We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Magnetic resonance imaging and its role in myocardial regenerative therapy

    John J Graham

    Division of Cardiology, Sunnybrook Health Sciences Centre, D380, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.

    ,
    Robert J Lederman

    Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institute of Health, Bethesda, MD, USA

    ,
    Alexander J Dick

    † Author for correspondence

    Division of Cardiology, Sunnybrook Health Sciences Centre, D380, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.

    Published Online:https://doi.org/10.2217/17460751.1.3.347

    There has been extensive interest recently in cardiac stem cell therapy. Current research has been hampered by differences in cell type, methods of delivery and efficacy evaluation. In this article we review the use of magnetic resonance imaging in this growing area and argue that it is well suited to all areas of myocardial regeneration: from patient identification, through cell delivery and tracking of appropriately labeled cells, to evaluation of therapeutic effect. Potential future advances are discussed including magnetic resonance imaging-guided intervention suites and the use of higher field strength magnets for cell tracking.

    Bibliography

    • American Heart Association. Dallas, USA. Heart Disease and Stroke Statistics – 2003 Update.
    • Assmus B, Schachinger V, Teupe C et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation106, 3009–3017 (2002).
    • Strauer BE, Brehm M, Zeus T et al.: Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation2002(106), 1913–1918 (2002).
    • Wollert KC, Meyer GP, Lotz J et al.: Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet364, 141–148 (2004).
    • Janssens S, Dubois C, Bogaert J et al.: Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet367, 113–121 (2006).
    • Strauer DE, Brehm M, Zeus T et al.: Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease. The IACT study. J. Am. Coll. Cardiol46(9), 1651–1658 (2005).
    • Welt FGP, Losordo D: Cell therapy for acute myocardial infarction – curb your enthusiasm? Circulation113, 1272–1274 (2006).
    • Aicher A, Brenner W, Zuhayra M et al.: Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation107, 2134–2139 (2003).
    • Hofmann M, Wollert KC, Meyer GP et al.: Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation111, 2198–2202 (2005).
    • 10  Rezaee M, Yeung AC, Altman P et al.: Evaluation of the percutaneous intramyocardial injection for for local myocardial treatment. Catheterization Cardiovasc. Interven53, 271–276 (2001).
    • 11  Sanborn TA, Hackett NR, Lee LY et al.: Percutaneous endocardial transfer and expression of genes to the myocardium utilizing fluoroscopic guidance. Catheterization Cardiovasc. Interven52, 260–266 (2001).
    • 12  Balaban RS: The physics of image generation by magnetic resonance. In: Cardiovascular Magnetic Resonance. Manning WJ (Ed). Churchill Livingstone, Philadelphia, PA, USA, 3–17 (2002).
    • 13  Wisenberg G, Prato F, Carroll SE, Turner KL, Marshall T.: Serial nuclear magnetic resonance imaging of acute myocardial infarction with and without reperfusion. Am. Heart J.115(3), 510–18 (1988).
    • 14  Kim RJ, Chen EL, Lima JAC, Judd RM: Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction Circulation94(12), 3318–3326 (1996).
    • 15  Pereira RS, Prato F, Wisenberg G, Sykes J: The determination of myocardial viability using Gd-DTPA in a canine model of acute myocardial ischaemia and reperfusion. Magnetic Res. Med.36(5), 684–693 (1996).
    • 16  Kim RJ, Fieno DS, Parrish TB et al.: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation100, 1992–2002 (2002)
    • 17  Gerber BL, Rochitte CE, Bluemke DA et al.: Relation between Gd-DTPA contrast enhancement and regional inotropic response in the periphery and center of myocardial infarction. Circulation (2001) 104, 998–1004 (1999).
    • 18  Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd RM: Transmural Extent of Acute myocardial infarction predicts long-term improvement in contractile function. Circulation104, 1101–1107 (2001).
    • 19  Gerber BL, Rochitte CE, Melin JA et al.: Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation101, 2734–2741 (2001)
    • 20  Mark J, Dai G, Xiang B et al.: Contrast Agent Distribution in Microvascular Damage of Infarcted Pig Myocardium. Acta Radiologica42(5), 515–520 (2000).
    • 21  Abdel-Aty H, Zagrosek A, Schulz-Menger J et al.: Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation109, 2411–2416 (2004).
    • 22  Shi PA, Hematti P, von Kalle C, Dunbar CE: Genetic marking as an approach to studying in vivo hematopoiesis: progress in the non-human primate model. Oncogene21(21), 3274–83 (2002).
    • 23  Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI: The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs169(1), 12–20 (2001).
    • 24  Huhn RD, Tisdale JF, Agricola B, Metzger ME, Donahue RE, Dunbar CE: Retroviral marking and transplantation of rhesus hematopoietic cells by nonmyeloablative conditioning. Human Gene Therapy10(11), 1783–1790 (1999).
    • 25  Chin BB, Nakamoto Y, Bulte JW, Pittenger MF, Wahl R, Kraitchman DL: In oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Nuclear Med. Commun24(11), 1149–54 (2003).
    • 26  Kraitchman DL, Tatsumi M, Gilson WD et al.: Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation112(10), 1451–1461 (2005).
    • 27  Jin Y, Kong H, Stodilka RZ, Wells RG et al.: Determining the minimum number of detectable cardiac-transplanted In-tropolone-labeled bone-marrow-derived mesenchymal stem cells by SPECT. Physics Med. Biol.50, 4445–4455 (2005).
    • 28  Hinds KA, Hill JM, Shapiro EM et al.: Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood102(3), 867–872 (2003).
    • 29  Frank JA, Miller BR, Arbab AS et al.: Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology228(2), 480–487 (2003).
    • 30  Arbab AS, Yocum G, Kalish H et al.: Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood104(4), 1217–1223 (2004).
    • 31  Walczak P, Kedziorek D, Gilad AA, Lin S, Bulte JW: Instant MR labeling of stem cells using magnetoelectroparation. Magnetic Resonance Med.54, 769–774 (2005).
    • 32  Hill JM, Dick AJ, Raman VK et al.: Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation108(8), 1009–1014 (2003).
    • 33  Cunningham CH, Arai T, Yang PC, McConnell MV, Pauly JM, Conolly SM: Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Resonance Med.53(5), 999–1005 (2005).
    • 34  Stuber M, Gilson WD, Kedziorek D, Bulte JW, Kraitchman DL: Signal-enhanced visualization of magnetic nanoparticle labeled stem cells using inversion recovery on-resonant water suppression (IRON). J. Cardiovasc. Magn. Res.8(1), 13–15 (2006).
    • 35  Shah SS, Gilson WD, Weiss R et al.: Fat suppression strategies for off-resonance (IRON) imaging of magnetically labeled stem cells. J. Cardiovasc. Magnetic Res.8(1), 87–88 (2006).
    • 36  Dick AJ, Raman V, Raval AN et al.: Invasive human magnetic resonance imaging: feasibility during revascularization in a combined XMR suite. Catheterization Cardiovasc. Interventions64(3), 265–274 (2005).
    • 37  Razavi R, Hill D, Keevil SF et al.: Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet362(9399), 1877–1882 (2003).
    • 38  Raval AN, Telep JT, Guttman MA et al.: Real-time magnetic resonance imaging-guided stenting of aortic coarctation with commercially available catheter devices in swine. Circulation112(5), 699–706 (2005).
    • 39  Lederman RJ: Cardiovascular interventional magnetic resonance imaging Circulation112(19), 3009–3017 (2005).
    • 40  Guttman MA, Lederman RJ, Sorger JM, McVeigh ER, Real-time volume rendered MRI for interventional guidance. J. Cardiovasc. Magnetic Res.4(4), 431–442 (2002).
    • 41  Guttman MA, Dick AJ, Raman VK, Arai AE, Lederman RJ, McVeigh ER: Imaging of myocardial infarction for diagnosis and intervention using real-time interactive MRI without ECG-gating or breath-holding. Magn. Reson. Med.52(2), 354–361 (2004).
    • 42  Yang X, Yeung CJ, Ji H, Serfaty JM, Atalar E: Thermal effect of intravascular MR imaging using an MR imaging-guidewire: an in vivo laboratory and histopathological evaluation. Medical Science Monitor8(7), 113–117 (2002).
    • 43  Bakker CJG, Bos C, Weinmann HJ: Passive tracking of catheters and guidewires by contrast-enhanced MR fluoroscopy. Magn Reson Med45(1), 17–23 (2001).
    • 44  BakkerCJ, Hoogeveen R, Weber J, van Vaals JJ, Viergever MA, Mali WP: Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions. Magn. Reson. Med36(6), 816–820 (1996).
    • 45  Unal O, Korosec FF, Frayne R, Strother CM, Mistretta CA: A rapid 2D time-resolved variable-rate k-space sampling MR technique for passive catheter tracking during endovascular procedures. Magn. Reson. Med e 40(3), 356–362 (1998).
    • 46  Omary RA, Unal O, Koscielski DS et al.: Real-time MR imaging-guided passive catheter tracking with use of gadolinium-filled catheters. J. Vasc. Intl Radiol.11(8), 1079–1085 (2000).
    • 47  Dumoulin CL, Souza SP, Darrow RD: Real-time position monitoring of invasive devices using magnetic resonance. Magn. Reson. Med.29(3), 411–415 (1993).
    • 48  Konings MK, Bartels LW, Smits HF, Bakker CJ: Heating around intravascular guidewires by resonating RF waves. J. Magn. Reson. Imaging12(1), 79–85 (2000).
    • 49  Yeung CJ, Susil RC, Atalar E: RF safety of wires in interventional MRI: using a safety index. Magn. Reson. Med47(1), 187–193 (2002).
    • 50  Dick AJ, Guttman M, Raman VK et al.: Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine. Circulation108(23), 2899–2904 (2003).
    • 51  Lederman RJ, Guttman M, Peters DC et al.: Catheter-based endomyocardial injection with real-time magnetic resonance imaging. Circulation105(11), 1282–1284 (2002).
    • 52  Kraitchman DL, Sampath S, Castillo E et al.: Quantitative ischaemia detection during cardiac magnetic resonance stress testing by use of FastHARP. Circulation107(15), 2025–2030 (2003).
    • 53  Freyman T, Polin G, Osman H et al.: A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. European Heart J.27(9), 1114–1122 (2006).
    • 54  Soto AV, Gilson WD, Kedziorek D et al.: MRI tracking of the regional persistence of feridex-labeled mesenchymal stem cells in a canine myocardial infarction model. J. Cardiovasc. Magn. Reson.8(1), 89–90 (2006).
    • 55  Allison JD, Flickinger F, Wright JC et al.: Measurement of left ventricular mass in hypertrophic cardiomyopathy using MRI: Comparison with echocardiography. Magnetic Resonance Imaging11(3), 329–334 (1993).
    • 56  Dodge HT, Sandler H, Ballew DW, Lord JD Jr.: The use of biplane angiography for the measurement of left ventricular volume in man. European Heart J.60, 762–776 (1960).
    • 57  Sharir T, Germano G, Kavanagh PB et al.: Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation100, 1035–1042 (1999).
    • 58  Grothues F, Smith GC, Moon JC et al.: Comparison of in:erstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy.Am. J. Cardio90(1), 29–34 (2002).
    • 59  Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N. Engl. J. Med.325(5), 293–302 (1991).
    • 60  Pfeffer MA, Braunwald E, Moye LA et al.: Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N. Engl. J. Med.327(10), 669–677 (1992).
    • 61  Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). The MERIT-HF Study Group. Lancet353(9169), 2001–2007 (1999).
    • 62  White HD, Norris RM, Brown MA, Brandt PWT, Whitlock RML, Wild CJ: Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation76, 44–51 (1987).
    • 63  Greenberg SB, Sandhu S: Ventricular function. Radiologic Clin. N. Am.37(2), 341–359 (1999).
    • 64  Nazarian S, Bluemke D, Lardo AC et al.: Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation112, 2821–2825 (2005).
    • 65  St. John Sutton MG, Sharpe N: Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation101, 2981–2988 (2000).
    • 66  Pfeffer MA, Braunwald E: Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation81, 1161–1172 (1990).
    • 67  Warren S E, Royal HD, Markis JE, Grossman W, McKay RG.: Time course of left ventricular dilation after myocardial infarction: influence of infarct-related artery and success of coronary thrombolysis. J. Am. Coll. Cardiol.11(1), 12–19 (1988).
    • 68  Kinnaird T, Stabile E, Burnett MS et al.: Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation109(12), 1543–1549 (2004).