j.cmet.2017.09.006] [PMID: 28988825]
[48]
Sancho, P.; Burgos-Ramos, E.; Tavera, A.; Bou Kheir, T.; Jagust, P.; Schoenhals, M.; Barneda, D.; Sellers, K.; Campos-Olivas, R.; Graña, O.; Viera, C.R.; Yuneva, M.; Sainz, B., Jr; Heeschen, C. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pan-creatic cancer stem cells. Cell Metab., 2015, 22(4), 590-605.
[http://dx.doi.org/10.1016/j.cmet.2015.08.015] [PMID: 26365176]
[49]
Huang, B.; Cheng, X.; Wang, D.; Peng, M.; Xue, Z.; Da, Y.; Zhang, N.; Yao, Z.; Li, M.; Xu, A.; Zhang, R. Adiponectin promotes pancreatic cancer progression by inhibiting apoptosis via the activation of AMPK/Sirt1/PGC-1α signaling. Oncotarget, 2014, 5(13), 4732-4745.
[http://dx.doi.org/10.18632/oncotarget.1963] [PMID: 25051362]
[50]
Sen, N.; Satija, Y.K.; Das, S. PGC-1α a key modulator of p53, promotes cell survival upon metabolic stress. Mol. Cell, 2011, 44(4), 621-634.
[http://dx.doi.org/10.1016/j.molcel.2011.08.044] [PMID: 22099309]
[51]
Zhao, L.; Chen, X.; Feng, Y.; Wang, G.; Nawaz, I.; Hu, L.; Liu, P. COX7A1 suppresses the viability of human non-small cell lung cancer cells via regulating autophagy. Cancer Med., 2019, 8(18), 7762-7773.
[http://dx.doi.org/10.1002/cam4.2659] [PMID: 31663688]
[52]
Cruz-Bermúdez, A.; Laza-Briviesca, R.; Vicente-Blanco, R.J.; García-Grande, A.; Coronado, M.J.; Laine-Menéndez, S.; Palacios-Zambrano, S.; Moreno-Villa, M.R.; Ruiz-Valdepeñas, A.M.; Lendinez, C.; Romero, A.; Franco, F.; Calvo, V.; Alfaro, C.; Acosta, P.M.; Salas, C.; Garcia, J.M.; Provencio, M. Cisplatin resistance involves a metabolic reprogramming through ROS and PGC-1α in NSCLC which can be overcome by OXPHOS inhibition. Free Radic. Biol. Med., 2019, 135, 167-181.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.03.009] [PMID: 30880247]
[53]
Yan, Y.; Zhou, X.E.; Xu, H.E.; Melcher, K. Structure and Physiological Regulation of AMPK. Int. J. Mol. Sci., 2018, 19(11), E3534.
[http://dx.doi.org/10.3390/ijms19113534] [PMID: 30423971]
[54]
Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol., 2018, 19(2), 121-135.
[http://dx.doi.org/10.1038/nrm.2017.95] [PMID: 28974774]
[55]
Torrano, V.; Valcarcel-Jimenez, L.; Cortazar, A.R.; Liu, X.; Urosevic, J.; Castillo-Martin, M.; Fernández-Ruiz, S.; Morciano, G.; Caro-Maldonado, A.; Guiu, M.; Zúñiga-García, P.; Graupera, M.; Bellmunt, A.; Pandya, P.; Lorente, M.; Martín-Martín, N.; Sutherland, J.D.; Sanchez-Mosquera, P.; Bozal-Basterra, L.; Zabala-Letona, A.; Arruabarrena-Aristorena, A.; Berenguer, A.; Embade, N.; Ugalde-Olano, A.; Lacasa-Viscasillas, I.; Loizaga-Iriarte, A.; Unda-Urzaiz, M.; Schultz, N.; Aransay, A.M.; Sanz-Moreno, V.; Barrio, R.; Velasco, G.; Pinton, P.; Cordon-Cardo, C.; Locasale, J.W.; Gomis, R.R.; Carracedo, A. The metabolic co-regulator PGC1α suppresses prostate cancer metasta-sis. Nat. Cell Biol., 2016, 18(6), 645-656.
[http://dx.doi.org/10.1038/ncb3357] [PMID: 27214280]
[56]
Kaminski, L.; Torrino, S.; Dufies, M.; Djabari, Z.; Haider, R.; Roustan, F.R.; Jaune, E.; Laurent, K.; Nottet, N.; Michiels, J.F.; Gesson, M.; Rocchi, S.; Mazure, N.M.; Durand, M.; Tanti, J.F.; Ambrosetti, D.; Clavel, S.; Ben-Sahra, I.; Bost, F. PGC1α inhibits polyamine synthesis to suppress prostate cancer aggressiveness. Cancer Res., 2019, 79(13), 3268-3280.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2043] [PMID: 31064849]
[57]
Valcarcel-Jimenez, L.; Macchia, A.; Crosas-Molist, E.; Schaub-Clerigué, A.; Camacho, L.; Martín-Martín, N.; Cicogna, P.; Viera-Bardón, C.; Fernández-Ruiz, S.; Rodriguez-Hernandez, I.; Hermanova, I.; Astobiza, I.; Cortazar, A.R.; Corres-Mendizabal, J.; Gomez-Muñoz, A.; Sanz-Moreno, V.; Torrano, V.; Carracedo, A. PGC1α suppresses prostate cancer cell invasion through ERRα transcriptional control. Cancer Res., 2019, 79(24), 6153-6165.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1231] [PMID: 31594836]
[58]
Chen, S.; Liu, X.; Peng, C.; Tan, C.; Sun, H.; Liu, H.; Zhang, Y.; Wu, P.; Cui, C.; Liu, C.; Yang, D.; Li, Z.; Lu, J.; Guan, J.; Ke, X.; Wang, R.; Bo, X.; Xu, X.; Han, J.; Liu, J. The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity. Cell Metab., 2021, 33(3), 565-580.e7.
[http://dx.doi.org/10.1016/j.cmet.2021.02.007] [PMID: 33657393]
[59]
Shiota, M.; Yokomizo, A.; Tada, Y.; Inokuchi, J.; Tatsugami, K.; Kuroiwa, K.; Uchiumi, T.; Fujimoto, N.; Seki, N.; Naito, S. Peroxisome proliferator-activated receptor gamma coactivator-1alpha interacts with the Androgen Receptor (AR) and promotes prostate cancer cell growth by activating the AR. Mol. Endocrinol., 2010, 24(1), 114-127.
[http://dx.doi.org/10.1210/me.2009-0302] [PMID: 19884383]
[60]
Ippolito, L.; Morandi, A.; Taddei, M.L.; Parri, M.; Comito, G.; Iscaro, A.; Raspollini, M.R.; Magherini, F.; Rapizzi, E.; Masquelier, J.; Muccioli, G.G.; Sonveaux, P.; Chiarugi, P.; Giannoni, E. Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer. Oncogene, 2019, 38(27), 5339-5355.
[http://dx.doi.org/10.1038/s41388-019-0805-7] [PMID: 30936458]
[61]
Rabinovitch, R.C.; Samborska, B.; Faubert, B.; Ma, E.H.; Gravel, S.P.; Andrzejewski, S.; Raissi, T.C.; Pause, A.; St-Pierre, J.; Jones, R.G. AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Rep., 2017, 21(1), 1-9.
[http://dx.doi.org/10.1016/j.celrep.2017.09.026] [PMID: 28978464]
[62]
Li, J.; Li, Y.; Chen, L.; Yu, B.; Xue, Y.; Guo, R.; Su, J.; Liu, Y.; Sun, L. p53/PGC 1α mediated mitochondrial dysfunction promotes PC3 prostate cancer cell apoptosis. Mol. Med. Rep., 2020, 22(1), 155-164.
[http://dx.doi.org/10.3892/mmr.2020.11121] [PMID: 32377739]
[63]
Penfold, L.; Woods, A.; Muckett, P.; Nikitin, A.Y.; Kent, T.R.; Zhang, S.; Graham, R.; Pollard, A.; Carling, D. CAMKK2 promotes prostate cancer independently of AMPK via increased lipogenesis. Cancer Res., 2018, 78(24), 6747-6761.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0585] [PMID: 30242113]
[64]
Faubert, B.; Boily, G.; Izreig, S.; Griss, T.; Samborska, B.; Dong, Z.; Dupuy, F.; Chambers, C.; Fuerth, B.J.; Viollet, B.; Mamer, O.A.; Avi-zonis, D.; DeBerardinis, R.J.; Siegel, P.M.; Jones, R.G. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab., 2013, 17(1), 113-124.
[http://dx.doi.org/10.1016/j.cmet.2012.12.001] [PMID: 23274086]
[65]
Kim, S.M.; Nguyen, T.T.; Ravi, A.; Kubiniok, P.; Finicle, B.T.; Jayashankar, V.; Malacrida, L.; Hou, J.; Robertson, J.; Gao, D.; Chernoff, J.; Digman, M.A.; Potma, E.O.; Tromberg, B.J.; Thibault, P.; Edinger, A.L. PTEN deficiency and AMPK activation promote nutrient scav-enging and anabolism in prostate cancer cells. Cancer Discov., 2018, 8(7), 866-883.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1215] [PMID: 29572236]
[66]
Zeng, J.; Liu, W.; Fan, Y.Z.; He, D.L.; Li, L. PrLZ increases prostate cancer docetaxel resistance by inhibiting LKB1/AMPK-mediated autophagy. Theranostics, 2018, 8(1), 109-123.
[http://dx.doi.org/10.7150/thno.20356] [PMID: 29290796]
[67]
Commisso, C.; Debnath, J. Macropinocytosis fuels prostate cancer. Cancer Discov., 2018, 8(7), 800-802.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0513] [PMID: 29967075]
[68]
Galluzzi, L.; Pietrocola, F.; Bravo-San Pedro, J.M.; Amaravadi, R.K.; Baehrecke, E.H.; Cecconi, F.; Codogno, P.; Debnath, J.; Gewirtz, D.A.; Karantza, V.; Kimmelman, A.; Kumar, S.; Levine, B.; Maiuri, M.C.; Martin, S.J.; Penninger, J.; Piacentini, M.; Rubinsztein, D.C.; Si-mon, H.U.; Simonsen, A.; Thorburn, A.M.; Velasco, G.; Ryan, K.M.; Kroemer, G. Autophagy in malignant transformation and cancer pro-gression. EMBO J., 2015, 34(7), 856-880.
[http://dx.doi.org/10.15252/embj.201490784] [PMID: 25712477]
[69]
Sun, A.; Li, C.; Chen, R.; Huang, Y.; Chen, Q.; Cui, X.; Liu, H.; Thrasher, J.B.; Li, B. GSK-3β controls autophagy by modulating LKB1-AMPK pathway in prostate cancer cells. Prostate, 2016, 76(2), 172-183.
[http://dx.doi.org/10.1002/pros.23106] [PMID: 26440826]
[70]
Zhang, P.; Song, Y.; Sun, Y.; Li, X.; Chen, L.; Yang, L.; Xing, Y. AMPK/GSK3β/β-catenin cascade-triggered overexpression of CEMIP promotes migration and invasion in anoikis-resistant prostate cancer cells by enhancing metabolic reprogramming. FASEB J., 2018, 32(7), 3924-3935.
[http://dx.doi.org/10.1096/fj.201701078R] [PMID: 29505302]
[71]
Sánchez, B.G.; Bort, A.; Vara-Ciruelos, D.; Díaz-Laviada, I. Androgen deprivation induces reprogramming of prostate cancer cells to stem-like cells. Cells, 2020, 9(6), E1441.
[http://dx.doi.org/10.3390/cells9061441] [PMID: 32531951]
[72]
Wang, X.; Jin, J.; Wan, F.; Zhao, L.; Chu, H.; Chen, C.; Liao, G.; Liu, J.; Yu, Y.; Teng, H.; Fang, L.; Jiang, C.; Pan, W.; Xie, X.; Li, J.; Lu, X.; Jiang, X.; Ge, X.; Ye, D.; Wang, P. AMPK Promotes SPOP-mediated NANOG degradation to regulate prostate cancer cell stemness. Dev. Cell, 2019, 48(3), 345-360.e7.
[http://dx.doi.org/10.1016/j.devcel.2018.11.033] [PMID: 30595535]
[73]
Morell, C.; Bort, A.; Vara, D.; Ramos-Torres, A.; Rodríguez-Henche, N.; Díaz-Laviada, I. The cannabinoid WIN 55,212-2 prevents neuro-endocrine differentiation of LNCaP prostate cancer cells. Prostate Cancer Prostatic Dis., 2016, 19(3), 248-257.
[http://dx.doi.org/10.1038/pcan.2016.19] [PMID: 27324222]
[74]
Popovics, P.; Frigo, D.E.; Schally, A.V.; Rick, F.G. Targeting the 5′-AMP-activated protein kinase and related metabolic pathways for the treatment of prostate cancer. Expert Opin. Ther. Targets, 2015, 19(5), 617-632.
[http://dx.doi.org/10.1517/14728222.2015.1005603] [PMID: 25600663]
[75]
Ahn, H.K.; Lee, Y.H.; Koo, K.C. Current status and application of metformin for prostate cancer: A comprehensive review. Int. J. Mol. Sci., 2020, 21(22), E8540.
[http://dx.doi.org/10.3390/ijms21228540] [PMID: 33198356]
[76]
Su, C.C.; Hsieh, K.L.; Liu, P.L.; Yeh, H.C.; Huang, S.P.; Fang, S.H.; Cheng, W.C.; Huang, K.H.; Chiu, F.Y.; Lin, I.L.; Huang, M.Y.; Li, C.Y. AICAR induces apoptosis and inhibits migration and invasion in prostate cancer cells through an AMPK/mTOR-dependent pathway. Int. J. Mol. Sci., 2019, 20(7), E1647.
[http://dx.doi.org/10.3390/ijms20071647] [PMID: 30987073]
[77]
Chou, C.C.; Lee, K.H.; Lai, I.L.; Wang, D.; Mo, X.; Kulp, S.K.; Shapiro, C.L.; Chen, C.S. AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signaling axis. Cancer Res., 2014, 74(17), 4783-4795.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0135] [PMID: 24994714]
[78]
Kalantari, E.; Asgari, M.; Nikpanah, S.; Salarieh, N.; Asadi Lari, M.H.; Madjd, Z. Co-expression of putative cancer stem cell markers CD44 and CD133 in prostate carcinomas. Pathol. Oncol. Res., 2017, 23(4), 793-802.
[http://dx.doi.org/10.1007/s12253-016-0169-z] [PMID: 28083789]
[79]
Yin, M.; Zhou, J.; Gorak, E.J.; Quddus, F. Metformin is associated with survival benefit in cancer patients with concurrent type 2 diabetes: A systematic review and meta-analysis. Oncologist, 2013, 18(12), 1248-1255.
[http://dx.doi.org/10.1634/theoncologist.2013-0111] [PMID: 24258613]
[80]
Landman, G.W.; Kleefstra, N.; van Hateren, K.J.; Groenier, K.H.; Gans, R.O.; Bilo, H.J. Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care, 2010, 33(2), 322-326.
[http://dx.doi.org/10.2337/dc09-1380] [PMID: 19918015]
[81]
Richards, K.A.; Liou, J.I.; Cryns, V.L.; Downs, T.M.; Abel, E.J.; Jarrard, D.F. Metformin Use is associated with improved survival for patients with advanced prostate cancer on androgen deprivation therapy. J. Urol., 2018, 200(6), 1256-1263.
[http://dx.doi.org/10.1016/j.juro.2018.06.031] [PMID: 29940252]
[82]
Zaidi, S.; Gandhi, J.; Joshi, G.; Smith, N.L.; Khan, S.A. The anticancer potential of metformin on prostate cancer. Prostate Cancer Prostatic Dis., 2019, 22(3), 351-361.
[http://dx.doi.org/10.1038/s41391-018-0085-2] [PMID: 30651580]
[83]
Lane, A.N.; Fan, T.W. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res., 2015, 43(4), 2466-2485.
[http://dx.doi.org/10.1093/nar/gkv047] [PMID: 25628363]
[84]
Birsoy, K.; Wang, T.; Chen, W.W.; Freinkman, E.; Abu-Remaileh, M.; Sabatini, D.M. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell, 2015, 162(3), 540-551.
[http://dx.doi.org/10.1016/j.cell.2015.07.016] [PMID: 26232224]
[85]
Garcia-Bermudez, J.; Baudrier, L.; La, K.; Zhu, X.G.; Fidelin, J.; Sviderskiy, V.O.; Papagiannakopoulos, T.; Molina, H.; Snuderl, M.; Lew-is, C.A.; Possemato, R.L.; Birsoy, K. Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat. Cell Biol., 2018, 20(7), 775-781.
[http://dx.doi.org/10.1038/s41556-018-0118-z] [PMID: 29941933]
[86]
Wei, L.; Luo, Z.; Li, J.; Li, H.; Liang, Y.; Li, J.; Shen, Y.; Li, T.; Song, J.; Hu, Z. Metformin inhibits proliferation and functions of regula-tory T cells in acidic environment Nan Fang Yi Ke Da Xue Xue Bao, 2019, 39(12), 1427-1435.
[http://dx.doi.org/10.12122/j.issn.1673-4254.2019.12.06] [PMID: 31907158]
[87]
Kunisada, Y.; Eikawa, S.; Tomonobu, N.; Domae, S.; Uehara, T.; Hori, S.; Furusawa, Y.; Hase, K.; Sasaki, A.; Udono, H. Attenuation of CD4+CD25+ regulatory T cells in the tumor microenvironment by metformin, a type 2 diabetes drug. EBioMedicine, 2017, 25, 154-164.
[http://dx.doi.org/10.1016/j.ebiom.2017.10.009] [PMID: 29066174]
[88]
Elgendy, M.; Cirò, M.; Hosseini, A.; Weiszmann, J.; Mazzarella, L.; Ferrari, E.; Cazzoli, R.; Curigliano, G.; DeCensi, A.; Bonanni, B.; Budillon, A.; Pelicci, P.G.; Janssens, V.; Ogris, M.; Baccarini, M.; Lanfrancone, L.; Weckwerth, W.; Foiani, M.; Minucci, S. Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3β-MCL-1 axis. Cancer Cell, 2019, 35(5), 798-815.e5.
[http://dx.doi.org/10.1016/j.ccell.2019.03.007] [PMID: 31031016]
[89]
Cruz-Bermúdez, A.; Vicente-Blanco, R.J.; Laza-Briviesca, R.; García-Grande, A.; Laine-Menéndez, S.; Gutiérrez, L.; Calvo, V.; Romero, A.; Martín-Acosta, P.; García, J.M.; Provencio, M. PGC-1alpha levels correlate with survival in patients with stage III NSCLC and may de-fine a new biomarker to metabolism-targeted therapy. Sci. Rep., 2017, 7(1), 16661.
[http://dx.doi.org/10.1038/s41598-017-17009-6] [PMID: 29192176]
[90]
Linja, M.J.; Savinainen, K.J.; Saramäki, O.R.; Tammela, T.L.; Vessella, R.L.; Visakorpi, T. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res., 2001, 61(9), 3550-3555.
[PMID: 11325816]
[91]
Madhav, A.; Andres, A.; Duong, F.; Mishra, R.; Haldar, S.; Liu, Z.; Angara, B.; Gottlieb, R.; Zumsteg, Z.S.; Bhowmick, N.A. Antagonizing CD105 enhances radiation sensitivity in prostate cancer. Oncogene, 2018, 37(32), 4385-4397.
[http://dx.doi.org/10.1038/s41388-018-0278-0] [PMID: 29717261]
[92]
Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative stress in cancer. Cancer Cell, 2020, 38(2), 167-197.
[http://dx.doi.org/10.1016/j.ccell.2020.06.001] [PMID: 32649885]
[93]
Kumar, R.; Deep, G.; Wempe, M.F.; Surek, J.; Kumar, A.; Agarwal, R.; Agarwal, C. Procyanidin B2 3,3″-di-O-gallate induces oxidative stress-mediated cell death in prostate cancer cells via inhibiting MAP kinase phosphatase activity and activating ERK1/2 and AMPK. Mol. Carcinog., 2018, 57(1), 57-69.
[http://dx.doi.org/10.1002/mc.22731] [PMID: 28876465]
[94]
Jäger, S.; Handschin, C.; St-Pierre, J.; Spiegelman, B.M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phos-phorylation of PGC-1alpha. Proc. Natl. Acad. Sci. USA, 2007, 104(29), 12017-12022.
[http://dx.doi.org/10.1073/pnas.0705070104] [PMID: 17609368]
[95]
Cantó, C.; Auwerx, J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol., 2009, 20(2), 98-105.
[http://dx.doi.org/10.1097/MOL.0b013e328328d0a4] [PMID: 19276888]
[96]
Fernandez-Marcos, P.J.; Auwerx, J. Regulation of PGC-1α a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr., 2011, 93(4), 884S-90.
[http://dx.doi.org/10.3945/ajcn.110.001917] [PMID: 21289221]
[97]
Siddappa, M.; Wani, S.A.; Long, M.D.; Leach, D.A.; Mathé, E.A.; Bevan, C.L.; Campbell, M.J. Identification of transcription factor co-regulators that drive prostate cancer progression. Sci. Rep., 2020, 10(1), 20332.
[http://dx.doi.org/10.1038/s41598-020-77055-5] [PMID: 33230156]
[98]
Grasso, C.S.; Wu, Y.M.; Robinson, D.R.; Cao, X.; Dhanasekaran, S.M.; Khan, A.P.; Quist, M.J.; Jing, X.; Lonigro, R.J.; Brenner, J.C.; Asangani, I.A.; Ateeq, B.; Chun, S.Y.; Siddiqui, J.; Sam, L.; Anstett, M.; Mehra, R.; Prensner, J.R.; Palanisamy, N.; Ryslik, G.A.; Vandin, F.; Raphael, B.J.; Kunju, L.P.; Rhodes, D.R.; Pienta, K.J.; Chinnaiyan, A.M.; Tomlins, S.A. The mutational landscape of lethal castration-resistant prostate cancer. Nature, 2012, 487(7406), 239-243.
[http://dx.doi.org/10.1038/nature11125] [PMID: 22722839]
[99]
Robinson, D.; Van Allen, E.M.; Wu, Y.M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.M.; Montgomery, B.; Taplin, M.E.; Pritchard, C.C.; Attard, G.; Beltran, H.; Abida, W.; Bradley, R.K.; Vinson, J.; Cao, X.; Vats, P.; Kunju, L.P.; Hussain, M.; Feng, F.Y.; Tomlins, S.A.; Cooney, K.A.; Smith, D.C.; Brennan, C.; Siddiqui, J.; Mehra, R.; Chen, Y.; Rathkopf, D.E.; Morris, M.J.; Solomon, S.B.; Durack, J.C.; Reu-ter, V.E.; Gopalan, A.; Gao, J.; Loda, M.; Lis, R.T.; Bowden, M.; Balk, S.P.; Gaviola, G.; Sougnez, C.; Gupta, M.; Yu, E.Y.; Mostaghel, E.A.; Cheng, H.H.; Mulcahy, H.; True, L.D.; Plymate, S.R.; Dvinge, H.; Ferraldeschi, R.; Flohr, P.; Miranda, S.; Zafeiriou, Z.; Tunariu, N.; Mateo, J.; Perez-Lopez, R.; Demichelis, F.; Robinson, B.D.; Schiffman, M.; Nanus, D.M.; Tagawa, S.T.; Sigaras, A.; Eng, K.W.; Elemento, O.; Sboner, A.; Heath, E.I.; Scher, H.I.; Pienta, K.J.; Kantoff, P.; de Bono, J.S.; Rubin, M.A.; Nelson, P.S.; Garraway, L.A.; Sawyers, C.L.; Chinnaiyan, A.M. Integrative clinical genomics of advanced prostate cancer. Cell, 2015, 161(5), 1215-1228.
[http://dx.doi.org/10.1016/j.cell.2015.05.001] [PMID: 26000489]
[100]
Wallace, M.; Metallo, C.M. PGC1α drives a metabolic block on prostate cancer progression. Nat. Cell Biol., 2016, 18(6), 589-590.
[http://dx.doi.org/10.1038/ncb3365] [PMID: 27230528]
[101]
Giralt, A.; Hondares, E.; Villena, J.A.; Ribas, F.; Díaz-Delfín, J.; Giralt, M.; Iglesias, R.; Villarroya, F. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype. J. Biol. Chem., 2011, 286(19), 16958-16966.
[http://dx.doi.org/10.1074/jbc.M110.202390] [PMID: 21454513]
[102]
Yi, X.; Guo, W.; Shi, Q.; Yang, Y.; Zhang, W.; Chen, X.; Kang, P.; Chen, J.; Cui, T.; Ma, J.; Wang, H.; Guo, S.; Chang, Y.; Liu, L.; Jian, Z.; Wang, L.; Xiao, Q.; Li, S.; Gao, T.; Li, C. SIRT3-dependent mitochondrial dynamics remodeling contributes to oxidative stress-induced melanocyte degeneration in vitiligo. Theranostics, 2019, 9(6), 1614-1633.
[http://dx.doi.org/10.7150/thno.30398] [PMID: 31037127]
[103]
Wang, Q.; Wei, S.; Li, L.; Qiu, J.; Zhou, S.; Shi, C.; Shi, Y.; Zhou, H.; Lu, L. TGR5 deficiency aggravates hepatic ischemic/reperfusion injury via inhibiting SIRT3/FOXO3/HIF-1ɑ pathway. Cell Death Discov., 2020, 6(1), 116.
[http://dx.doi.org/10.1038/s41420-020-00347-2] [PMID: 33298860]
[104]
Bell, E.L.; Emerling, B.M.; Ricoult, S.J.; Guarente, L. SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mito-chondrial ROS production. Oncogene, 2011, 30(26), 2986-2996.
[http://dx.doi.org/10.1038/onc.2011.37] [PMID: 21358671]
[105]
Negrette-Guzmán, M.; Huerta-Yepez, S.; Vega, M.I.; León-Contreras, J.C.; Hernández-Pando, R.; Medina-Campos, O.N.; Rodríguez, E.; Tapia, E.; Pedraza-Chaverri, J. Sulforaphane induces differential modulation of mitochondrial biogenesis and dynamics in normal cells and tumor cells. Food Chem. Toxicol., 2017, 100, 90-102.
[http://dx.doi.org/10.1016/j.fct.2016.12.020] [PMID: 27993529]
[106]
Xia, L.; Sun, J.; Xie, S.; Chi, C.; Zhu, Y.; Pan, J.; Dong, B.; Huang, Y.; Xia, W.; Sha, J.; Xue, W. PRKAR2B-HIF-1α loop promotes aerobic glycolysis and tumour growth in prostate cancer. Cell Prolif., 2020, 53(11), e12918.
[http://dx.doi.org/10.1111/cpr.12918] [PMID: 33025691]
[107]
O’Hagan, K.A.; Cocchiglia, S.; Zhdanov, A.V.; Tambuwala, M.M.; Cummins, E.P.; Monfared, M.; Agbor, T.A.; Garvey, J.F.; Papkovsky, D.B.; Taylor, C.T.; Allan, B.B. PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen con-sumption in skeletal muscle cells. Proc. Natl. Acad. Sci. USA, 2009, 106(7), 2188-2193.
[http://dx.doi.org/10.1073/pnas.0808801106] [PMID: 19179292]
[108]
Brunelle, J.K.; Bell, E.L.; Quesada, N.M.; Vercauteren, K.; Tiranti, V.; Zeviani, M.; Scarpulla, R.C.; Chandel, N.S. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab., 2005, 1(6), 409-414.
[http://dx.doi.org/10.1016/j.cmet.2005.05.002] [PMID: 16054090]
[109]
Mansfield, K.D.; Guzy, R.D.; Pan, Y.; Young, R.M.; Cash, T.P.; Schumacker, P.T.; Simon, M.C. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab., 2005, 1(6), 393-399.
[http://dx.doi.org/10.1016/j.cmet.2005.05.003] [PMID: 16054088]
[110]
Li, H.S.; Zhou, Y.N.; Li, L.; Li, S.F.; Long, D.; Chen, X.L.; Zhang, J.B.; Feng, L.; Li, Y.P. HIF-1α protects against oxidative stress by di-rectly targeting mitochondria. Redox Biol., 2019, 25, 101109.
[http://dx.doi.org/10.1016/j.redox.2019.101109] [PMID: 30686776]
[111]
Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cell, 2012, 148(3), 399-408.
[http://dx.doi.org/10.1016/j.cell.2012.01.021] [PMID: 22304911]
[112]
Pandya, P.; Orgaz, J.L.; Sanz-Moreno, V. Modes of invasion during tumour dissemination. Mol. Oncol., 2017, 11(1), 5-27.
[http://dx.doi.org/10.1002/1878-0261.12019] [PMID: 28085224]
[113]
Tang, Y.; He, Y.; Zhang, P.; Wang, J.; Fan, C.; Yang, L.; Xiong, F.; Zhang, S.; Gong, Z.; Nie, S.; Liao, Q.; Li, X.; Li, X.; Li, Y.; Li, G.; Zeng, Z.; Xiong, W.; Guo, C. LncRNAs regulate the cytoskeleton and related Rho/ROCK signaling in cancer metastasis. Mol. Cancer, 2018, 17(1), 77.
[http://dx.doi.org/10.1186/s12943-018-0825-x] [PMID: 29618386]
[114]
Hamidi, H.; Ivaska, J. Every step of the way: Integrins in cancer progression and metastasis. Nat. Rev. Cancer, 2018, 18(9), 533-548.
[http://dx.doi.org/10.1038/s41568-018-0038-z] [PMID: 30002479]
[115]
Cooper, J.; Giancotti, F.G. Integrin signaling in cancer: Mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell, 2019, 35(3), 347-367.
[http://dx.doi.org/10.1016/j.ccell.2019.01.007] [PMID: 30889378]
[116]
Zabala-Letona, A.; Arruabarrena-Aristorena, A.; Martín-Martín, N.; Fernandez-Ruiz, S.; Sutherland, J.D.; Clasquin, M.; Tomas-Cortazar, J.; Jimenez, J.; Torres, I.; Quang, P.; Ximenez-Embun, P.; Bago, R.; Ugalde-Olano, A.; Loizaga-Iriarte, A.; Lacasa-Viscasillas, I.; Unda, M.; Torrano, V.; Cabrera, D.; van Liempd, S.M.; Cendon, Y.; Castro, E.; Murray, S.; Revandkar, A.; Alimonti, A.; Zhang, Y.; Barnett, A.; Lein, G.; Pirman, D.; Cortazar, A.R.; Arreal, L.; Prudkin, L.; Astobiza, I.; Valcarcel-Jimenez, L.; Zuñiga-García, P.; Fernandez-Dominguez, I.; Piva, M.; Caro-Maldonado, A.; Sánchez-Mosquera, P.; Castillo-Martín, M.; Serra, V.; Beraza, N.; Gentilella, A.; Thomas, G.; Azkargorta, M.; Elortza, F.; Farràs, R.; Olmos, D.; Efeyan, A.; Anguita, J.; Muñoz, J.; Falcón-Pérez, J.M.; Barrio, R.; Macarulla, T.; Mato, J.M. Mar-tinez-Chantar, M.L.; Cordon-Cardo, C.; Aransay, A.M.; Marks, K.; Baselga, J.; Tabernero, J.; Nuciforo, P.; Manning, B.D.; Marjon, K.; Carracedo, A. mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature, 2017, 547(7661), 109-113.
[http://dx.doi.org/10.1038/nature22964] [PMID: 28658205]
[117]
Poulose, N.; Amoroso, F.; Steele, R.E.; Singh, R.; Ong, C.W.; Mills, I.G. Genetics of lipid metabolism in prostate cancer. Nat. Genet., 2018, 50(2), 169-171.
[http://dx.doi.org/10.1038/s41588-017-0037-0] [PMID: 29335543]
[118]
Butler, L.M.; Centenera, M.M.; Swinnen, J.V. Androgen control of lipid metabolism in prostate cancer: Novel insights and future applica-tions. Endocr. Relat. Cancer, 2016, 23(5), R219-R227.
[http://dx.doi.org/10.1530/ERC-15-0556] [PMID: 27130044]
[119]
Vidal, A.C.; Freedland, S.J. Obesity and prostate cancer: A focused update on active surveillance, race, and molecular subtyping. Eur. Urol., 2017, 72(1), 78-83.
[http://dx.doi.org/10.1016/j.eururo.2016.10.011] [PMID: 27771128]
[120]
Abate-Shen, C. Prostate cancer metastasis - fueled by fat? N. Engl. J. Med., 2018, 378(17), 1643-1645.
[http://dx.doi.org/10.1056/NEJMcibr1800808] [PMID: 29694822]
[121]
Chen, M.; Zhang, J.; Sampieri, K.; Clohessy, J.G.; Mendez, L.; Gonzalez-Billalabeitia, E.; Liu, X.S.; Lee, Y.R.; Fung, J.; Katon, J.M.; Men-on, A.V.; Webster, K.A.; Ng, C.; Palumbieri, M.D.; Diolombi, M.S.; Breitkopf, S.B.; Teruya-Feldstein, J.; Signoretti, S.; Bronson, R.T.; As-ara, J.M.; Castillo-Martin, M.; Cordon-Cardo, C.; Pandolfi, P.P. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat. Genet., 2018, 50(2), 206-218.
[http://dx.doi.org/10.1038/s41588-017-0027-2] [PMID: 29335545]
[122]
Wang, Y.Y.; Attané, C.; Milhas, D.; Dirat, B.; Dauvillier, S.; Guerard, A.; Gilhodes, J.; Lazar, I.; Alet, N.; Laurent, V.; Le Gonidec, S.; Biard, D.; Hervé, C.; Bost, F.; Ren, G.S.; Bono, F.; Escourrou, G.; Prentki, M.; Nieto, L.; Valet, P.; Muller, C. Mammary adipocytes stimu-late breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight, 2017, 2(4), e87489.
[http://dx.doi.org/10.1172/jci.insight.87489] [PMID: 28239646]
[123]
Laurent, V.; Guérard, A.; Mazerolles, C.; Le Gonidec, S.; Toulet, A.; Nieto, L.; Zaidi, F.; Majed, B.; Garandeau, D.; Socrier, Y.; Golzio, M.; Cadoudal, T.; Chaoui, K.; Dray, C.; Monsarrat, B.; Schiltz, O.; Wang, Y.Y.; Couderc, B.; Valet, P.; Malavaud, B.; Muller, C. Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat. Commun., 2016, 7(1), 10230.
[http://dx.doi.org/10.1038/ncomms10230] [PMID: 26756352]
[124]
Dirat, B.; Ader, I.; Golzio, M.; Massa, F.; Mettouchi, A.; Laurent, K.; Larbret, F.; Malavaud, B.; Cormont, M.; Lemichez, E.; Cuvillier, O.; Tanti, J.F.; Bost, F. Inhibition of the GTPase Rac1 mediates the antimigratory effects of metformin in prostate cancer cells. Mol. Cancer Ther., 2015, 14(2), 586-596.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0102] [PMID: 25527635]
[125]
Zadra, G.; Photopoulos, C.; Tyekucheva, S.; Heidari, P.; Weng, Q.P.; Fedele, G.; Liu, H.; Scaglia, N.; Priolo, C.; Sicinska, E.; Mahmood, U.; Signoretti, S.; Birnberg, N.; Loda, M. A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis. EMBO Mol. Med., 2014, 6(4), 519-538.
[http://dx.doi.org/10.1002/emmm.201302734] [PMID: 24497570]
[126]
Frigo, D.E.; Howe, M.K.; Wittmann, B.M.; Brunner, A.M.; Cushman, I.; Wang, Q.; Brown, M.; Means, A.R.; McDonnell, D.P. CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells. Cancer Res., 2011, 71(2), 528-537.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2581] [PMID: 21098087]
[127]
Canto, P.; Granados, J.B.; Feria-Bernal, G.; Coral-Vázquez, R.M.; García-García, E.; Tejeda, M.E.; Tapia, A.; Rojano-Mejía, D.; Méndez, J.P. PPARGC1A and ADIPOQ polymorphisms are associated with aggressive prostate cancer in Mexican-Mestizo men with overweight or obesity. Cancer Biomark., 2017, 19(3), 297-303.
[http://dx.doi.org/10.3233/CBM-160467] [PMID: 28453464]
[128]
Mottillo, E.P.; Desjardins, E.M.; Crane, J.D.; Smith, B.K.; Green, A.E.; Ducommun, S.; Henriksen, T.I.; Rebalka, I.A.; Razi, A.; Sakamoto, K.; Scheele, C.; Kemp, B.E.; Hawke, T.J.; Ortega, J.; Granneman, J.G.; Steinberg, G.R. Lack of adipocyte AMPK exacerbates insulin re-sistance and hepatic steatosis through brown and beige adipose tissue function. Cell Metab., 2016, 24(1), 118-129.
[http://dx.doi.org/10.1016/j.cmet.2016.06.006] [PMID: 27411013]
[129]
Wei, G.; Sun, H.; Dong, K.; Hu, L.; Wang, Q.; Zhuang, Q.; Zhu, Y.; Zhang, X.; Shao, Y.; Tang, H.; Li, Z.; Chen, S.; Lu, J.; Wang, Y.; Gan, X.; Zhong, T.P.; Gui, D.; Hu, X.; Wang, L.; Liu, J. The thermogenic activity of adjacent adipocytes fuels the progression of ccRCC and compromises anti-tumor therapeutic efficacy. Cell Metab., 2021, 33(10), 2021-2039.e8.
[http://dx.doi.org/10.1016/j.cmet.2021.08.012] [PMID: 34508696]
[130]
Rini, B.I.; Atkins, M.B. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol., 2009, 10(10), 992-1000.
[http://dx.doi.org/10.1016/S1470-2045(09)70240-2] [PMID: 19796751]
[131]
Daas, S.I.; Rizeq, B.R.; Nasrallah, G.K. Adipose tissue dysfunction in cancer cachexia. J. Cell. Physiol., 2018, 234(1), 13-22.
[http://dx.doi.org/10.1002/jcp.26811] [PMID: 30078199]
[132]
Alipoor, E.; Hosseinzadeh-Attar, M.J.; Rezaei, M.; Jazayeri, S.; Chapman, M. White adipose tissue browning in critical illness: A review of the evidence, mechanisms and future perspectives. Obes. Rev., 2020, 21(12), e13085.
[http://dx.doi.org/10.1111/obr.13085] [PMID: 32608573]
[133]
Argilés, J.M.; Stemmler, B.; López-Soriano, F.J.; Busquets, S. Inter-tissue communication in cancer cachexia. Nat. Rev. Endocrinol., 2018, 15(1), 9-20.
[http://dx.doi.org/10.1038/s41574-018-0123-0] [PMID: 30464312]
[134]
Hafner, A.; Bulyk, M.L.; Jambhekar, A.; Lahav, G. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol., 2019, 20(4), 199-210.
[http://dx.doi.org/10.1038/s41580-019-0110-x] [PMID: 30824861]
[135]
Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; Maser, R.S.; Tonon, G.; Foerster, F.; Xiong, R.; Wang, Y.A.; Shukla, S.A.; Jaskelioff, M.; Martin, E.S.; Heffernan, T.P.; Protopopov, A.; Ivanova, E.; Mahoney, J.E.; Kost-Alimova, M.; Perry, S.R.; Bronson, R.; Liao, R.; Mulligan, R.; Shirihai, O.S.; Chin, L.; DePinho, R.A. Telomere dysfunction in-duces metabolic and mitochondrial compromise. Nature, 2011, 470(7334), 359-365.
[http://dx.doi.org/10.1038/nature09787] [PMID: 21307849]
[136]
Jones, R.G.; Plas, D.R.; Kubek, S.; Buzzai, M.; Mu, J.; Xu, Y.; Birnbaum, M.J.; Thompson, C.B. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell, 2005, 18(3), 283-293.
[http://dx.doi.org/10.1016/j.molcel.2005.03.027] [PMID: 15866171]
[137]
Shaw, R.J.; Kosmatka, M.; Bardeesy, N.; Hurley, R.L.; Witters, L.A.; DePinho, R.A.; Cantley, L.C. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. USA, 2004, 101(10), 3329-3335.
[http://dx.doi.org/10.1073/pnas.0308061100] [PMID: 14985505]
[138]
Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; Antipin, Y.; Reva, B.; Goldberg, A.P.; Sander, C.; Schultz, N. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov., 2012, 2(5), 401-404.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0095] [PMID: 22588877]
[139]
Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sand-er, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 2013, 6(269), pl1.
[http://dx.doi.org/10.1126/scisignal.2004088] [PMID: 23550210]
[140]
Abeshouse, A.; Ahn, J.; Akbani, R.; Ally, A.; Amin, S.; Andry, C.D.; Annala, M.; Aprikian, A.; Armenia, J.; Arora, A.; Auman, J.T.; Bal-asundaram, M.; Balu, S.; Barbieri, C.E.; Bauer, T.; Benz, C.C.; Bergeron, A.; Beroukhim, R.; Berrios, M.; Bivol, A.; Bodenheimer, T.; Boice, L.; Bootwalla, M.S.; Borges dos Reis, R.; Boutros, P.C.; Bowen, J.; Bowlby, R.; Boyd, J.; Bradley, R.K.; Breggia, A.; Brimo, F.; Bris-tow, C.A.; Brooks, D.; Broom, B.M.; Bryce, A.H.; Bubley, G.; Burks, E.; Butterfield, Y.S.N.; Button, M.; Canes, D.; Carlotti, C.G.; Carlsen, R.; Carmel, M.; Carroll, P.R.; Carter, S.L.; Cartun, R.; Carver, B.S.; Chan, J.M.; Chang, M.T.; Chen, Y.; Cherniack, A.D.; Chevalier, S.; Chin, L.; Cho, J.; Chu, A.; Chuah, E.; Chudamani, S.; Cibulskis, K.; Ciriello, G.; Clarke, A.; Cooperberg, M.R.; Corcoran, N.M.; Costello, A.J.; Cowan, J.; Crain, D.; Curley, E.; David, K.; Demchok, J.A.; Demichelis, F.; Dhalla, N.; Dhir, R.; Doueik, A.; Drake, B.; Dvinge, H.; Dyakova, N.; Felau, I.; Ferguson, M.L.; Frazer, S.; Freedland, S.; Fu, Y.; Gabriel, S.B.; Gao, J.; Gardner, J.; Gastier-Foster, J.M.; Gehlen-borg, N.; Gerken, M.; Gerstein, M.B.; Getz, G.; Godwin, A.K.; Gopalan, A.; Graefen, M.; Graim, K.; Gribbin, T.; Guin, R.; Gupta, M.; Hadjipanayis, A.; Haider, S.; Hamel, L.; Hayes, D.N.; Heiman, D.I.; Hess, J.; Hoadley, K.A.; Holbrook, A.H.; Holt, R.A.; Holway, A.; Hovens, C.M.; Hoyle, A.P.; Huang, M.; Hutter, C.M.; Ittmann, M.; Iype, L.; Jefferys, S.R.; Jones, C.D.; Jones, S.J.M.; Juhl, H.; Kahles, A.; Kane, C.J.; Kasaian, K.; Kerger, M.; Khurana, E.; Kim, J.; Klein, R.J.; Kucherlapati, R.; Lacombe, L.; Ladanyi, M.; Lai, P.H.; Laird, P.W.; Lander, E.S.; Latour, M.; Lawrence, M.S.; Lau, K.; LeBien, T.; Lee, D.; Lee, S.; Lehmann, K-V.; Leraas, K.M.; Leshchiner, I.; Leung, R.; Libertino, J.A.; Lichtenberg, T.M.; Lin, P.; Linehan, W.M.; Ling, S.; Lippman, S.M.; Liu, J.; Liu, W.; Lochovsky, L.; Loda, M.; Logothetis, C.; Lolla, L.; Longacre, T.; Lu, Y.; Luo, J.; Ma, Y.; Mahadeshwar, H.S.; Mallery, D.; Mariamidze, A.; Marra, M.A.; Mayo, M.; McCall, S.; McKercher, G.; Meng, S.; Mes-Masson, A-M.; Merino, M.J.; Meyerson, M.; Mieczkowski, P.A.; Mills, G.B.; Shaw, K.R.M.; Minner, S.; Moinzadeh, A.; Moore, R.A.; Morris, S.; Morrison, C.; Mose, L.E.; Mungall, A.J.; Murray, B.A.; Myers, J.B.; Naresh, R.; Nelson, J.; Nel-son, M.A.; Nelson, P.S.; Newton, Y.; Noble, M.S.; Noushmehr, H.; Nykter, M.; Pantazi, A.; Parfenov, M.; Park, P.J.; Parker, J.S.; Paulauskis, J.; Penny, R.; Perou, C.M.; Piché, A.; Pihl, T.; Pinto, P.A.; Prandi, D.; Protopopov, A.; Ramirez, N.C.; Rao, A.; Rathmell, W.K.; Rätsch, G.; Ren, X.; Reuter, V.E.; Reynolds, S.M.; Rhie, S.K.; Rieger-Christ, K.; Roach, J.; Robertson, A.G.; Robinson, B.; Rubin, M.A.; Saad, F.; Sadeghi, S.; Saksena, G.; Saller, C.; Salner, A.; Sanchez-Vega, F.; Sander, C.; Sandusky, G.; Sauter, G.; Sboner, A.; Scardino, P.T.; Scarlata, E.; Schein, J.E.; Schlomm, T.; Schmidt, L.S.; Schultz, N.; Schumacher, S.E.; Seidman, J.; Neder, L.; Seth, S.; Sharp, A.; Shelton, C.; Shelton, T.; Shen, H.; Shen, R.; Sherman, M.; Sheth, M.; Shi, Y.; Shih, J.; Shmulevich, I.; Simko, J.; Simon, R.; Simons, J.V.; Sipahimalani, P.; Skelly, T.; Sofia, H.J.; Soloway, M.G.; Song, X.; Sorcini, A.; Sougnez, C.; Stepa, S.; Stewart, C.; Stewart, J.; Stuart, J.M.; Sullivan, T.B.; Sun, C.; Sun, H.; Tam, A.; Tan, D.; Tang, J.; Tarnuzzer, R.; Tarvin, K.; Taylor, B.S.; Teebagy, P.; Tenggara, I.; Têtu, B.; Tewari, A.; Thiessen, N.; Thompson, T.; Thorne, L.B.; Tirapelli, D.P.; Tomlins, S.A.; Trevisan, F.A.; Troncoso, P.; True, L.D.; Tsourla-kis, M.C.; Tyekucheva, S.; Van Allen, E.; Van Den Berg, D.J.; Veluvolu, U.; Verhaak, R.; Vocke, C.D.; Voet, D.; Wan, Y.; Wang, Q.; Wang, W.; Wang, Z.; Weinhold, N.; Weinstein, J.N.; Weisenberger, D.J.; Wilkerson, M.D.; Wise, L.; Witte, J.; Wu, C-C.; Wu, J.; Wu, Y.; Xu, A.W.; Yadav, S.S.; Yang, L.; Yang, L.; Yau, C.; Ye, H.; Yena, P.; Zeng, T.; Zenklusen, J.C.; Zhang, H.; Zhang, J.; Zhang, J.; Zhang, W.; Zhong, Y.; Zhu, K.; Zmuda, E. The molecular taxonomy of primary prostate cancer. Cell, 2015, 163(4), 1011-1025.
[http://dx.doi.org/10.1016/j.cell.2015.10.025] [PMID: 26544944]
[141]
Andersen, G.; Wegner, L.; Jensen, D.P.; Glümer, C.; Tarnow, L.; Drivsholm, T.; Poulsen, P.; Hansen, S.K.; Nielsen, E.M.; Ek, J.; Mour-itzen, P.; Vaag, A.; Parving, H.H.; Borch-Johnsen, K.; Jørgensen, T.; Hansen, T.; Pedersen, O. PGC-1alpha Gly482Ser polymorphism as-sociates with hypertension among Danish whites. Hypertension, 2005, 45(4), 565-570.
[http://dx.doi.org/10.1161/01.HYP.0000158946.53289.24] [PMID: 15738346]
[142]
Vandenbeek, R.; Khan, N.P.; Estall, J.L. Linking metabolic disease with the PGC-1α Gly482Ser polymorphism. Endocrinology, 2018, 159(2), 853-865.
[http://dx.doi.org/10.1210/en.2017-00872] [PMID: 29186342]
[143]
Xia, W.; Chen, N.; Peng, W.; Jia, X.; Yu, Y.; Wu, X.; Gao, H. Systematic meta-analysis revealed an association of PGC-1α rs8192678 polymorphism in type 2 diabetes mellitus. Dis. Markers, 2019, 2019, 2970401.
[http://dx.doi.org/10.1155/2019/2970401] [PMID: 30944665]
[144]
Kruzliak, P.; Haley, A.P.; Starcevic, J.N.; Gaspar, L.; Petrovic, D. Polymorphisms of the peroxisome proliferator-activated receptor-γ (rs1801282) and its coactivator-1 (rs8192673) are associated with obesity indexes in subjects with type 2 diabetes mellitus. Cardiovasc. Diabetol., 2015, 14(1), 42.
[http://dx.doi.org/10.1186/s12933-015-0197-0] [PMID: 25928419]
[145]
Ling, C.; Poulsen, P.; Carlsson, E.; Ridderstråle, M.; Almgren, P.; Wojtaszewski, J.; Beck-Nielsen, H.; Groop, L.; Vaag, A. Multiple envi-ronmental and genetic factors influence skeletal muscle PGC-1alpha and PGC-1beta gene expression in twins. J. Clin. Invest., 2004, 114(10), 1518-1526.
[http://dx.doi.org/10.1172/JCI21889] [PMID: 15546003]
[146]
Gelmann, E.P. Complexities of prostate-cancer risk. N. Engl. J. Med., 2008, 358(9), 961-963.
[http://dx.doi.org/10.1056/NEJMe0708703] [PMID: 18199856]
[147]
Roudi, R.; Nemati, H.; Rastegar Moghadam, M.; Sotoudeh, M.; Narouie, B.; Shojaei, A. Association of homeobox B13 (HOXB13) gene variants with prostate cancer risk in an Iranian population. Med. J. Islam. Repub. Iran, 2018, 32, 97.
[http://dx.doi.org/10.14196/mjiri.32.97] [PMID: 31024864]
[148]
Biernacka, K.M.; Persad, R.A.; Bahl, A.; Gillatt, D.; Holly, J.M.; Perks, C.M. Hyperglycaemia-induced resistance to Docetaxel is negated by metformin: A role for IGFBP-2. Endocr. Relat. Cancer, 2017, 24(1), 17-30.
[http://dx.doi.org/10.1530/ERC-16-0095] [PMID: 27754854]
[149]
Xiang, S.; Zhang, Q.; Tang, Q.; Zheng, F.; Wu, J.; Yang, L.; Hann, S.S. Activation of AMPKα mediates additive effects of solamargine and metformin on suppressing MUC1 expression in castration-resistant prostate cancer cells. Sci. Rep., 2016, 6(1), 36721.
[http://dx.doi.org/10.1038/srep36721] [PMID: 27830724]
[150]
Zakikhani, M.; Dowling, R.J.; Sonenberg, N.; Pollak, M.N. The effects of adiponectin and metformin on prostate and colon neoplasia in-volve activation of AMP-activated protein kinase. Cancer Prev. Res. (Phila.), 2008, 1(5), 369-375.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0081] [PMID: 19138981]
[151]
Tao, T.; Zhao, F.; Xuan, Q.; Shen, Z.; Xiao, J.; Shen, Q. Fenofibrate inhibits the growth of prostate cancer through regulating autophagy and endoplasmic reticulum stress. Biochem. Biophys. Res. Commun., 2018, 503(4), 2685-2689.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.024] [PMID: 30098788]
[152]
Jayasooriya, R.G.P.T.; Dilshara, M.G.; Karunarathne, W.A.H.M.; Molagoda, I.M.N.; Choi, Y.H.; Kim, G.Y. Camptothecin enhances c-Myc-mediated endoplasmic reticulum stress and leads to autophagy by activating Ca2+-mediated AMPK. Food Chem. Toxicol., 2018, 121, 648-656.
[http://dx.doi.org/10.1016/j.fct.2018.09.057] [PMID: 30266318]
[153]
Cheng, K. Liu, X.; Chen, L.; Lv, J.M.; Qu, F.J.; Pan, X.W.; Li, L.; Cui, X.G.; Gao, Y.; Xu, D.F. α-Viniferin activates autophagic apoptosis and cell death by reducing glucocorticoid receptor expression in castration-resistant prostate cancer cells. Med. Oncol., 2018, 35(7), 105.
[http://dx.doi.org/10.1007/s12032-018-1163-y] [PMID: 29904891]
[154]
Chung, S.J.; Nagaraju, G.P.; Nagalingam, A.; Muniraj, N.; Kuppusamy, P.; Walker, A.; Woo, J. Győrffy, B.; Gabrielson, E.; Saxena, N.K.; Sharma, D. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy, 2017, 13(8), 1386-1403.
[http://dx.doi.org/10.1080/15548627.2017.1332565] [PMID: 28696138]
[155]
Din, F.V.; Valanciute, A.; Houde, V.P.; Zibrova, D.; Green, K.A.; Sakamoto, K.; Alessi, D.R.; Dunlop, M.G. Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology, 2012, 142(7), 1504-1515 e1503.
[http://dx.doi.org/10.1053/j.gastro.2012.02.050]
[156]
Zhao, F.; Huang, W.; Zhang, Z.; Mao, L.; Han, Y.; Yan, J.; Lei, M. Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells. Oncotarget, 2016, 7(5), 5366-5382.
[http://dx.doi.org/10.18632/oncotarget.6783] [PMID: 26734992]
[157]
Draz, H.; Goldberg, A.A.; Titorenko, V.I.; Tomlinson Guns, E.S.; Safe, S.H.; Sanderson, J.T. Diindolylmethane and its halogenated deriva-tives induce protective autophagy in human prostate cancer cells via induction of the oncogenic protein AEG-1 and activation of AMP-activated protein kinase (AMPK). Cell. Signal., 2017, 40, 172-182.
[http://dx.doi.org/10.1016/j.cellsig.2017.09.006] [PMID: 28923415]
[158]
Mutlu, B.; Puigserver, P. GCN5 acetyltransferase in cellular energetic and metabolic processes. Biochim. Biophys. Acta. Gene Regul. Mech., 2021, 1864(2), 194626.
[http://dx.doi.org/10.1016/j.bbagrm.2020.194626] [PMID: 32827753]
[159]
Fan, J.; Fan, Y.; Wang, X.; Niu, L.; Duan, L.; Yang, J.; Li, L.; Gao, Y.; Wu, X.; Luo, C. PLCε regulates prostate cancer mitochondrial oxi-dative metabolism and migration via upregulation of Twist1. J. Exp. Clin. Cancer Res., 2019, 38(1), 337.
[http://dx.doi.org/10.1186/s13046-019-1323-8] [PMID: 31383001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy