رفتارسنجی اثر گرمایش جهانی بر پُرفشار جنب حاره

نوع مقاله : مقاله کامل

نویسندگان

1 استاد گروه آب و هواشناسی، دانشگاه خوارزمی، تهران

2 دانشجوی دکتری آب و هواشناسی، دانشگاه خوارزمی، تهران

چکیده

این مطالعه با هدف بررسی اثر گرمایش جهانی بر رفتار پُرفشار جنب حاره به‏انجام رسید. بدین‏منظور، از داده‏های حداکثر دمای روزانة 49 ایستگاه سینوپتیک طی 1977 تا 2016 استفاده شد؛ با توجه به روند دماهای بالای صدک 95، سال 1996 مرزِ بین دو دورة قبل و بعد از تشدید گرمایش انتخاب شد. نتایج حاصل از تحلیل‏ها نشان داد در دورة اول مقدار دما به 39.5 درجه رسیده است؛ درحالی‏که در دورة دوم این مقدار به 40.5 درجه رسیده است و فراوانی دماهای آستانه در دورة اول بسیار کمتر از دورة دوم بوده است. به‏ عبارت ‏دیگر، رفتار گرمایش جهانی ثابت شد و فراوانی دماهای بالای 40.5 درجه در بیشتر ایستگاه‏ها فراگیر و به حالت عادی و نرمال درآمد. نتایج تحلیل سینوپتیک نشان داد میانگین بلندمدت ارتفاع هستة پُرفشار جنب حاره طی دورة اول نسبت به دورة دوم افزایشی دَه‏متری داشته است؛ اما میانگین بلندمدت اختلاف ارتفاع هستة پُرفشار جنب حاره در دورة دوم، نسبت به دورة اول، در ماه جولای، در طول 52.5 درجة شرقی به بیش از 100 متر رسیده است. همچنین، نتایج حاصل از رابطة متقابل دما و ارتفاع جو نشان داد که دلیل افزایش ارتفاع هستة پُرفشار جنب حاره افزایش دما در لایه‏های پایین اتمسفر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effects of Global Warming on Subtropical High Pressure

نویسندگان [English]

  • Bohloul Alijani 1
  • Meysam Toulabi Nejad 2
  • Alireza Karbalaie Darei 2
1 Professor of Climatology, Department of Climatology, Kharazmi University, Tehran, Iran
2 PhD Candidate in Climatology, Kharazmi University, Tehran, Iran
چکیده [English]

Introduction
Climate change in the recent years has led to changes in atmospheric patterns and the appearance of climatic anomalies in most parts of the world. Earth’s climate is a complex dynamic system that involves hydrosphere, cryosphere, biosphere and lithosphere. If any of these systems are altered, other systems will quickly or slowly align themselves with that and the outcome of this coordination can also affect the system change. Eventually, an endless chain of links is created between these systems. The interaction between these four systems is responsible for the concern of weather and climate scientists in recent years about the "climate change". The result of global warming is climate change. The process of climate change, especially temperature changes, is one of the most important discussions in the field of environmental sciences. Many of the environmental problems, such as floods, storms, droughts, changes in atmospheric patterns, and so on, are rooted in climate change, especially in air temperature rises. The objective of this study is to investigate the effects of global warming on subtropical high pressure behavior.
Materials and methods
In order to investigate the influence of global warming on the subtropical high pressure behavior, the following steps have been taken. In the first step, maximum daily temperature data of 49 synoptic stations during the period from 1977 to 2016 were used to study the frequency of temperature records higher than percentile 95 in each year. Given the frequency of temperature higher than percentile 95, this trend has been dramatically increased in 1996, so this year has been set as the border between the two pre-warming and post-warming periods. In the second stage, given that global warming is expected to increase these extreme temperature, frequency of temperature higher than percentile 95 was investigated in both periods.
In the third stage, the changes in the behavior of subtropical high-pressure in terms of height and spatial extent were determined based on 500-hPa geopotential data, derived from European Center for Medium – Range Weather Forecasts (ECMWF). Finally, to prove the existing relationship between the data, the 500-hPa geopotential height anomalies were plotted over the two periods and analyzed to determine that what changes occured in height of the middle level.
Results and discussion  
The results have indicated that the long-term average of core height of the subtropical high pressure during the second period (1996-1997) is increased by 10 meters relative to the first period (1996-2016). Given the frequency of the thresholds of percentile 95 of the second period, it can be said that most stations have experienced extreme temperatures, so it can be said that global warming has been proven. It can be said that during the current period, a temperature of 40°C is a normal temperature. Therefore, due to the mutual and direct relationship between temperature and height of the atmosphere, it can be said that the reason for increasing the height of the core of the subtropical high pressure is the temperature increase in the lower layers of the atmosphere. The temperature increases in the layers near the earth surface can create thermal low pressure on the land surface and the dynamical high pressure resulted from the subtropical high pressure subsidence and some systems including Monsoon.  This situation for every 1000 meters, while increasing power  increases air temperature by 6˚C. Thus, the core height of the subtropical high pressure is increased and the maximum temperatures are recorded, especially during the warm months. Pearson correlations also indicate a very strong and positive correlation between the core height of the subtropical high pressure and the maximum temperature in both the periods.  
Conclusion
The results of the analysis of the maximum temperature data showed that during the first period, the temperature reached 30.5 ° C in percentile 95 while during the second period with 1˚C increase it reached 40.5˚C. It can be said that in the first period of global warming we did not have much intensity in Iran, but in the second period the temperature reached its maximum and the effect of this warming can be seen in the recorded temperature. In other words, occurrence of global warming has been proven and the frequency of temperatures above 40.5 ˚ C has become prevalent in most stations. Spatial analysis of the core of subtropical high pressure has indicated that its highest level in the first period over Iran is 5910 m which affect fewer stations. But in the second period, the core height of subtropical high pressure is 5940 meters, which, in comparison with the first period, shows an increase in both the height and extent resulted in higher temperature. It was found that the long-term average height of the subtropical high pressure core during the second period (1996-1997) is increased by 10 meters relative to the first period (1996-2016). Given the frequency of the thresholds of percentile 95 of the second period, it can be said that most stations have experienced extreme temperatures, so it can prove global warming. In other words, during the current period, the temperature of 40 degrees is a normal temperature. The results of the direct and indirect correlation between temperature and elevation of the atmosphere showed that the increase in the height of the adjacent high pressure core is a rise in temperature in the lower layers of the atmosphere. 

کلیدواژه‌ها [English]

  • tropical high pressure
  • frequency
  • maximum temperature
  • Global warming
امیربیگی، ح. و احمدی آسور، ا. (1386). بهداشت هوا و روش‏های مبارزه با آلاینده‏های محیطی و صنعتی، تهران: اندیشة رفیع.
بابائیان، ا. (1380). بررسی الگوی سیل تابستان 1380 استان گلستان و شمال خراسان، بولتن علمی مرکز اقلیم‏شناسی، 1(5).
بوشر، ک. (1373). آب و هوا کره زمین، مناطق استوایی و جنب استوایی، ترجمه هوشنگ قائمی، انتشارات سمت. تهران.
پروند، ح. (1370). اثر مونسون جنوب غربی بر روی ایران. پایان نامه کارشناسی ارشد. موسسه ژئوفیزیک دانشگاه تهران.
حجازی‏زاده، ز. (1372). بررسی نوسانات فشار زیاد جنب حاره در تغییر فصل ایران، رسالة دکتری جغرافیای طبیعی، دانشگاه تربیت مدرس.
خورشیددوست، م.‏ع. و قویدل رحیمی، ی. (1384). شبیه‏سازی آثار دوبرابرشدن دی‏اکسید کربن جو بر تغییر اقلیم تبریز با استفاده از مدل آزمایشگاه پویایی سیالات ژئوفیزیکی (GFDL)، مجلة محیط‏شناسی، 39: 1-10.
روشن، غ.‏ر.؛ خوش‏اخلاق، ف. و عزیزی، ق. (1391). آزمون مدل مناسب گردش عمومی جو برای پیش‏یابی مقادیر دما و بارش ایران، تحت شرایط گرمایش جهانی، فصل‏نامة جغرافیا و توسعه، 10(27): 19-36.
زرین، آ. (1386). تحلیل پُرفشار جنب حارة تابستانه بر روی ایران، رسالة دکتری رشتة جغرافیای طبیعی، دانشگاه تربیت مدرس، تهران.
سبحانی ب. و گل‏دوست، ا. (1395). بررسی تغییر‏ دما و ارزیابی امکان پیش‏بینی آن در استان اردبیل براساس روش‏های آماری و سیستم استنتاج فازی- عصبی تطبیقی، نشریة تحقیقات کاربردی علوم جغرافیایی، ۱۶(۴۲): ۲۷-۴۰.
سیف، ع.ا. (1376). نوسانات دی‏اکسید کربن و گرمایش جهانی، نشریة دانشگاه ادبیات و علوم انسانی دانشگاه اصفهان، 10 و 11: 67- 88.
عساکره، ح. و دوستکامیان، م. (1396). بررسی الگوی نواحی هم‏شیب تغییرات میانگین دمای سالانة ایران، نشریة جغرافیا، 47: 149-162.
عساکره، ح.(1395). اقلیم‏شناسی مرز شمالی پشته پُرفشار جنب حاره بر روی ایران، نشریة پژوهش‏های اقلیم‏شناسی، 25 و 26: 21-31.
علی‏پور، ی.؛ حجازی‏زاده، ز.؛ اکبری، م. و سلیقه، م. (1396). بررسی تغییرات پُرفشار جنب حارة‏ تراز 500 هکتوپاسکال نیوار ایران با رویکرد تغییر اقلیم، مخاطرات محیط طبیعی، doi: 10.22111/jneh.2017.3206
علیجانی ب. (1394). تحلیل فضایی در مطالعات جغرافیایی، تحلیل فضایی مخاطرات محیطی، ۲(۳): ۱۴-۱.
علیجانی، ب. (1381). بررسی سینوپتیک الگوهای سطح 500 هکتوپاسکال در خاورمیانه در دورة 1961-1990، مجلة نیوار، 44 و 45: 83-98.
فرج زاده، م.؛ قائمی، ﻫ.؛ زرین، آ.؛ آزادی، م.  (1388). تحلیل الگوی فضایی پُرفشار جنب حاره بر روی آسیا و افریقا، فصل‏نامة مدرس علوم انسانی، 13(1): 220-245.
گودرزی، م.؛ حسینی، سی.ا. و مسگری، ا. (1395). مدل‏های آب و هواشناسی، آذر کلک، 34.
مسعودیان، س.ا. و کاویانی، م. (1387). اقلیم‏شناسی ایران، انتشارات دانشگاه اصفهان.
مفیدی، ع.؛ زرین، آ. و فاسولو، ج. (1389). گردش جو تابستانه در وردسپهر فوقانی بر روی جنوب غرب آسیا و وردایی زمانی آن در طی نیم‏قرن گذشته، مجموعه مقالات چهارمین کنفرانس منطقه‏ای تغییر اقلیم.
موحدی، س.؛ کاشکی، ع.؛ حسینی، س.م. و فاطمی‏نیا، ف.‏س. (1394). بررسی گسترة مکانی- زمانی پُرفشار جنب‏ حاره‏ای در نیمکرة شمالی، فصل‏نامة جغرافیا و برنامه‏ریزی محیطی، 3: 209-224.
نوروزی، ر. و خسروی، م. (1389). چشمه‏ها و چاهک‏های انتشار گاز گلخانه‏ای متان و نقش آن در پدیدة گرمایش جهانی، مجموعه مقالات چهارمین کنگره بین‏المللی جغرافیدانان جهان اسلام، ۱- ۱۵.
Alijani, B. (1997). Iran's Weather, Third edition, Payame Noor Publication, p. 221.
Alijani, B. (2002). Synoptic study of 500hp surface patterns in the Middle East during the period 1961-90, Journal of Meteorological Organization (NIVAR), 44 and 45: 83-98 (In Persian).
Alijani, B. (2015). Spatial Analysis in Geography Studies, Jsaeh, 2(3):1-14 (In Persian).
Alipour, Y. and Hedjazizadeh, Z. (2017). A Study of the subtropical high pressure 500 hPa level changes in the Iran's atmosphere with emphasis on climate change, Natural Environmental Hazards, doi: 10.22111/jneh.2017.3206 (In Persian).
Alpert, P.; Abramsky, R. and Neeman, B.U. (1990). The prevailing summer synoptic system in Israel—subtropical high, not Persian trough, Isr. J. Earth Sci, 39(2/4): 93-102.
Amirbighi, H. and Ahmadi Asour, A. (2007). Air health & polutant control methods (Andisheh Rafi), First Printing, Tehran (In Persian).
Arakawa, H. and Takahashi, K. (1981). Climates of Southern and Western Asia, In: World Survey of Climatology, 9, lsevier Scientific Publications, 183-229.
Asakareh, H.; (2017). Climatology Northern boundary of subtropical high-pressure ridge on Iran, Journal of Climate Research, 1395(25): 21-32 (In Persian).
Asakereh, H. and Doostkamian, M. (2017). Investigation the Pattern of Similar Gradient Regions of Average Annual Temperature Changes of Iran, Geography and Development Iranian Journal, 15(47): 149-162. doi: 10.22111/gdij.2017.3188 (In Persian).
Babaeian, I. (2001). Study of the summer flood pattern of 2001 in Golestan and northern Khorasan province, Scientific bulletin of the Center for Climatology, 1(5), Tehran (In Persian).
Farajzadeh Asl M, Ghaemi H, Zarrin A, Azadi M. The Analysis of Spatial Pattern of Subtropical Anticyclones over Asia and Africa. MJSP. 2009; 13 (1) :219-245 (In Persian).
Bell, G.D. and Bosart, L.F. (1989). A 15-year climatology of Northern Hemisphere 500 mb closed cyclone and anticyclone centers, Monthly Weather Review, 117(10): 2142-2164.
Beniston, M. and Stephenson, D.B. (2004). Extreme climatic events and their evolution under changing climatic conditions, Global and Planetary Change, 44(1-4): 1-9. DOI: 10.1016/j.gloplacha.2004.06.001.
Bryson, R.A. (1997). The paradigm of climatology: An essay, Bulletin of the American Meteorological Society, 78(3): 449-455.
Cai, W.; Van Rensch, P. and Cowan, T. (2011). Influence of global-scale variability on the subtropical ridge over southeast Australia, Journal of Climate, 24(23): 6035-6053.
Chattopadhyay, S. and Edwards, D.R. (2016). Long-term trend analysis of precipitation and air temperature for Kentucky, United States, Climate, 4(1): 10.
Chen, P.; Hoerling, M.P. and Dole, R.M. (2001). The origin of the subtropical anticyclones, Journal of the atmospheric sciences, 58(13):1827-1835.
Chen, T.C. (2003). Maintenance of summer monsoon circulations: A planetary-scale perspective, Journal of climate, 16(12): 2022-2037.
Chen, T.C.; Yoon, J.H. and Wang, S.Y. (2005). Westward propagation of the Indian monsoon depression, Tellus A, 57(5): 758-769.Clarke, T.S., (2003), “Regional Climate Change: Trend Analysis of Temperature and Precipitation Series at Canadian Sites”, Canadian Journal of Agricultural Economics, 48: 194-210.
Collins, D.A.; Della-Marta, P.M.; Plummer, N. and Trewin, B.C. (2000). Trends in annual frequencies of extreme temperature events in Australia, Australian Meteorological Magazine, 49(4): 277-292.
Cowan, T.; Purich, A.; Perkins, S.; Pezza, A.; Boschat, G. and Sadler, K. (2014). More frequent, longer, and hotter heat waves for Australia in the twenty-first century, Journal of Climate, 27(15): 5851-5871.
Darand, M. and Masoodian, S.A. (2015). Analysis and Recognition of Thickness Anomaly Patterns during Extreme Cold Days in Iran. Geores, 2015; 30(3):105-120 URL: http://georesearch.ir/article-1-136-fa.html (In Persian).
Dashkhuu, D.; Kim, J.P.; Chun, J.A. and Lee, W.S. (2015). Long-term trends in daily temperature extremes over Mongolia, Weather and Climate Extremes, 8: 26-33.
Davis, R.E. et al. (1996). The North Atlantic Subtropical Anticycline, Journal of Climate, 10: 728-744.
Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R. and Mearns, L.O. (2000). Climate extremes: observations, modeling, and impacts, Science, 289(5487): 2068-2074.
Englehart, P.J. and Douglas, A.V. (2003). Urbanization and seasonal temperature trends: observational evidence from a data‐sparse part of North America, International Journal of Climatology, 23(10): 1253-1263.
Fan, Z.X.; Bräuning, A.; Thomas, A.; Li, J.B. and Cao, K.F. (2011). Spatial and temporal temperature trends on the Yunnan Plateau (Southwest China) during 1961–2004, International Journal of Climatology, 31(14): 2078-2090.DOI: 10.1002/joc.2214
Farajzadeh Asl, M.; Ghaemi, H.; Zarrin, A. and Azadi, M. (2010). The Analysis of Spatial Pattern of Subtropical Anticyclones over Asia and Africa, The Scientific Research Journals Spatial Planning, 13(1): 219-245 (In Persian).
Galarneau, T.J.; Bosart, L.F. and Aiyyer, A.R. (2008). Closed anticyclones of the subtropics and midlatitudes: A 54-yrclimatology (1950–2003) and three case studies. Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteorological Monographs, 55: 349-392.
Gay-Garcia, C.; Estrada, F. and Sánchez, A. (2009). Global and hemispheric temperatures revisited. Climatic Change, 94(3-4): 333-349. DOI: 10.1007/s10584-008-9524-8.
Ghil, M. and Vautard, R. (1991). Interdecadal oscillations and the warming trend in global temperature time series, Nature, 350(6316): 324.
Goodarzi, M.; Hosseini, C. and Mesgari, A. (2017). Weather models, Azar Kalk Publishing: 34 (In Persian).
Harman, J. R. (1987). Mean monthly North American anticyclone frequencies, 1950-79. Monthly Weather Review, 115(11), 2840-2848.
Hansen, J. and Lebedeff, S. (1987). Global trends of measured surface air temperature, Journal of geophysical research: Atmospheres, 92(D11): 13345-13372.
Hegerl, G.C.; Hasselmann, K.; Cubasch, U.; Mitchell, J.F.B.; Roeckner, E.; Voss, R. and Waszkewitz, J. (1997). Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change, Climate Dynamics, 13(9): 613-634.
Hejazizadeh, Z. (1993). Check subtropical high (Much) pressure fluctuations Change the season of Iran, Phd dissertation, Natural Geography, Tarbiat Modarres University (In Persian).
Henderson-Sellers, A. and Robinson, P.J. (1986). Contemporary Climatology, John Wiley Sons, Inc. New York. pp. 439.
Hoskins, B. (1995). On the existence and strength of the summer subtropical anticyclones: Bernhard Haurwitz memorial lecture, Bulletin of the American Meteorological Society, 77: 1287-1292.
Jones, P.D. and Hegerl, G.C. 1998). Comparisons of two methods of removing anthropogenically related variability from the near‐surface observational temperature field, Journal of Geophysical Research: Atmospheres, 103(D12): 13777-13786.
Jones, P.D.; Osborn, T.J. and Briffa, K.R. (1997). Estimating sampling errors in large-scale temperature averages, Journal of Climate, 10(10): 2548-2568.
Khorshiddoust, A.M. and Ghavidel Rahimi, Y. (2005) Simulation of double effects of atmospheric carbon dioxide on climate change in Tabriz usingHythergraph and Ambrothermic model of Geophysical Fluid Dynamics Laboratory (GDFL), Journal of Environmental Studies, 32(39): 1-10 (In Persian).
Khoshakhlagh, F.; Azizi, G. and Roshan, G.R. (2012). Assessment of Suitable General Atmosphere Circulation Models for Forecasting Temperature and Precipitation Amounts in Iran Under Condition of Global Warming, Geography and Development Iranian Journal, 10(27): 19-36. doi: 10.22111/gdij.2012.274 (In Persian).
Klein Tank et al. (2006). Changes in Daily Temperature and Precipitation Extremes in Central and South Asia, Journal of Geophysical Research, 111: D16105, DOI: 10.1029/2005JD006316.
Krishnamurti, T.N. et al. (1971). Observational study of the tropical upp. er tropospheric motion field during the northern hemisphere summer, Journal of App. lied Meteorology, 10: 1066-1096.
Yimin, L., & Guoxiong, W. (2004). Progress in the study on the formation of the summertime subtropical anticyclone. Advances in Atmospheric Sciences, 21(3), 322-342.
Wu, G., & Liu, Y. (2003). Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophysical research letters, 30(5).
Liu, Y., Wu, G., & Ren, R. (2004). Relationship between the subtropical anticyclone and diabatic heating. Journal of Climate, 17(4), 682-698.
Marengo, J.A. and Camargo, C.C. (2008). Surface air Temperature Trends in Southern Brazil for 1960- 2002, Int, Journal of Climatology, 28: 893-904.
Mason, R.B. and Anderson, C.E. (1963). The Development and Decay of the 100 mb Summertime Anticyclone over Southern Asia, Monthly Weather Review, 93: 3-12.
Masoodian, S.A. and Kaviani, M. (2008). Climate of Iran, Isfahan University Press (In Persian).
Miro, J.J.; Estrela, J.M. and Millan, M. (2006). Summer Temperature Trends in A Mediterranean Area (Valencia Region), Int. Journal of Climatol, 26: 1051-1073.
Neyama, Y. (1968). The morphology of the subtropical anticyclone. Journal of the Meteorological Society of Japan. Ser. II, 46(6), 431-441.
Mofidi, A.; Zarrin, A. and Faso, J. (2010). Summer sunrise in the upper troposphere on Southwest Asia and its turnaround during the last half century, Proceedings of the 4th Regional Climate Change Conference, P 149 (In Persian).
Movahedi, S.; Fateminya, F.; Hosseini, S. and Kashki, A. (2015). Temporal and Spatial Analysis of Subtropical high pressure in Northern Hemisphere, Geography and Environmental Planning, 26(3): 206-224 (In Persian).
Nicholls, N..; Gruza, G. V.; Jouzel, J..; Karl, T.R.؛ Ogallo, L. A. and Parker, D. E. (1996). in Climate Change 1995: The Science of Climate Change, edited by J. T. Houghton, L. G. M. Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell, pp. 133-192, Cambridge University Press, Cambridge, UK.
North, G.R.; Kim, K.Y.; Shen, S.S. and Hardin, J.W. (1995). Detection of forced climate signals, Part 1: Filter theory, Journal of Climate, 8(3): 401-408.
Nowruzi, R. and Khosravi, M. (2010). Methane greenhouse gas wells and their role in the phenomenon of heating springs, 4th International congress of the Islamic World Geographers (ICIWG): 1-15 (In Persian).
Peixóto, J.P. and Oort, A.H. (1984). Physics of climate, Reviews of Modern Physics, 56(3): 365.
Peterson, C.J. (2000). catastrophic wind damage to North American forests and the potential impact of climate change, Science of the Total Environment, 262(3): 287-311.
Ramos, M.; Balasch, C. and Martínez, J. (2012). Seasonal Temperature and Rainfall Variabilityduring the Last 60 Years in a Mediterranean Climatearea of Northeastern Spain: A Multivariate Analysis, Theor App. l Climatol, 21(5): 10-29.
Reed, T.R. (1939). Thermal aspects of the high-level anticyclone, Monthly Weather Review, 67(7): 201-204.
Rodwell, M.J. and Hoskins, B. (1995). Monsoons and the dynamics of Deserts, Quarterly Journal of the Royal Meteorological Society, 122: 1385-1404.
Roudier, P.; Sultan, B.; Quirion, P. and Berg, A. (2011). The impact of future climate change on West African crop yields: What does the recent literature say? Global Environmental Change, 21(3): 1073-1083.
Ryoo, B.S.; Kwon, T.W. and Jhun, G.J. (2004). Characteristics of Wintertime Daily and Extreme Minimum Temperature Over South Korea, Int. Journal of Climatol, 24: 145-160.
Saaroni, H. and Ziv, B. (2000). Summer rain episodes in a Mediterranean climate, the case of Israel: climatological–dynamical analysis, International Journal of Climatology, 20(2): 191-209.
Saif, AB. A. (1997). Carbon dioxide fluctuations and global warming, University of Literature and Human Sciences University of Isfahan, 44 and 45: 68-88 (In Persian).
Santer, B.D.; Taylor, K.E.; Wigley, T.M.; Penner, J.E.; Jones, P.D. and Cubasch, U. (1995). towards the detection and attribution of an anthropogenic effect on climate, Climate Dynamics, 12(2): 77-100.
Schaefer, D. and Domroes, M. (2009). Recent climate change in Japan–spatial and temporal characteristics of trends of temperature, Climate of the Past, 5(1): 13-19.
Schlesinger, M.E. and Ramankutty, N. (1994). An oscillation in the global climate system of period 65-70 years, Nature, 367(64 and 65): 723.
Sobhani, B. nd Goldust, A. (2016). Inspection of temperature alteration and its prediction possibility in Ardebil province using statistical analysis and adaptive neuro -fuzzy inference system. researches in Geographical Sciences, 16(42): 27-40 (In Persian).
Sui, C.H.; Chung, P.H. and Li, T. (2007). Interannual and interdecadal variability of the summertime western North Pacific subtropical high, Geophysical research letters, 34(11), doi:10.1029/2006GL029204.
Svoma, B. M., Krahenbuhl, D. S., Bush, C. E., Malloy, J. W., White, J. R., Wagner, M. A., ... & Cerveny, R. S. (2013). Expansion of the northern hemisphere subtropical high-pressure belt: trends and linkages to precipitation and drought. Physical Geography, 34(3), 174-187.
Toreti, A. and Desiato, F. (2008). Temperature trend over Italy from 1961-2004, Theor. App. l. Climatology, 97: 991-1011.
Walker, M.J. (1975). On summer atmospheric processes over South-West Asia, Tellus, 27(5): 491-496.
Yongfu, Q.; Qiong, Z.; Yonghong, Y. and Xuehong, Z. (2002). Seasonal variation and heat preference of the South Asia High, Advances in Atmospheric Sciences, 19(5): 821-836.
Yuksel, I. (2008). Global Warming and Renewable Energy Sources for Sustainable Development inTurkey, Renewable Energy, 33: 802-812.
Zaitchik, B.F.; Evans, J.P. and Smith, R.B. (2007). Regional impact of an elevated heat source: The Zagros Plateau of Iran, Journal of Climate, 20: 4133-4146.
Zhao, P.; Jones, P.; Cao, L.; Yan, Z.; Zha, S.; Zhu, Y.; Yu, Y. and Tang, G. (2014). Trend of surface air temperature in eastern China and associated large-scale climate variability over the last 100 years, Journal of Climate, 27(12): 4693-4703.
Ziv, B.; Saaroni, H. and Alpert, P. (2004). The factors governing the summer regime of the eastern Mediterranean, International Journal of Climatology, 24(14): 1859-1871.