Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

The Incredible Potential of Exosomes as Biomarkers in the Diagnosis of Colorectal Cancer

Author(s): Sankha Bhattacharya*

Volume 14, Issue 3, 2022

Published on: 16 August, 2022

Page: [188 - 202] Pages: 15

DOI: 10.2174/2665998002666220501164429

Price: $65

Abstract

Colorectal cancer (CRC) is common cancer that is one of the leading causes of cancerrelated deaths around the world. The creation of new biomarkers for this disease is an important public health strategy for lowering the disease's mortality rate. According to new research, exosomes may be important sources of biomarkers in CRC. Exosomes are nanometer-sized membrane vesicles (30-200 nm) secreted by normal and cancer cells that transport RNA and proteins between cells and are thought to help with intercellular communication. Exosomes have been linked to CRC initiation and progression, and some differentially expressed RNAs and proteins in exosomes have been identified as potential cancer detection candidates. As a result, studying the relationship between exosomes and CRC may aid in the development of new biomarkers for the disease. This article discusses the importance of exosomes as biomarkers in the diagnosis of CRC, as well as their use in the treatment of CRC metastasis, chemoresistance, and recrudescence. The benefits and drawbacks of using exosomes as tumour markers are also discussed.

Keywords: Colorectal cancer (CRC), lncrnas, exosomes, multiplexed vesicular bodies (MVBs), intraluminal vesicles (ILVs), exosomal IRF-2.

Graphical Abstract
[1]
Harada, S.; Morlote, D. Molecular pathology of CRC. Adv. Anat. Pathol., 2020, 27(1), 20-26.
[http://dx.doi.org/10.1097/PAP.0000000000000247] [PMID: 31503031]
[2]
Beeraka, N.M.; Bovilla, V.R.; Doreswamy, S.H.; Puttalingaiah, S.; Srinivasan, A.; Madhunapantula, S.V. The taming of nuclear factor erythroid-2-related factor-2 (Nrf2) deglycation by fructosamine-3-kinase (FN3K)-inhibitors-A novel strategy to combat cancers. Cancers (Basel), 2021, 13(2), 281.
[http://dx.doi.org/10.3390/cancers13020281] [PMID: 33466626]
[3]
Mukherji, R.; Marshall, J.L. Lessons learned in managing patients with colorectal cancer during the COVID-19 pandemic. Curr. Treat. Options Oncol., 2021, 22(10), 93.
[http://dx.doi.org/10.1007/s11864-021-00888-3] [PMID: 34424418]
[4]
Nagarajan, A.; Sakthivelu, A.; Santhanaraman, N.; Ravichandar, R. Nimotuzumab combined with radiotherapy for the treatment of hypopharyn-geal cancer - A case report from a tertiary cancer center. J. Clin. Transl. Res., 2021, 7(2), 285-288.
[PMID: 34104833]
[5]
Kacew, A.; Sweis, R.F. FGFR3 alterations in the era of immunotherapy for urothelial bladder cancer. Front. Immunol., 2020, 11, 575258.
[http://dx.doi.org/10.3389/fimmu.2020.575258] [PMID: 33224141]
[6]
Wang, M.; Xu, Y.; Yang, M. Conversion therapy for locally advanced pancreatic cancer: A case series and literature review; Cancer Plus, 2021.
[7]
Bright, D.; Gray, B.J.; Kyle, R.G.; Bolton, S.; Davies, A.R. Factors influencing initiation of health behaviour conversations with patients: Cross-sectional study of nurses, midwives, and healthcare support workers in Wales. J. Adv. Nurs., 2021, 77(11), 4427-4438.
[http://dx.doi.org/10.1111/jan.14926] [PMID: 34235759]
[8]
Li, H.; Boakye, D.; Chen, X.; Hoffmeister, M.; Brenner, H. Association of body mass index with risk of early-onset colorectal cancer: Systematic review and meta-analysis. Am. J. Gastroenterol., 2021, 116(11), 2173-2183.
[http://dx.doi.org/10.14309/ajg.0000000000001393] [PMID: 34309586]
[9]
Alauddin, M; Sultana, A; Kabir, Y Potential of nutraceutical in preventing the risk of cancer and metabolic syndrome: From the perspective of nutritional genomics. Cancer Plus, 2021, 3(2)
[10]
Hou, Z.; Fang, G. Research progress of anti-tumor effects of curcuma zedoaria and its active ingredients through immune regulation mecha-nism. J Clin Nursing Res, 2021, 5(4), 1-7.
[http://dx.doi.org/10.26689/jcnr.v5i4.2300]
[11]
Yang, Z.; Shen, Z.; Jin, D. Mutations of METTL3 predict response to neoadjuvant chemotherapy in muscle-invasive bladder cancer. J. Clin. Transl. Res., 2021, 7(3), 386-413.
[PMID: 34239995]
[12]
Pal, S.; Garg, M.; Pandey, A.K. Biomarkers as putative therapeutic targets in CRC. Colon cancer diagnosis and therapy; Springer: Cham, 2021, pp. 123-177.
[13]
Hussain, K; Siddiq, A; Naz, Z; Ambreen, G Association of repeatedly heated oil-induced hepatic fat accumulation and development of cancer: A commentary. Cancer Plus, 2021, 2(3)
[14]
Rajathi, K.; Leneeygreen, K.B.; Suja, S. Mechanism underlying the inhibitory effect of bio-synthesized silver nanoparticle on TNF-α induced NF-κB nuclear translocation in prostate cancer cells. Int J Pharm Sci Nanotechnol, 2021, 14(2), 5396-5405.
[http://dx.doi.org/10.37285/ijpsn.2021.14.2.5]
[15]
Jain, S.K.; Dubey, V.; Rajpoot, K. D-Mannose-decorated chitosan nanoparticles for enhanced targeting of 5-fluorouracil in the therapy of colon cancer. International J Pharm Sci Nanotechnol, 2021, 14(1), 5315-5322.
[http://dx.doi.org/10.37285/ijpsn.2021.14.1.7]
[16]
Dong, J.; Wu, H.; Zhou, D. Application of big data and artificial intelligence in COVID-19 prevention, diagnosis, treatment and manage-ment decisions in China. J. Med. Syst., 2021, 45(9), 84.
[http://dx.doi.org/10.1007/s10916-021-01757-0]
[17]
Yamazaki, K.; Yamanaka, T.; Shiozawa, M. Oxaliplatin-based adjuvant chemotherapy duration (3 versus 6 months) for high-risk stage II colon cancer: The randomized phase III ACHIEVE-2 trial. Ann. Oncol., 2021, 32(1), 77-84.
[http://dx.doi.org/10.1016/j.annonc.2020.10.480] [PMID: 33121997]
[18]
Malenica, M.; Vukomanović, M.; Kurtjak, M. Perspectives of microscopy methods for morphology characterisation of extracellular vesi-cles from human biofluids. Biomedicines, 2021, 9(6), 603.
[http://dx.doi.org/10.3390/biomedicines9060603] [PMID: 34073297]
[19]
Radanova, M.; Mihaylova, G.; Nazifova-Tasinova, N. Oncogenic functions and clinical significance of circular RNAs in colorectal cancer. Cancers (Basel), 2021, 13(14), 3395.
[http://dx.doi.org/10.3390/cancers13143395] [PMID: 34298612]
[20]
Priya, S.; Satheeshkumar, P.K. Exosomal Biomarkers in CRC.Colon Cancer Diagnosis and Therapy; Springer: Cham, 2021, pp. 101-122.
[21]
Kadbhane, A.; Patel, M.; Srivastava, S. Perspective insights and application of exosomes as a novel tool against neurodegenerative disor-ders: An expository appraisal. J. Drug Deliv. Sci. Technol., 2021, 63, 102526.
[http://dx.doi.org/10.1016/j.jddst.2021.102526]
[22]
Conti, I.; Simioni, C.; Varano, G.; Brenna, C.; Costanzi, E.; Neri, L.M. MicroRNAs Patterns as potential tools for diagnostic and prognostic follow-up in cancer survivorship. Cells, 2021, 10(8), 2069.
[http://dx.doi.org/10.3390/cells10082069] [PMID: 34440837]
[23]
Cai, G.; Cai, G.; Zhou, H. Mesenchymal stem cell-derived exosome miR-542-3p suppresses inflammation and prevents cerebral infarc-tion. Stem Cell Res. Ther., 2021, 12(1), 2.
[http://dx.doi.org/10.1186/s13287-020-02030-w] [PMID: 33407827]
[24]
DiStefano, TJ; Vaso, K; Danias, G; Chionuma, HN; Weiser, JR; Iatridis, JC Extracellular vesicles as an emerging treatment option for intervertebral disc degeneration: Therapeutic potential, translational pathways, and regulatory considerations Adv Healthc Mater, 2021, e2100596: e2100596..
[http://dx.doi.org/10.1002/adhm.202100596] [PMID: 34297485]
[25]
Moghadasi, S.; Elveny, M.; Rahman, H.S. A paradigm shift in cell-free approach: The emerging role of MSCs-derived exosomes in regen-erative medicine. J. Transl. Med., 2021, 19(1), 302.
[http://dx.doi.org/10.1186/s12967-021-02980-6] [PMID: 34253242]
[26]
Hosseini, M.; Baghaei, K.; Amani, D.; Ebtekar, M. Tumor-derived exosomes encapsulating miR-34a promote apoptosis and inhibit migration and tumor progression of colorectal cancer cells under in vitro condition. Daru, 2021, 29(2), 267-278.
[http://dx.doi.org/10.1007/s40199-021-00400-0] [PMID: 34405380]
[27]
Zhou, Y.; Li, P.; Goodwin, A.J. Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury. Crit. Care, 2019, 23(1), 44.
[http://dx.doi.org/10.1186/s13054-019-2339-3] [PMID: 30760290]
[28]
Mittal, R.; Bencie, N.; Langlie, J.; Mittal, J.; Eshraghi, A.A. Exosomes as drug delivery vehicles and biomarkers for neurological and auditory sys-tems. J. Cell. Physiol., 2021, 236(12), 8035-8049.
[http://dx.doi.org/10.1002/jcp.30484] [PMID: 34224589]
[29]
Zhang, W; Wang, Y; Zhu, Z; Zheng, Y; Song, B Propofol inhibits proliferation, migration and invasion of gastric cancer cells by up-regulating microRNA-195. Int J Biol Macromol, 2018, 120(Pt A), 975-984.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.173] [PMID: 30171944]
[30]
Cruz-Rodriguez, L.; Dilsiz, N.; Barea, R. The algorithms cruz rodriguez (CR) are proposing a novel vaccine rna-peptide against breast, ovarian, and lung cancers disease: Exosomes as carrier in cancer progression and metastasis. J Med Clin Res Rev, 2021, 5(2), 1-6.
[31]
Zhang, H.; Yang, M.; Wu, X. The distinct roles of exosomes in tumor-stroma crosstalk within gastric tumor microenvironment. Pharmacol. Res., 2021, 171, 105785.
[http://dx.doi.org/10.1016/j.phrs.2021.105785] [PMID: 34311072]
[32]
Jiao, Y.; Xu, P.; Shi, H.; Chen, D.; Shi, H. Advances on liver cell-derived exosomes in liver diseases. J. Cell. Mol. Med., 2021, 25(1), 15-26.
[http://dx.doi.org/10.1111/jcmm.16123] [PMID: 33247543]
[33]
Ye, T; Lin, S; Ding, S; Cao, D; Luo, L; Yeung, WS Role of exosomal microRNAs and lncRNAs in the follicular fluid of women with polycystic ovary syndrome., 2021.
[34]
Knowlton, S; Joshi, A; Yenilmez, B Advancing cancer research using bioprinting for tumor-on-a-chip platforms., 2016, 2(2)
[35]
Jafari, A.; Babajani, A.; Abdollahpour-Alitappeh, M.; Ahmadi, N.; Rezaei-Tavirani, M. Exosomes and cancer: From molecular mechanisms to clinical applications. Med. Oncol., 2021, 38(4), 45.
[http://dx.doi.org/10.1007/s12032-021-01491-0] [PMID: 33743101]
[36]
Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; Kim, J.H. Platinum nanoparticles enhance exosome release in human lung epithelial adenocarcinoma cancer cells (A549): Oxidative stress and the ceramide pathway are key players. Int. J. Nanomedicine, 2021, 16, 515-538.
[http://dx.doi.org/10.2147/IJN.S291138] [PMID: 33519199]
[37]
Vakhshiteh, F.; Rahmani, S.; Ostad, S.N.; Madjd, Z.; Dinarvand, R.; Atyabi, F. Exosomes derived from miR-34a-overexpressing mesenchymal stem cells inhibit in vitro tumor growth: A new approach for drug delivery. Life Sci., 2021, 266, 118871.
[http://dx.doi.org/10.1016/j.lfs.2020.118871] [PMID: 33309716]
[38]
Grehl, C.; Schultheiß, C.; Hoffmann, K. Detection of SARS-CoV-2 derived small rnas and changes in circulating small RNAs associated with COVID-19. Viruses, 2021, 13(8), 1593.
[http://dx.doi.org/10.3390/v13081593] [PMID: 34452458]
[39]
Heydarzadeh, S.; Ranjbar, M.; Karimi, F.; Seif, F.; Alivand, M.R. Overview of host miRNA properties and their association with epigenetics, long non-coding RNAs, and Xeno-infectious factors. Cell Biosci., 2021, 11(1), 43.
[http://dx.doi.org/10.1186/s13578-021-00552-1]
[40]
Alves Dos Santos, K.; Clemente Dos Santos, I.C.; Santos Silva, C.; Gomes Ribeiro, H.; de Farias Domingos, I.; Nogueira Silbiger, V. Circulating exosomal miRNAs as biomarkers for the diagnosis and prognosis of colorectal cancer. Int. J. Mol. Sci., 2020, 22(1), 346.
[http://dx.doi.org/10.3390/ijms22010346] [PMID: 33396209]
[41]
Handa, T.; Kuroha, M.; Nagai, H. Liquid biopsy for colorectal adenoma: Is the exosomal mirna derived from organoid a potential diag-nostic biomarker? Clin. Transl. Gastroenterol., 2021, 12(5), e00356.
[http://dx.doi.org/10.14309/ctg.0000000000000356] [PMID: 33979310]
[42]
Zhang, Z.; Chen, G.; Dai, Q. The clinical study of multigene combination test to guide chemotherapy combined with targeted therapy in patients with advanced gastrointestinal tumors; Proc Anticancer Res, 2020.
[http://dx.doi.org/10.26689/par.v4i5.1519]
[43]
Raut, J.R.; Schöttker, B.; Holleczek, B. A microRNA panel compared to environmental and polygenic scores for colorectal cancer risk pre-diction. Nat. Commun., 2021, 12(1), 4811.
[http://dx.doi.org/10.1038/s41467-021-25067-8] [PMID: 34376648]
[44]
Testa, A.; Venturelli, E.; Brizzi, M.F. Extracellular vesicles as a novel liquid biopsy-based diagnosis for the central nervous system, head and neck, lung, and gastrointestinal cancers: Current and future perspectives. Cancers (Basel), 2021, 13(11), 2792.
[http://dx.doi.org/10.3390/cancers13112792] [PMID: 34205183]
[45]
Rezvaninejad, R.H. Evaluation of relationship between ABO bloods with oral cancer and compared with healthy individuals. Ann. Rom. Soc. Cell Biol., 2021, 25(6), 17712-17720.
[46]
Ma, R.; Liang, Z.; Shi, X. Exosomal miR-486-5p derived from human placental microvascular endothelial cells regulates proliferation and invasion of trophoblasts via targeting IGF1. Hum. Cell, 2021, 34(5), 1310-1323.
[http://dx.doi.org/10.1007/s13577-021-00543-x] [PMID: 33977502]
[47]
Jiang, W.; Li, M.; Tan, J. A nomogram based on a collagen feature support vector machine for predicting the treatment response to neoad-juvant chemoradiotherapy in rectal cancer patients. Ann. Surg. Oncol., 2021, 28(11), 6408-6421.
[http://dx.doi.org/10.1245/s10434-021-10218-4] [PMID: 34148136]
[48]
Yin, H.; Hu, J.; Ye, Z.; Chen, S.; Chen, Y. Serum long non coding RNA NNT AS1 protected by exosome is a potential biomarker and functions as an oncogene via the miR 496/RAP2C axis in colorectal cancer. Mol. Med. Rep., 2021, 24(2), 585.
[http://dx.doi.org/10.3892/mmr.2021.12224] [PMID: 34132374]
[49]
Yang, L.; Zhang, X.; Hu, G. Circulating non-coding RNAs as new biomarkers and novel therapeutic targets in colorectal cancer. Clin. Transl. Oncol., 2021, 23(11), 2220-2236.
[http://dx.doi.org/10.1007/s12094-021-02639-0] [PMID: 34275108]
[50]
Liao, Z.; Nie, H.; Wang, Y.; Luo, J.; Zhou, J.; Ou, C. The emerging landscape of long non-coding RNAs in colorectal cancer metastasis. Front. Oncol., 2021, 11, 641343.
[http://dx.doi.org/10.3389/fonc.2021.641343] [PMID: 33718238]
[51]
Zhong, G.; Wang, K.; Li, J.; Xiao, S.; Wei, W.; Liu, J. Determination of serum exosomal H19 as a noninvasive biomarker for breast cancer diagno-sis. OncoTargets Ther., 2020, 13, 2563-2571.
[http://dx.doi.org/10.2147/OTT.S243601] [PMID: 32273726]
[52]
Ferlizza, E.; Solmi, R.; Sgarzi, M.; Ricciardiello, L.; Lauriola, M. The roadmap of colorectal cancer screening. Cancers (Basel), 2021, 13(5), 1101.
[http://dx.doi.org/10.3390/cancers13051101] [PMID: 33806465]
[53]
Matsushita, D.; Arigami, T.; Okubo, K. The diagnostic and prognostic value of a liquid biopsy for esophageal cancer: A systematic review and meta-analysis. Cancers (Basel), 2020, 12(10), 3070.
[http://dx.doi.org/10.3390/cancers12103070] [PMID: 33096708]
[54]
Ashirbekov, Y.; Abaildayev, A.; Omarbayeva, N. Combination of circulating miR-145-5p/miR-191-5p as biomarker for breast cancer detection. PeerJ, 2020, 8, e10494.
[http://dx.doi.org/10.7717/peerj.10494] [PMID: 33362968]
[55]
Shaker, O.G.; Senousy, M.A.; Elbaz, E.M. Association of rs6983267 at 8q24, HULC rs7763881 polymorphisms and serum lncRNAs CCAT2 and HULC with colorectal cancer in Egyptian patients. Sci. Rep., 2017, 7(1), 16246.
[http://dx.doi.org/10.1038/s41598-017-16500-4] [PMID: 29176650]
[56]
Yin, H.; Yu, S.; Xie, Y. Cancer-associated fibroblasts-derived exosomes upregulate microRNA-135b-5p to promote colorectal cancer cell growth and angiogenesis by inhibiting thioredoxin-interacting protein. Cell. Signal., 2021, 84, 110029.
[http://dx.doi.org/10.1016/j.cellsig.2021.110029] [PMID: 33932496]
[57]
Bhattacharya, S. Fabrication and characterization of chitosan-based polymeric nanoparticles of Imatinib for colorectal cancer targeting appli-cation. Int. J. Biol. Macromol., 2020, 151, 104-115.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.151] [PMID: 32070732]
[58]
Lallier, M.; Marchandet, L.; Moukengue, B. Molecular chaperones in osteosarcoma: Diagnosis and therapeutic issues. Cells, 2021, 10(4), 754.
[http://dx.doi.org/10.3390/cells10040754] [PMID: 33808130]
[59]
Sun, B.; Li, G.; Yu, Q.; Liu, D.; Tang, X. HSP60 in cancer: A promising biomarker for diagnosis and a potentially useful target for treatment. J. Drug Target., 2021, 1-15.
[http://dx.doi.org/10.1080/1061186X.2021.1920025] [PMID: 33939586]
[60]
Heydari, R.; Abdollahpour-Alitappeh, M.; Shekari, F.; Meyfour, A. Emerging role of extracellular vesicles in biomarking the gastrointestinal diseases. Expert Rev. Mol. Diagn., 2021, 21(9), 939-962.
[http://dx.doi.org/10.1080/14737159.2021.1954909] [PMID: 34308738]
[61]
Ahmadi, M.; Jafari, R.; Mahmoodi, M.; Rezaie, J. The tumorigenic and therapeutic functions of exosomes in colorectal cancer: Opportunity and challenges. Cell Biochem. Funct., 2021, 39(4), 468-477.
[http://dx.doi.org/10.1002/cbf.3622] [PMID: 33491214]
[62]
Martinelli, E.; Ciardiello, D.; Martini, G. Implementing anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal can-cer: Challenges and future perspectives. Ann. Oncol., 2020, 31(1), 30-40.
[http://dx.doi.org/10.1016/j.annonc.2019.10.007] [PMID: 31912793]
[63]
Bhattacharya, S. Anti-EGFR-mAb and 5-fluorouracil conjugated polymeric nanoparticles for colorectal cancer. Recent Patents Anticancer Drug Discov., 2021, 16(1), 84-100.
[http://dx.doi.org/10.2174/1574892815666201221121859] [PMID: 33349222]
[64]
Allelein, S.; Medina-Perez, P.; Lopes, A.L.H. Potential and challenges of specifically isolating extracellular vesicles from heterogeneous populations. Sci. Rep., 2021, 11(1), 11585.
[http://dx.doi.org/10.1038/s41598-021-91129-y] [PMID: 34079007]
[65]
Chang, Y.C.; Chan, M.H.; Li, C.H.; Fang, C.Y.; Hsiao, M.; Chen, C.L. Exosomal components and modulators in colorectal cancer: Novel diagnosis and prognosis biomarkers. Biomedicines, 2021, 9(8), 931.
[http://dx.doi.org/10.3390/biomedicines9080931] [PMID: 34440135]
[66]
Chen, M.; Wang, Q.; Wang, Y.; Fan, Y.; Zhang, X. Biomaterials-assisted exosomes therapy in osteoarthritis. Biomed. Mater., 2022, 17(2), 022001.
[http://dx.doi.org/10.1088/1748-605X/ac4c8c] [PMID: 35042195]
[67]
Karimi, N.; Ali Hosseinpour Feizi, M.; Safaralizadeh, R. Serum overexpression of miR-301a and miR-23a in patients with colorectal can-cer. J. Chin. Med. Assoc., 2019, 82(3), 215-220.
[http://dx.doi.org/10.1097/JCMA.0000000000000031] [PMID: 30913118]
[68]
Liu, X.; Chen, X.; Zeng, K. DNA-methylation-mediated silencing of miR-486-5p promotes colorectal cancer proliferation and migration through activation of PLAGL2/IGF2/β-catenin signal pathways. Cell Death Dis., 2018, 9(10), 1037.
[http://dx.doi.org/10.1038/s41419-018-1105-9] [PMID: 30305607]
[69]
Yan, S.; Jiang, Y.; Liang, C. Exosomal miR-6803-5p as potential diagnostic and prognostic marker in colorectal cancer. J. Cell. Biochem., 2018, 119(5), 4113-4119.
[http://dx.doi.org/10.1002/jcb.26609] [PMID: 29240249]
[70]
Wang, J.; Yan, F.; Zhao, Q. Circulating exosomal miR-125a-3p as a novel biomarker for early-stage colon cancer. Sci. Rep., 2017, 7(1), 4150.
[http://dx.doi.org/10.1038/s41598-017-04386-1] [PMID: 28646161]
[71]
Li, T.; Xie, J.; Shen, C. miR-150-5p inhibits hepatoma cell migration and invasion by targeting MMP14. PLoS One, 2014, 9(12), e115577.
[http://dx.doi.org/10.1371/journal.pone.0115577] [PMID: 25549355]
[72]
Sun, J.; Jia, H.; Bao, X. Tumor exosome promotes Th17 cell differentiation by transmitting the lncRNA CRNDE-h in colorectal cancer. Cell Death Dis., 2021, 12(1), 123.
[http://dx.doi.org/10.1038/s41419-020-03376-y] [PMID: 33495437]
[73]
Xing, Z.; Park, P.K.; Lin, C.; Yang, L. LncRNA BCAR4 wires up signaling transduction in breast cancer. RNA Biol., 2015, 12(7), 681-689.
[http://dx.doi.org/10.1080/15476286.2015.1053687] [PMID: 26016563]
[74]
Chen, Y.; Zhao, H.; Li, H. LINC01234/MicroRNA-31-5p/MAGEA3 Axis Mediates the Proliferation and Chemoresistance of Hepatocellu-lar Carcinoma Cells. Mol. Ther. Nucleic Acids, 2020, 19, 168-178.
[http://dx.doi.org/10.1016/j.omtn.2019.10.035] [PMID: 31838274]
[75]
Si, X.; Zheng, H.; Wei, G. circRNA Hipk3 induces cardiac regeneration after myocardial infarction in mice by binding to notch1 and miR-133a. Mol. Ther. Nucleic Acids, 2020, 21, 636-655.
[http://dx.doi.org/10.1016/j.omtn.2020.06.024] [PMID: 32736292]
[76]
Hu, D.; Zhan, Y.; Zhu, K. Plasma exosomal long non-coding RNAs serve as biomarkers for early detection of colorectal cancer. Cell. Physiol. Biochem., 2018, 51(6), 2704-2715.
[http://dx.doi.org/10.1159/000495961] [PMID: 30562751]
[77]
Wu, E.R.; Hsieh, M.J.; Chiang, W.L.; Hsueh, K.C.; Yang, S.F.; Su, S.C. Association of lncRNA CCAT2 and CASC8 gene polymorphisms with hepatocel-lular carcinoma. Int. J. Environ. Res. Public Health, 2019, 16(16), 2833.
[http://dx.doi.org/10.3390/ijerph16162833] [PMID: 31398859]
[78]
Caruso Bavisotto, C.; Alberti, G.; Vitale, A.M. Hsp60 post-translational modifications: Functional and pathological consequences. Front. Mol. Biosci., 2020, 7, 95.
[http://dx.doi.org/10.3389/fmolb.2020.00095] [PMID: 32582761]
[79]
Wang, K.; Chen, W.; Zhang, Z. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther., 2020, 5(1), 283.
[http://dx.doi.org/10.1038/s41392-020-00426-x] [PMID: 33277466]
[80]
Ridwansyah, M. Relationship between Transaminase and Serum Albumin Levels with Carcinoembryonic Antigen (CEA); Levels in Colorectal Cancer Patients at PROF Hospital, 2021.
[81]
Piao, X-M.; Cha, E-J.; Yun, S.J. Role of exosomal miRNA in bladder cancer: A promising liquid biopsy biomarker. Int. J. Mol. Sci., 2021, 22(4), 1713.
[82]
Yu, W.; Hu, C.; Gao, H. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Adv. Drug Deliv. Rev., 2021, 178, 113909.
[http://dx.doi.org/10.1016/j.addr.2021.113909] [PMID: 34352354]
[83]
Couñago, F.; Luna, J.; Guerrero, L.L. Management of oligometastatic non-small cell lung cancer patients: Current controversies and future directions. World J. Clin. Oncol., 2019, 10(10), 318-339.
[http://dx.doi.org/10.5306/wjco.v10.i10.318] [PMID: 31799148]
[84]
Rico, M.; Martínez, M.; Rodríguez, M.; Rosas, L.; Barco, A.; Martínez, E. Hypofractionation and stereotactic body radiation therapy in inoperable locally advanced non-small cell lung cancer. J. Clin. Transl. Res., 2021, 7(2), 199-208.
[PMID: 34104822]
[85]
Magrì, A.; Bardelli, A. Does early metastatic seeding occur in colorectal cancer? Nat. Rev. Gastroenterol. Hepatol., 2019, 16(11), 651-653.
[http://dx.doi.org/10.1038/s41575-019-0200-4] [PMID: 31417195]
[86]
Filip, S.; Vymetalkova, V.; Petera, J. Distant metastasis in colorectal cancer patients-do we have new predicting clinicopathological and molecular biomarkers? A comprehensive review. Int. J. Mol. Sci., 2020, 21(15), 5255.
[http://dx.doi.org/10.3390/ijms21155255] [PMID: 32722130]
[87]
Danac, J.M.C.; Uy, A.G.G.; Garcia, R.L. Exosomal microRNAs in CRC: Overcoming barriers of the metastatic cascade. Int. J. Mol. Med., 2021, 47(6), 112.
[http://dx.doi.org/10.3892/ijmm.2021.4945] [PMID: 33907829]
[88]
Wang, D.; Wang, X.; Si, M. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett., 2020, 474, 36-52.
[http://dx.doi.org/10.1016/j.canlet.2020.01.005] [PMID: 31931030]
[89]
He, Q.; Ye, A.; Ye, W. Cancer-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by targeting KRIT1. Cell Death Dis., 2021, 12(6), 576.
[http://dx.doi.org/10.1038/s41419-021-03803-8] [PMID: 34088891]
[90]
Baassiri, A.; Nassar, F.; Mukherji, D.; Shamseddine, A.; Nasr, R.; Temraz, S. Exosomal non coding RNA in liquid biopsies as a promising bi-omarker for colorectal cancer. Int. J. Mol. Sci., 2020, 21(4), 1398.
[http://dx.doi.org/10.3390/ijms21041398] [PMID: 32092975]
[91]
Zhang, L.; Yu, J.; Liu, Z. MicroRNAs expressed by human cytomegalovirus. Virol. J., 2020, 17(1), 34.
[http://dx.doi.org/10.1186/s12985-020-1296-4] [PMID: 32164742]
[92]
Zhang, N.; Zhang, P.P.; Huang, J.J. Reduced serum exosomal miR-874 expression predicts poor prognosis in colorectal cancer. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(2), 664-672.
[http://dx.doi.org/10.26355/eurrev_202001_20043] [PMID: 32016967]
[93]
Bahrami, A.; Moradi Binabaj, M. A Ferns G. exosomes: Emerging modulators of signal transduction in CRC from molecular understanding to clinical application. Biomed. Pharmacother., 2021, 141, 111882.
[http://dx.doi.org/10.1016/j.biopha.2021.111882] [PMID: 34218003]
[94]
AlQahtani, S.A.; Harisa, G.I.; Alomrani, A.H.; Alanazi, F.K.; Badran, M.M. Improved pharmacokinetic and biodistribution of 5-fluorouracil loaded biomimetic nanoerythrocytes decorated nanocarriers for liver cancer treatment. Colloids Surf. B Biointerfaces, 2021, 197, 111380.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111380] [PMID: 33068824]
[95]
Yan, S.; Dang, G.; Zhang, X. Downregulation of circulating exosomal miR-638 predicts poor prognosis in colon cancer patients. Oncotarget, 2017, 8(42), 72220-72226.
[http://dx.doi.org/10.18632/oncotarget.19689] [PMID: 29069781]
[96]
Bhattacharya, S.; Gore, K. Targeted cancer therapy using nanoparticles and antibody fragments; Cancer Targeted Immunotherapy in the Era of Precision Medicine. IntechOpen, 2021.
[http://dx.doi.org/10.5772/intechopen.96550]
[97]
Nabariya, D.K.; Pallu, R.; Yenuganti, V.R. Exosomes: The protagonists in the tale of colorectal cancer? Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(2), 188426.
[http://dx.doi.org/10.1016/j.bbcan.2020.188426] [PMID: 32956762]
[98]
Kumar, A; Bhattacharya, S; Singh, C; Sharma, V. Poly (lactic-coglycolic acid) & tocopheryl polyethylene glycol succinate nanoparticles for the treatment of different brain cancer [published online ahead of print, 2021 Feb 4. Anticancer Agents Med Chem, 2021.
[http://dx.doi.org/10.2174/1871520621666210204201347] [PMID: 33563201]
[99]
Zhou, B.; Xu, K.; Zheng, X. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct. Target. Ther., 2020, 5(1), 144.
[http://dx.doi.org/10.1038/s41392-020-00258-9] [PMID: 32747657]
[100]
Yagi, T.; Iinuma, H.; Hayama, T. Plasma exosomal microRNA-125b as a monitoring biomarker of resistance to mFOLFOX6-based chem-otherapy in advanced and recurrent colorectal cancer patients. Mol. Clin. Oncol., 2019, 11(4), 416-424.
[http://dx.doi.org/10.3892/mco.2019.1911] [PMID: 31497299]
[101]
Li, S.; Yang, J.; Xia, Y.; Fan, Q.; Yang, K.P. Long noncoding RNA NEAT1 promotes proliferation and invasion via targeting miR-181a-5p in non-small cell lung cancer. Oncol. Res., 2018, 26(2), 289-296.
[http://dx.doi.org/10.3727/096504017X15009404458675] [PMID: 28762332]
[102]
Xue, W.X.; Zhang, M.Y.; Rui, Li; Liu, X.; Yin, Y.H.; Qu, Y.Q. Serum miR-1228-3p and miR-181a-5p as noninvasive biomarkers for non-small cell lung cancer diagnosis and prognosis. BioMed Res. Int., 2020, 2020, 9601876.
[http://dx.doi.org/10.1155/2020/9601876] [PMID: 32724822]
[103]
Cortes, J.E.; Khaled, S.; Martinelli, G. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukae-mia (QuANTUM-R): A multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol., 2019, 20(7), 984-997.
[http://dx.doi.org/10.1016/S1470-2045(19)30150-0] [PMID: 31175001]
[104]
Bhattacharya, S. Fabrication of poly (sarcosine), poly (ethylene glycol), and poly (lactic-co-glycolic acid) polymeric nanoparticles for cancer drug delivery. J. Drug Deliv. Sci. Technol., 2021, 61, 102194.
[http://dx.doi.org/10.1016/j.jddst.2020.102194]
[105]
Deng, X.; Kong, F.; Li, S. A KLF4/PiHL/EZH2/HMGA2 regulatory axis and its function in promoting oxaliplatin-resistance of colorectal cancer. Cell Death Dis., 2021, 12(5), 485.
[http://dx.doi.org/10.1038/s41419-021-03753-1] [PMID: 33986248]
[106]
Bracci, L.; Lozupone, F.; Parolini, I. The role of exosomes in colorectal cancer disease progression and response to therapy. Cytokine Growth Factor Rev., 2020, 51, 84-91.
[http://dx.doi.org/10.1016/j.cytogfr.2019.12.004] [PMID: 31955973]
[107]
Vautrot, V.; Chanteloup, G.; Elmallah, M. Exosomal miRNA: Small molecules, big impact in colorectal cancer. J. Oncol., 2019, 2019, 8585276.
[http://dx.doi.org/10.1155/2019/8585276] [PMID: 31737071]
[108]
Ren, J.; Ding, L.; Zhang, D. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transfer-ring exosomal lncRNA H19. Theranostics, 2018, 8(14), 3932-3948.
[http://dx.doi.org/10.7150/thno.25541] [PMID: 30083271]
[109]
Arora, M.; Kaul, D. Cancer RNome: Evolution and sustenance.Cancer RNome: nature & evolution; Springer: Singapore, 2018, pp. 113-242.
[http://dx.doi.org/10.1007/978-981-13-1568-8_3]
[110]
Micallef, I.; Baron, B. The mechanistic roles of ncRNAs in promoting and supporting chemoresistance of colorectal cancer. Noncoding RNA, 2021, 7(2), 24.
[http://dx.doi.org/10.3390/ncrna7020024] [PMID: 33807355]
[111]
Hu, Y.B.; Yan, C.; Mu, L. Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance. Oncogene, 2019, 38(11), 1951-1965.
[http://dx.doi.org/10.1038/s41388-018-0557-9] [PMID: 30390075]
[112]
Mao, G.; Zhang, Z.; Hu, S. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res. Ther., 2018, 9(1), 247.
[http://dx.doi.org/10.1186/s13287-018-1004-0] [PMID: 30257711]
[113]
Iliescu, F.S.; Vrtačnik, D.; Neuzil, P.; Iliescu, C. Microfluidic technology for clinical applications of exosomes. Micromachines (Basel), 2019, 10(6), 392.
[http://dx.doi.org/10.3390/mi10060392] [PMID: 31212754]
[114]
Yeargin, P. Cancer Nursing, Prevention and Early Detection for the Adult Patient; CE for Iowa Nursing Professionals, 2017, pp. 1-60.
[115]
Hibner, G.; Kimsa-Furdzik, M.; Francuz, T. Relevance of microRNAs as potential diagnostic and prognostic markers in colorectal cancer. Int. J. Mol. Sci., 2018, 19(10), 2944.
[http://dx.doi.org/10.3390/ijms19102944] [PMID: 30262723]
[116]
Huang, X.; Xiong, Y.; Yang, J.; Yang, G.; Li, J. The prognostic significance of miR-21 Expression among surgically resected hepatocellular carci-noma patients: Evidence from a meta-analysis and retrospective cohort study. BioMed Res. Int., 2020, 2020, 8848158.
[http://dx.doi.org/10.1155/2020/8848158] [PMID: 33415165]
[117]
Chen, C.M.; Chu, T.H.; Chou, C.C.; Chien, C.Y.; Wang, J.S.; Huang, C.C. Exosome-derived microRNAs in oral squamous cell carcinomas impact dis-ease prognosis. Oral Oncol., 2021, 120, 105402.
[http://dx.doi.org/10.1016/j.oraloncology.2021.105402] [PMID: 34174519]
[118]
Gao, T.; Liu, X.; He, B. Exosomal lncRNA 91H is associated with poor development in colorectal cancer by modifying HNRNPK expres-sion. Cancer Cell Int., 2018, 18(1), 11.
[http://dx.doi.org/10.1186/s12935-018-0506-2] [PMID: 29410604]
[119]
Mondet, J.; Chevalier, S.; Mossuz, P. Pathogenic Roles of S100A8 and S100A9 Proteins in Acute Myeloid and Lymphoid Leukemia: Clinical and Therapeutic Impacts. Molecules, 2021, 26(5), 1323.
[http://dx.doi.org/10.3390/molecules26051323] [PMID: 33801279]
[120]
Chen, M.; Xu, R.; Rai, A. Distinct shed microvesicle and exosome microRNA signatures reveal diagnostic markers for colorectal cancer. PLoS One, 2019, 14(1), e0210003.
[http://dx.doi.org/10.1371/journal.pone.0210003] [PMID: 30608951]
[121]
Desmond, B.J.; Dennett, E.R.; Danielson, K.M. Circulating extracellular vesicle MicroRNA as diagnostic biomarkers in early colorectal cancer-A review. Cancers (Basel), 2019, 12(1), 52.
[http://dx.doi.org/10.3390/cancers12010052] [PMID: 31878015]
[122]
Salazar-Roa, M.; Trakala, M.; Álvarez-Fernández, M. Transient exposure to miR-203 enhances the differentiation capacity of established pluripotent stem cells. EMBO J., 2020, 39(16), e104324.
[http://dx.doi.org/10.15252/embj.2019104324] [PMID: 32614092]
[123]
Cao, L.; Liu, W.; Zhong, Y. Linc02349 promotes osteogenesis of human umbilical cord-derived stem cells by acting as a competing en-dogenous RNA for miR-25-3p and miR-33b-5p. Cell Prolif., 2020, 53(5), e12814.
[http://dx.doi.org/10.1111/cpr.12814] [PMID: 32346990]
[124]
Rossi, M.; Altomare, E.; Botta, C. miR-21 antagonism abrogates Th17 tumor promoting functions in multiple myeloma. Leukemia, 2021, 35(3), 823-834.
[http://dx.doi.org/10.1038/s41375-020-0947-1] [PMID: 32632096]
[125]
Yan, S.; Ren, X.; Yang, J.; Wang, J.; Zhang, Q.; Xu, D. Exosomal miR-548c-5p regulates colorectal cancer cell growth and invasion through HIF1A/CDC42 Axis. OncoTargets Ther., 2020, 13, 9875-9885.
[http://dx.doi.org/10.2147/OTT.S273008] [PMID: 33116573]
[126]
Zhang, Y.; Li, Y.; Hu, Q. The lncRNA H19 alleviates muscular dystrophy by stabilizing dystrophin. Nat. Cell Biol., 2020, 22(11), 1332-1345.
[http://dx.doi.org/10.1038/s41556-020-00595-5] [PMID: 33106653]
[127]
Chen, S.; Yang, M.; Chang, S. LncRNA CCAL promotes angiogenesis through regulating the MiR-29b/ANGPTL4 axis in osteosarcoma. Cancer Manag. Res., 2020, 12, 10521-10530.
[http://dx.doi.org/10.2147/CMAR.S272230] [PMID: 33122950]
[128]
Rodríguez-Cobos, J.; Viñal, D.; Poves, C. ΔNp73, TAp73 and Δ133p53 extracellular vesicle cargo as early diagnosis markers in CRC. Cancers, 2021, 13(9), 2240.
[http://dx.doi.org/10.3390/cancers13092240]
[129]
Li, D.; Peng, H.; Qu, L. miR-19a/b and miR-20a promote wound healing by regulating the inflammatory response of keratinocytes. J. Invest. Dermatol., 2021, 141(3), 659-671.
[http://dx.doi.org/10.1016/j.jid.2020.06.037] [PMID: 32949564]
[130]
Alipoor, B.; Parvar, S.N.; Sabati, Z.; Ghaedi, H.; Ghasemi, H. An updated review of the H19 lncRNA in human cancer: Molecular mechanism and diagnostic and therapeutic importance. Mol. Biol. Rep., 2020, 47(8), 6357-6374.
[http://dx.doi.org/10.1007/s11033-020-05695-x] [PMID: 32743775]
[131]
Marinković, G.; Koenis, D.S.; de Camp, L. S100A9 links inflammation and repair in myocardial infarction. Circ. Res., 2020, 127(5), 664-676.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.315865] [PMID: 32434457]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy