نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه جغرافیا، دانشگاه شهید بهشتی

2 دانشجوی دکتری جغرافیا و برنامه ریزی شهری، دانشگاه شهید بهشتی

چکیده

رفتارهای طبیعی محیط زندگی بشر در جایی که سکونتگاهها بدون شناخت و مطالعه این رفتارها احداث شده، مخاطرات نام گرفتهاند. شهر و توسعه‌‌ زیرساختهای آن در تأمین امنیت و نیازهای گوناگون بشری از کلیدیترین محورهای توسعه زندگی اجتماعی است. از سوی دیگر مطالعه انتزاعی رفتارهای طبیعت در قالب بررسی سیل، زلزله، زمینلغزش و فرونشست همواره تصمیمگیریهای مدیریتی را دشوار نموده، بهطوری که دوری از عوامل تشدیدکننده یک مخاطره باعث نزدیکی به مخاطره دیگر شده است. یکی از روشهای جبری مرسوم روش تحلیل سلسلهمراتبی (AHP) است که بهعنوان یک روش ارزیابی وزنی با ترکیب فاکتورهای کمّی و کیفی به ارزیابی سناریوهای مختلف و انتخاب بهترین گزینه میپردازد. روش تحلیل سلسلهمراتبی بهعنوان یکی از روشهای تصمیمگیری چندمعیاره با بررسی اثرات فاکتورهای مختلف در تقابل با یکدیگر زمینه را برای انجام تحلیلهای مکانی کاربردی فراهم آورده است. لذا این پژوهش با هدف پهنهبندی جامع و یکپارچه‌‌ مخاطراتی مانند سیل، زلزله، زمینلغزش و فرونشست، به شناخت، ارزیابی و تنظیم یافتهها در قالب یک نقشه جامع حساسیت این رفتارها با عنوان مخاطرات چهارگانه محیطی در محدوده مناطق بیست و دوگانه شهر تهران پرداخته است. روش تحقیق از نوع کمی-تحلیلی است و همه عوامل مؤثر در وقوع هر یک از مخاطرات شناسایی و در محیط ArcGIS رقومیسازی و با استفاده از روش نسبت فراوانی مدلسازی شده است. سپس هر یک از چهار نقشه حساسیت به روش فازی ترکیب و نقشه حساسیت نهایی در قالب پنج کلاس حساسیت خیلیزیاد، زیاد، متوسط، کم و خیلیکم طبقهبندی و بصورت نقشه و جدول استخراج و ارائه شده است. نتایج نهایی این پژوهش نشان میدهد که از میان مناطق 22 گانه شهر تهران، مناطق 1، 3، 18، 5 و 4 در زمینه مخاطرات چهارگانه مذکور حساسیت بالاتری نسبت به بقیه مناطق دارند و مناطق 9، 10، 11، 12 و 17 حساسیت کمتری دارند لذا پیشنهاد میشود با اولویتبندی پهنههای پرخطر، فرآیند مقاومسازی و استاندارد کردن تأسیسات و زیرساختهای موجود اجرا شود. در خصوص احداث و توسعه زیرساختها و تأسیسات جدید نیز با اعمال محدودیت یا صادر نکردن مجوز ساخت وساز از بروز و تشدید این مخاطرات طبیعی در محدودههای پرخطر جلوگیری به عمل آید.

کلیدواژه‌ها

عنوان مقاله [English]

Zoning and spatial analysis of the susceptibility of four environmental hazards: Landslide, Flood, Earthquake and Subsidence (Case study: 22 Districts of Tehran)

نویسندگان [English]

  • Zohreh Fanni 1
  • Seyyed MohammadReza Ghashami 2

1 Associate professor, Urban Geography Department, Shahid Beheshti University,Theran,Iran

2 Ph. D. Candidate of geography and urban planning, Shahid Beheshti University,Theran,Iran

چکیده [English]

Extended Abstract
Introduction
The natural behaviors of the human life environment where the settlements are constructed without recognizing and studying these behaviors are called hazards. The distinctive features of natural hazards are the changes in the hazard severity in different locations, as in the urban environments, human activities along with greater vulnerability in the environment, aggravate the hazard and the extent of its occurrence. The city and its infrastructure development in providing security and various needs of human are of the most substantial areas for the development of social life. In general, identifying areas prone to hazards is a key tool for decision makers to reduce the damages caused by natural hazards. On the other hand, abstract study of the nature’s behaviors in the form of flood, earthquake, land slide and subsidence has always made managerial decision-makings difficult, so that avoiding the aggravating factors of a hazard has caused to get close to another hazard.
 
Objectives
The main objective of this study is to evaluate areas affected by these four natural hazards in all 22 Districts of Tehran City. In other words, this research with the aim of comprehensive and integrated zoning of hazards such as flood, earthquake, landslide and subsidence has proceeded to identify, evaluate and adjust the findings in the form of a comprehensive map of the susceptibility of these behaviors under the title of four environmental hazards within the 22 districts of Tehran city.
 
Discussion
Multiple-risk analysis, including a range of data, provides a more realistic model of the natural environment management. In this regard, studies have been conducted on the various approaches to analyze spatial data, how to create a combination of environmental hazards and how to determine their risk and vulnerability levels. To generate a probabilistic model, the basic assumption is that the risk level is determined by risk factors and possible hazards in the future, and with an emphasis on the past events. In this study, the creating and effective factors in environmental crises are related and calculated with each other with respect to several risks.
 
Research Methodology
One of the usual algebraic methods is the Analytic Hierarchy Process (AHP), which, as a weighted evaluation method, evaluates different scenarios and selects the best option by combining the qualitative and quantitative factors. The Analytic Hierarchy process as one of the multi-criteria decision-making methods provides the ground for performing applied spatial analyses by examining the effects of different factors in contradiction with each other. The research method is quantitative-analytical, and all the factors affecting the occurrence of each hazard have been identified and digitized in ArcGIS environment and modeled using Frequency Ratio (FR) model. Then, each of the four susceptibility maps was combined in fuzzy method and the final susceptibility map was classified into 5 classes of very high, high, moderate, low and very low susceptibility, and was extracted and presented as a map and a table.
 
Results
This research resulted in the production of the susceptibility zone map for more probable hazards including flood, earthquake, landslide, and subsidence of Tehran City in the separation of 22 Districts. This map includes several factors such as slope degree, slope direction, slope shape, elevation layers, distance from the river, distance from the road, distance from the fault, geology, land use, and the rain  The result show that the effective factors in flood are the distance from the river, and the slope; the most effective factors in the destruction are the wasting of groundwater and eliminating the geotechnical properties of the soil; the most effective factors in the occurrence of earthquake are the distance from the major and minor faults which determine the length of major and minor faults. Based on the results of this research and their analyses in Tehran’s districts, areas with very high, high, moderate, low and very low susceptibility were observed. Then, considering this study, their percentages were calculated in each class and reported in the form of a table. Among the 22 districts of Tehran city, districts 1, 3, 18, 5, and 4 are more susceptible than the rest of districts and districts 9, 10, 11, 12, and 17 are less susceptible in terms of the four aforementioned hazards. 
Therefore, it is recommended that the process of reinforcement and standardization of existing facilities and infrastructure to be implemented by prioritizing hazardous zones. Concerning the construction and development of new infrastructure and facilities, the occurrence and exacerbation of these natural hazards within the hazardous areas may be prevented by imposing restriction or not issuing construction permits.

کلیدواژه‌ها [English]

  • Susceptibility zoning
  • Landslides
  • Flood
  • Earthquake
  • Subsidence
  • 22 Districts of Tehran
1- Aleotti, P., & Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the environment, 58(1), 21-44.
2- Althuwaynee, O. F., Pradhan, B., Park, H.-J., & Lee, J. H. (2014). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21-36.
3- Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1), 15-31.
4- Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., & Dick, O. B. (2012). Landslide susceptibility assessment in the Hoa Binh province of Vietnam: a comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology, 171, 12-29.
5- Chen, C.-H., Ke, C.-C., & Wang, C.-L. (2009). A back-propagation network for the assessment of susceptibility to rock slope failure in the eastern portion of the Southern Cross-Island Highway in Taiwan. Environmental Geology, 57(4), 723-733.
6- Conforti, M., Pascale, S., Robustelli, G., & Sdao, F. (2014). Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena, 113, 236-250.
7- Hong, H., Pradhan, B., Xu, C., & Bui, D. T. (2015). Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena, 133, 266-281.
8- Kanungo, D., Arora, M., Gupta, R., & Sarkar, S. (2008). Landslide risk assessment using concepts of danger pixels and fuzzy set theory in Darjeeling Himalayas. Landslides, 5(4), 407-416.
9- Lee, S. (2004). Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Environmental Management, 34(2), 223-232.
10- Lee, S. (2007). Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea. Earth Surface Processes and Landforms, 32(14), 2133-2148.
11- Melchiorre, C., Matteucci, M., Azzoni, A., & Zanchi, A. (2008). Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology, 94(3), 379-400.
12- Muthu, K., Petrou, M., Tarantino, C., & Blonda, P. (2008). Landslide possibility mapping using fuzzy approaches. IEEE Transactions on Geoscience and Remote Sensing, 46(4), 1253-1265.
13- Oh, H.-J., & Pradhan, B. (2011). Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences, 37(9), 1264-1276.
14- Saito, H., Nakayama, D., & Matsuyama, H. (2009). Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, Japan. Geomorphology, 109(3), 108-121.
15- San, B. T. (2014). An evaluation of SVM using polygon-based random sampling in landslide susceptibility mapping: the Candir catchment area (western Antalya, Turkey). International Journal of Applied Earth Observation and Geoinformation, 26, 399-412.
16- Shahabi, H., Khezri, S., Ahmad, B. B., & Hashim, M. (2014). Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena, 115, 55-70.
17- Wang, L.-J., Guo, M., Sawada, K., Lin, J., & Zhang, J. (2015). Landslide susceptibility mapping in Mizunami City, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models. Catena, 135, 271-282.
18- Xu, C., Xu, X., Dai, F., & Saraf, A. K. (2012). Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China. Computers & Geosciences, 46, 317-329.