We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

What can we learn about valvular heart disease from PET/CT?

    William SA Jenkins

    * Author for correspondence

    Centre for Cardiovascular Science, University of Edinburgh, Little France Crescent, Edinburgh, UK.

    ,
    Calvin Chin

    Centre for Cardiovascular Science, University of Edinburgh, Little France Crescent, Edinburgh, UK

    National Heart Center Singapore, SingHealth, Singapore

    ,
    James HF Rudd

    Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK

    ,
    David E Newby

    Centre for Cardiovascular Science, University of Edinburgh, Little France Crescent, Edinburgh, UK

    &
    Marc R Dweck

    Centre for Cardiovascular Science, University of Edinburgh, Little France Crescent, Edinburgh, UK

    Published Online:https://doi.org/10.2217/fca.13.47

    Valvular heart disease is a major cause of morbidity and mortality, and with an aging population, its prevalence is increasing. Here, we review the evolving use of positron emission tomography/computed tomography in valvular heart disease, with particular focus on calcific aortic stenosis and infective endocarditis. In principle, the activity of any pathological process can be studied, as long as an appropriate radiotracer can be developed. We will review some of the early data using established tracers in the above and other conditions, providing discussion as to the future research and clinical roles of these techniques. Furthermore, we will discuss the potential impact of novel tracers that are currently under development or testing in preclinical models. It is hoped that such advanced imaging might improve the diagnosis, treatment and outlook for patients with valvular heart disease.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet368(9540),1005–1011 (2006).
    • Dweck MR, Jones C, Joshi NV et al. Assessment of valvular calcification and inflammation by positron emission tomography in patients with aortic stenosis. Circulation125(1),76–86 (2012).▪▪ Largest study to date assessing 18F-fluorodeoxyglucose (18F-FDG) and 18F-sodium flouride as markers of inflammation and calcification activity in the valves of patients with aortic stenosis.
    • Millar BC, Prendergast BD, Alavi A, Moore JE. 18FDG-positron emission tomography (PET) has a role to play in the diagnosis and therapy of infective endocarditis and cardiac device infection. Int. J. Cardiol.pii: S0167–S5273(12),01633–01636 (2013).
    • Rudd JHF, Myers KS, Bansilal S et al. 18Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible. J. Am. Coll. Cardiol.50(9),892–896 (2007).
    • van den Borne SWM, Isobe S, Verjans JW et al. Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction. J. Am. Coll. Cardiol.52(24),2017–2028 (2008).▪ Highlights the potential that nuclear imaging of integrin expression holds in predicting the extent of myocardial remodeling and scar formation postmyocardial infarction.
    • Gaemperli O, Kaufmann PA. PET and PET/CT in cardiovascular disease. Ann. NY Acad. Sci.1228(1),109–136 (2011).
    • Pichler BJ, Wehrl HF, Judenhofer MS. Latest advances in molecular imaging instrumentation. J. Nucl. Med.49(Suppl. 2),S5–S23 (2008).
    • Berman DS, Germano G, Slomka PJ. Improvement in PET myocardial perfusion image quality and quantification with flurpiridaz F 18. J. Nucl. Cardiol.19(Suppl. 1),S38–S45 (2012).
    • Woo J, Tamarappoo B, Dey D et al. Automatic 3D registration of dynamic stress and rest 82Rb and flurpiridaz F 18 myocardial perfusion PET data for patient motion detection and correction. Med. Phys.38(11),6313 (2011).
    • 10  Kaneko K, Kawasaki T, Masunari S, Yoshida T, Omagari J. Determinants of extraaortic arterial 18F-FDG accumulation in asymptomatic cohorts: sex differences in the association with cardiovascular risk factors and coronary artery stenosis. J. Nucl. Med.54(4),564–570 (2013).
    • 11  Rudd JH, Warburton EA, Fryer TD et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation105(23),2708–2711 (2002).
    • 12  Tawakol A, Migrino RQ, Bashian GG et al.In vivo 18F fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J. Am. Coll. Cardiol.48(9),1818–1824 (2006).
    • 13  Saam T, Rominger A, Wolpers S et al. Association of inflammation of the left anterior descending coronary artery with cardiovascular risk factors, plaque burden and pericardial fat volume: a PET/CT study. Eur. J. Nucl. Med. Mol. Imaging37(6),1203–1212 (2010).
    • 14  Marnane M, Merwick A, Sheehan OC et al. Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann. Neurol.71(5),709–718 (2012).
    • 15  Paulmier B, Duet M, Khayat R et al. Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J. Nucl. Cardiol.15(2),209–217 (2008).
    • 16  Dweck MR, Boon NA, Newby DE. Calcific aortic stenosis. J. Am. Coll. Cardiol.60(19),1854–1863 (2012).
    • 17  Marincheva-Savcheva G, Subramanian S, Qadir S et al. Imaging of the aortic valve using fluorodeoxyglucose positron emission tomography. J. Am. Coll. Cardiol.57(25),2507–2515 (2011).
    • 18  Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. Am. J. Roentgenol.190(2),W151–W156 (2008).▪▪ Key paper in 18F-FDG positron emission tomography cardiac imaging, stipulating the importance of carbohydrate fasting in reducing myocardial 18F-FDG uptake.
    • 19  Cook GJ, Blake GM, Marsden PK, Cronin B, Fogelman I. Quantification of skeletal kinetic indices in paget’s disease using dynamic 18F-fluoride positron emission tomography. J. Bone Miner. Res.17(5),854–859 (2002).
    • 20  Frost ML, Fogelman I, Blake GM, Marsden PK, Cook G. Dissociation between global markers of bone formation and direct measurement of spinal bone formation in osteoporosis. J. Bone Miner. Res.19(11),1797–1804 (2004).
    • 21  Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J. Nucl. Med.49(1),68–78 (2008).
    • 22  Steitz SA, Speer MY, Curinga G et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circulation Res.89(12),1147–1154 (2001).
    • 23  Kaden JJ, Bickelhaupt S, Grobholz R et al. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulate aortic valve calcification. J. Mol. Cell. Cardiol.36(1),57–66 (2004).
    • 24  Kaden JJ, Kiliç R, Sarikoç A et al. Tumor necrosis factor alpha promotes an osteoblast-like phenotype in human aortic valve myofibroblasts: a potential regulatory mechanism of valvular calcification. Int. J. Mol. Med.16(5),869–872 (2005).
    • 25  Steiner I, Kasparová P, Kohout A, Dominik J. Bone formation in cardiac valves: a histopathological study of 128 cases. Virchows Arch.450(6),653–657 (2007).
    • 26  Cowell SJ, Newby DE, Burton J et al. Aortic valve calcification on computed tomography predicts the severity of aortic stenosis. Clin. Radiol.58(9),5 (2003).
    • 27  Davies SW, Gershlick AH, Balcon RR. Progression of valvar aortic stenosis: a long-term retrospective study. Eur. Heart J.12(1),10–14 (1991).
    • 28  Rosenhek RR, Binder TT, Porenta GG et al. Predictors of outcome in severe, asymptomatic aortic stenosis. N. Engl. J. Med.343(9),611–617 (2000).
    • 29  Hyafil F, Messika-Zeitoun D, Burg S et al. Detection of 18fluoride sodium accumulation by positron emission tomography in calcified stenotic aortic valves. Am. J. Cardiol.109(8),1194–1196 (2012).
    • 30  Hsia J, MacFadyen JG, Monyak J, Ridker PM. Cardiovascular event reduction and adverse events among subjects attaining low-density lipoprotein cholesterol. J. Am. Coll. Cardiol.57(16),1666–1675 (2011).
    • 31  Cowell SJ, Newby DE, Robin J et al. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N. Engl. J. Med.352,2389–2397 (2005).
    • 32  Carabello BA. The SEAS trial. Curr. Cardiol. Rep.12(2),122–124 (2010).
    • 33  Chan KL, Teo K, Dumesnil JG, Ni A, Tam J; ASTRONOMER Investigators. Effect of lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation121(2),306–314 (2010).
    • 34  Dweck MR, Khaw HJ, Sng GKZ et al. Aortic stenosis, atherosclerosis, and skeletal bone: is there a common link with calcification and inflammation? Eur. Heart J.34(21),1567–1574 (2013).
    • 35  Ben-Haim S, Gacinovic S, Israel O. Cardiovascular infection and inflammation. Semin. Nucl. Med.39(2),103–114 (2009).
    • 36  Takano H, Nakagawa K, Ishio N et al. Active myocarditis in a patient with chronic active Epstein–Barr virus infection. Int. J. Cardiol.130(1),e11–e13 (2008).
    • 37  Treglia G, Mattoli MV, Leccisotti L, Ferraccioli G, Giordano A. Usefulness of whole-body fluorine-18-fluorodeoxyglucose positron emission tomography in patients with large-vessel vasculitis: a systematic review. Clin. Rheumatol.30(10),1265–1275 (2011).
    • 38  Fisk M, Peck LF, Miyagi K et al. Mycotic aneurysms: a case report, clinical review and novel imaging strategy. QJM105(2),181–188 (2012).
    • 39  Marion MD, Swanson MK, Spellman J, Spieth ME. Femoropopliteal prosthetic bypass graft infection due to Mycobacterium abscessus localized by FDG-PET/CT scan. J. Vasc. Surg.50(4),907–909 (2009).
    • 40  Spacek M, Belohlavek O, Votrubova J, Sebesta P, Stadler P. Diagnostics of “non-acute” vascular prosthesis infection using 18F-FDG PET/CT: our experience with 96 prostheses. Eur. J. Nucl. Med. Mol. Imaging36(5),850–858 (2008).
    • 41  Keidar Z, Gurman-Balbir A, Gaitini D, Israel O. Fever of unknown origin: the role of 18F-FDG PET/CT. J. Nucl. Med.49(12),1980–1985 (2008).
    • 42  van der Bruggen W. PET and SPECT in osteomyelitis and prosthetic bone and joint infections: a systematic review. Semin. Nucl. Med.40,3–15 (2010).
    • 43  Zhuang H, Yang H, Alavi A. Critical role of 18F-labeled fluorodeoxyglucose PET in the management of patients with arthroplasty. Radiol. Clin. North Am.45(4),711–718 (2007).
    • 44  Durack DT, Lukes AS, Bright DK, Duke Endocarditis Service. New criteria for diagnosis of infective endocarditis: utilization of specific echocardiographic findings. Am. J. Med.96(3),200–209 (1994).
    • 45  Yen RF, Chen YC, Wu YW, Pan MH, Chang SC. Using 18-fluoro-2-deoxyglucose positron emission tomography in detecting infectious endocarditis/endoarteritis – a preliminary report. Acad. Radiol.11(3),316–321 (2004).
    • 46  Kouijzer IJ, Vos FJ, Janssen MJ, Dijk AP, Oyen WJ, Bleeker-Rovers CP. The value of 18F-FDG PET/CT in diagnosing infectious endocarditis. Eur. J. Nucl. Med. Mol. Imaging40(7),1102–1107 (2013).▪ First prospective study assessing the diagnostic capabilities of 18F-FDG positron emission tomography in infective endocarditis.
    • 47  Van Riet J, Hill EE, Gheysens O et al.18F-FDG PET/CT for early detection of embolism and metastatic infection in patients with infective endocarditis. Eur. J. Nucl. Med. Mol. Imaging37,1189–1197 (2010).
    • 48  Potpara TS, Vasiljevic ZM, Vujisic-Tesic BD et al. Mitral annular calcification predicts cardiovascular morbidity and mortality in middle-aged patients with atrial fibrillation: the belgrade atrial fibrillation study. Chest140(4),902–910 (2011).
    • 49  Allison MA, Cheung P, Criqui MH, Langer RD, Wright CM. Mitral and aortic annular calcification are highly associated with systemic calcified atherosclerosis. Circulation113(6),861–866 (2006).
    • 50  James OG, Christensen JD, Wong TZ, Borges-Neto S, Koweek LM. Utility of FDG PET/CT in inflammatory cardiovascular disease. Radiographics31(5),1271–1286 (2011).
    • 51  Camici PG, Rimoldi OE, Gaemperli O, Libby P. Non-invasive anatomic and functional imaging of vascular inflammation and unstable plaque. Eur. Heart J.33(11),1309–1317 (2012).
    • 52  Gaemperli O, Shalhoub J, Owen DR et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur. Heart J.33(15),1902–1910 (2012).
    • 53  Kreisl WC, Fujita M, Fujimura Y et al. Comparison of [(11)C]–(R)–PK 11195 and [(11)C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: implications for positron emission tomographic imaging of this inflammation biomarker. Neuroimage49(4),2924–2932 (2010).
    • 54  Fujimura Y, Hwang PM, Trout H 3rd et al. Increased peripheral benzodiazepine receptors in arterial plaque of patients with atherosclerosis: an autoradiographic study with [3H]PK 11195. Atherosclerosis201(1),108–111 (2008).
    • 55  Rominger A, Saam T, Vogl E et al.In vivo imaging of macrophage activity in the coronary arteries using 68Ga-DOTATATE PET/CT: correlation with coronary calcium burden and risk factors. J. Nucl. Med.51(2),193–197 (2010).
    • 56  Alam SR, Shah ASV, Richards J et al. Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction clinical perspective. Circ. Cardiovasc. Imaging5(5),559–565 (2012).
    • 57  Nahrendorf M, Zhang H, Hembrador S et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation117(3),379–387 (2008).
    • 58  Panizzi P, Nahrendorf M, Figueiredo JL et al.In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat. Med.17(9),1142–1146 (2011).
    • 59  Lygoe KA, Norman JT, Marshall JF, Lewis MP. Alphav integrins play an important role in myofibroblast differentiation. Wound Repair Regen.12(4),461–470 (2004).
    • 60  Serini G, Valdembri D, Bussolino F. Integrins and angiogenesis: a sticky business. Exp. Cell Res.312(5),651–658 (2006).
    • 61  Antonov AS, Kolodgie FD, Munn DH, Gerrity RG. Regulation of macrophage foam cell formation by alphaVbeta3 integrin: potential role in human atherosclerosis. Am. J. Pathol.165(1),247–258 (2004).
    • 62  Luzina IG, Todd NW, Nacu N et al. Regulation of pulmonary inflammation and fibrosis through expression of integrins αvβ3 and αvβ5 on pulmonary T lymphocytes. Arthritis Rheum.60(5),1530–1539 (2009).
    • 63  Soini Y, Salo T, Satta J. Angiogenesis is involved in the pathogenesis of nonrheumatic aortic valve stenosis. Hum. Pathol.34(8),756–763 (2003).
    • 64  Akahori H, Tsujino T, Naito Yet al. Intraleaflet haemorrhage is associated with rapid progression of degenerative aortic valve stenosis. Eur. Heart J.32(7),888–896 (2011).
    • 65  Rodriguez-Porcel MM, Cai WW, Gheysens OO et al. Imaging of VEGF receptor in a rat myocardial infarction model using PET. J. Nucl. Med.49(4),667–673 (2008).
    • 66  Rodriguez-Porcel M. Noninvasive monitoring of myocardial angiogenesis. Curr. Cardiovasc. Imaging Rep.2(1),59–66 (2009).
    • 67  Fondard O. Extracellular matrix remodelling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur. Heart J.26(13),1333–1341 (2005).
    • 68  Waters EA, Chen J, Allen JS, Zhang H, Lanza GM, Wickline SA. Detection and quantification of angiogenesis in experimental valve disease with integrin-targeted nanoparticles and 19-fluorine MRI/MRS. J. Cardiovasc. Magn. Reson.10(1),43 (2008).
    • 69  Eriksen HA, Satta J, Risteli J, Veijola M, Väre P, Soini Y. Type I and Type III collagen synthesis and composition in the valve matrix in aortic valve stenosis. Atherosclerosis189(1),91–98 (2006).
    • 70  Hein S. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation107(7),984–991 (2003).
    • 71  Dweck MR, Joshi S, Murigu T et al. Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J. Am. Coll. Cardiol.58(12),1271–1279 (2011).▪▪ Introduces the prognostic significance of myocardial fibrosis in aortic stenosis.
    • 72  Makowski MR, Ebersberger U, Nekolla S, Schwaiger M. In vivo molecular imaging of angiogenesis, targeting v 3 integrin expression, in a patient after acute myocardial infarction. Eur. Heart J.29(18),2201 (2008).
    • 73  Verjans J, Wolters S, Laufer W et al. Early molecular imaging of interstitial changes in patients after myocardial infarction: comparison with delayed contrast-enhanced magnetic resonance imaging. J. Nucl. Cardiol.17(6),1065–1072 (2010).
    • 74  Fukushima K, Bravo PE, Higuchi T et al. Molecular hybrid positron emission tomography/computed tomography imaging of cardiac angiotensin II type 1 receptors. J. Am. Coll. Cardiol.60(24),2527–2534 (2012).
    • 75  Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol.148(7),2207–2216 (1992).
    • 76  Kietselaer BL, Reutelingsperger CP, Heidendal GAK et al. Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N. Engl. J. Med.350(14),1472–1473 (2004).
    • 77  Kietselaer BL, Reutelingsperger CP, Boersma HH et al. Noninvasive detection of programmed cell loss with 99mTc-labeled annexin A5 in heart failure. J. Nucl. Med.48(4),562–567 (2007).
    • 78  Saraste A, Knuuti J. Cardiac PET, CT, and MR: what are the advantages of hybrid imaging? Curr. Cardiol. Rep.14(1),24–31 (2012).
    • 79  Pibarot P, Larose É, Dumesnil J. Imaging of valvular heart disease. Can. J. Cardiol.29(3),337–349 (2013).