We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Halophilic & halotolerant prokaryotes in humans

    El Hadji Seck

    Aix Marseille University, IRD, MEPHI, IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France

    ,
    Jean-Charles Dufour

    SESSTIM (UMR912), Sciences Economiques et Sociales de la Santé et Traitement de l'Information Médicale, Aix Marseille University, INSERM, IRD, Marseille, France

    Service Biostatistique et Technologies de l'Information et de la Communication (BIOSTIC), Assistance Publique Hôpitaux de Marseille, Hôpital de la Timone, Marseille, France

    ,
    Didier Raoult

    Aix Marseille University, IRD, MEPHI, IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France

    Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia

    &
    Jean-Christophe Lagier

    *Author for correspondence: Tel.: +33 041 373 2401; Fax: +33 041 373 2402;

    E-mail Address: jclagier@yahoo.fr

    Aix Marseille University, IRD, MEPHI, IHU Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France

    Published Online:https://doi.org/10.2217/fmb-2017-0237

    Halophilic prokaryotes are described as microorganisms living in hypersaline environments. Here, we list the halotolerant and halophilic bacteria which have been isolated in humans. Of the 52 halophilic prokaryotes, 32 (61.54%) were moderately halophilic, 17 (32.69%) were slightly halophilic and three (5.76%) were extremely halophilic prokaryotes. At the phylum level, 29 (54.72%) belong to Firmicutes, 15 (28.84%) to Proteobacteria, four (7.69%) to Actinobacteria, three (5.78%) to Euryarchaeota and one (1.92%) belongs to Bacteroidetes. Halophilic prokaryotes are rarely pathogenic: of these 52 halophilic prokaryotes only two (3.92%) species were classified in Risk Group 2 (Vibrio cholerae, Vibrio parahaemolyticus) and one (1.96%), species in Risk Group 3 (Bacillus anthracis).

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Lagier J-C, Khelaifia S, Alou MT et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 1, 16203 (2016). •• Culturomics studies allowed isolating nearly 40 halophilic prokaryotes from human gut.
    • 2 Rampelotto PH. Biotechnology of Extremophiles: Advances and Challenges (1st Ed.). Springer, Basel, Switzerland (2016).
    • 3 Oren A. Salinibacter: an extremely halophilic bacterium with archaeal properties. FEMS Microbiol. Lett. 342(1), 1–9 (2013).
    • 4 Adamiak J, Otlewska A, Gutarowska B, Pietrzak A. Halophilic microorganisms in deteriorated historic buildings: insights into their characteristics. Acta Biochim. Pol. 63(2), 335–341 (2016).
    • 5 Hugon P, Dufour J-C, Colson P, Fournier P-E, Sallah K, Raoult D. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect. Dis. 15(10), 1211–1219 (2015). •• A methodology inspiring to establish the repertoire of bacteria already isolated in humans and their pathogenicity.
    • 6 Dridi B. Laboratory tools for detection of archaea in humans. Clin. Microbiol. Infect. 18(9), 825–833 (2012).
    • 7 DasSarma S, DasSarma P. Halophiles. In: eLS. John Wiley & Sons, Ltd, Chichester, UK, 1 (2012).
    • 8 Oren PA. Life at high salt concentrations. In: The Prokaryotes. Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (Eds). Springer, Berlin, Germany, 421–440 (2013).
    • 9 Oren A. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front. Microbiol. 4, 315 (2013).
    • 10 Oren A. Halophilic microbial communities and their environments. Curr. Opin. Biotechnol. 33, 119–124 (2015). • Explains the physiology of halophilic prokaryotes and returned to the environments in which they grow.
    • 11 Oren A. Taxonomy of halophilic archaea: current status and future challenges. Extremophiles 18(5), 825–834 (2014).
    • 12 Ventosa A, de la Haba RR, Sánchez-Porro C, Papke RT. Microbial diversity of hypersaline environments: a metagenomic approach. Curr. Opin. Microbiol. 25(Suppl. C), 80–87 (2015).
    • 13 Andrei A-Ş, Banciu HL, Oren A. Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol. Lett. 330(1), 1–9 (2012).
    • 14 Edbeib MF, Wahab RA, Huyop F. Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World J. Microbiol. Biotechnol. 32(8), 135 (2016).
    • 15 Reed CJ, Lewis H, Trejo E, Winston V, Evilia C. Protein adaptations in archaeal extremophiles. Archaea Vanc. BC. 2013, 373275 (2013).
    • 16 Dalmaso GZL, Ferreira D, Vermelho AB. Marine extremophiles: a source of hydrolases for biotechnological applications. Mar. Drugs. 13(4), 1925–1965 (2015).
    • 17 Graziano G, Merlino A. Molecular bases of protein halotolerance. Biochim. Biophys. Acta BBA 1844(4), 850–858 (2014).
    • 18 Hamedi J, Mohammadipanah F, Ventosa A. Systematic and biotechnological aspects of halophilic and halotolerant actinomycetes. Extremophiles 17(1), 1–13 (2013).
    • 19 Kim J-S, Makama M, Petito J, Park N-H, Cohan FM, Dungan RS. Diversity of bacteria and archaea in hypersaline sediment from Death Valley National Park, California: diversity of bacteria and archaea in hypersaline sediment. MicrobiologyOpen 1(2), 135–148 (2012).
    • 20 Gibtan A, Park K, Woo M et al. Diversity of extremely halophilic archaeal and bacterial communities from commercial salts. Front. Microbiol. 10(8), 799 (2017).
    • 21 Lee H-S. Diversity of halophilic archaea in fermented foods and human intestines and their application. J. Microbiol. Biotechnol. 23(12), 1645–1653 (2013). • Molecular biology technique showing the ability of halophilic prokaryotes to live in human gut and their presence in salty foods.
    • 22 Diop A, Khelaifia S, Armstrong N et al. Microbial culturomics unravels the halophilic microbiota repertoire of table salt: description of Gracilibacillus massiliensis sp. nov. Microb. Ecol. Health Dis. 27, 32049 (2016).
    • 23 Dridi B, Fardeau M-L, Ollivier B, Raoult D, Drancourt M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int. J. Syst. Evol. Microbiol. 62(Pt 8), 1902–1907 (2012).
    • 24 Kaptein EM, Sreeramoju D, Kaptein JS, Kaptein MJ. A systematic literature search and review of sodium concentrations of body fluids. Clin. Nephrol. 86(10), 203–228 (2016).
    • 25 Bang C, Schmitz RA. Archaea associated with human surfaces: not to be underestimated. FEMS Microbiol. Rev. 39(5), 631–648 (2015).
    • 26 Dridi B, Fardeau M-L, Ollivier B, Raoult D, Drancourt M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int. J. Syst. Evol. Microbiol. 62(8), 1902–1907 (2012).
    • 27 Schulze-Röbbecke R. [Mycobacteria in the environment]. Immun. Infekt. 21(5), 126–131 (1993).
    • 28 Lagier J-C, Armougom F, Million M et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 18(12), 1185–1193 (2012).
    • 29 Lagier J-C, Hugon P, Khelaifia S, Fournier P-E, La Scola B, Raoult D. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin. Microbiol. Rev. 28(1), 237–264 (2015).
    • 30 Seck E, Rathored J, Khelaifia S et al. Virgibacillus senegalensis sp. nov., a new moderately halophilic bacterium isolated from human gut. New Microbes New Infect. 8, 116–126 (2015).
    • 31 Lagier J-C, Edouard S, Pagnier I, Mediannikov O, Drancourt M, Raoult D. Current and past strategies for bacterial culture in clinical microbiology. Clin. Microbiol. Rev. 28(1), 208–236 (2015).
    • 32 Robert A, Danin P-É, Quintard H et al. Seawater drowning-associated pneumonia: a 10-year descriptive cohort in intensive care unit. Ann. Intensive Care 7(1), 45 (2017). • A work pointing to bacteria implicated in the infective complications of drowning.
    • 33 American Biological Safety Association. Risk group classification for infectious agents (2017). www.absa.org/riskgroups/.
    • 34 The Dead Sea: The Lake and Its Setting. Niemi TM, Ben-Avraham Z, Gat J (Eds). Oxford University Press, NYUSA (1997).
    • 35 Millero FJ, Feistel R, Wright DG, McDougall TJ. The composition of standard seawater and the definition of the reference–composition salinity scale. Deep Sea Res. Part Oceanogr. Res. Pap. 55(1), 50–72 (2008).
    • 36 Ahmed W, Gyawali P, Sidhu JPS, Toze S. Relative inactivation of faecal indicator bacteria and sewage markers in freshwater and seawater microcosms. Lett. Appl. Microbiol. 59(3), 348–354 (2014).
    • 37 Cloutier DD, Alm EW, McLellan SL. Influence of land use, nutrients, and geography on microbial communities and fecal indicator abundance at Lake Michigan beaches. Appl. Environ. Microbiol. 81(15), 4904–4913 (2015). • A work describing the factors affecting the survival of bacteria, mainly fecal indicator.
    • 38 Campos CJA, Kershaw SR, Lee RJ. Environmental influences on faecal indicator organisms in coastal waters and their accumulation in bivalve shellfish. Estuaries Coasts Port Repub. 36(4), 834–853 (2013).
    • 39 Sassoubre LM, Yamahara KM, Boehm AB. Temporal stability of the microbial community in sewage-polluted seawater exposed to natural sunlight cycles and marine microbiota. Appl. Environ. Microbiol. 81(6), 2107–2116 (2015).
    • 40 Pesciaroli C, Cupini F, Selbmann L, Barghini P, Fenice M. Temperature preferences of bacteria isolated from seawater collected in Kandalaksha Bay, White Sea, Russia. Polar Biol. 35(3), 435–445 (2012).
    • 41 Podell S, Emerson JB, Jones CM et al. Seasonal fluctuations in ionic concentrations drive microbial succession in a hypersaline lake community. ISME J. 8(5), 979–990 (2014).
    • 42 Gin KY-H, Goh SG. Modeling the effect of light and salinity on viable but non-culturable (VBNC) Enterococcus. Water Res. 47(10), 3315–3328 (2013). • Shows the effects of solar radiation and temperature on the survival of bacteria in the sea and explains that nonmarine bacteria growth is constrained by several factors in marine waters.
    • 43 Daniszewski P. Determination of metals in sea water of the Baltic Sea in Międzyzdroje. Int. Lett. Chem. Phys. Astron. 13, 13–22 (2013).
    • 44 Wanjugi P, Harwood VJ. The influence of predation and competition on the survival of commensal and pathogenic fecal bacteria in aquatic habitats. Environ. Microbiol. 15(2), 517–526 (2013).
    • 45 Hansell DA, Carlson CA. Biogeochemistry of Marine Dissolved Organic Matter (2nd Ed.). Academic Press, FLUSA (2014).
    • 46 Korajkic A, Wanjugi P, Harwood VJ. Indigenous microbiota and habitat influence Escherichia coli survival more than sunlight in simulated aquatic environments. Appl. Environ. Microbiol. 79(17), 5329–5337 (2013).
    • 47 Rashad FM, Fathy HM, El-Zayat AS, Elghonaimy AM. Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiol. Res. 175(Suppl. C), 34–47 (2015).
    • 48 Reglero P, Ciannelli L, Alvarez-Berastegui D, Balbin R, Lopez-Jurado JL, Alemany F. Geographically and environmentally driven spawning distributions of tuna species in the western Mediterranean Sea. Mar. Ecol. Prog. Ser. 463, 273–284 (2012).
    • 49 Janda JM. Shewanella: a marine pathogen as an emerging cause of human disease. Clin. Microbiol. Newsl. 36(4), 25–29 (2014).
    • 50 Vezzulli L, Colwell RR, Pruzzo C. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb. Ecol. 65(4), 817–825 (2013).
    • 51 Fewtrell L, Kay D. Recreational water and infection: a review of recent findings. Curr. Environ. Health Rep. 2(1), 85–94 (2015). •• A review revisiting infective risks associated with recreational water and discussing the risk of infection associated to marine water.
    • 52 Fleisher JM, Jones F, Kay D, Stanwell-Smith R, Wyer MD, Morano R. Water and non-water-related risk factors for gastroenteritis among bathers exposed to sewage-contaminated marine waters. Int. J. Epidemiol. 22(4), 698–708 (1993).
    • 53 Byappanahalli MN, Roll BM, Fujioka RS. Evidence for occurrence, persistence, and growth potential of Escherichia coli and Enterococci in Hawaii's soil environments. Microbes Environ. 27(2), 164–170 (2012).
    • 54 Byappanahalli MN, Nevers MB, Korajkic A, Staley ZR, Harwood VJ. Enterococci in the environment. Microbiol. Mol. Biol. Rev. 76(4), 685–706 (2012).
    • 55 Stocker MD, Rodriguez-Valentín JG, Pachepsky YA, Shelton DR. Spatial and temporal variation of fecal indicator organisms in two creeks in Beltsville, Maryland. Water Qual. Res. J. 51(2), 167–179 (2016).
    • 56 Halliday E, Gast RJ. Bacteria in beach sands: an emerging challenge in protecting coastal water quality and bather health. Environ. Sci. Technol. 45(2), 370–379 (2011).
    • 57 Yamahara KM, Sassoubre LM, Goodwin KD, Boehm AB. Occurrence and persistence of bacterial pathogens and indicator organisms in beach sand along the California coast. Appl. Environ. Microbiol. 78(6), 1733–1745 (2012).
    • 58 Amagliani G, Brandi G, Schiavano GF. Incidence and role of Salmonella in seafood safety. Food Res. Int. 45(2), 780–788 (2012).
    • 59 Ishikawa M, Yamasato K, Kodama K et al. Alkalibacterium gilvum sp. nov., slightly halophilic and alkaliphilic lactic acid bacterium isolated from soft and semi-hard cheeses. Int. J. Syst. Evol. Microbiol. 63(4), 1471–1478 (2013).
    • 60 Hirota K, Hanaoka Y, Nodasaka Y, Yumoto I. Gracilibacillus alcaliphilus sp. nov., a facultative alkaliphile isolated from indigo fermentation liquor for dyeing. Int. J. Syst. Evol. Microbiol. 64(9), 3174–3180 (2014).
    • 61 Ishikawa M, Tanasupawat S, Nakajima K et al. Alkalibacterium thalassium sp. nov., Alkalibacterium pelagium sp. nov., Alkalibacterium putridalgicola sp. nov. and Alkalibacterium kapii sp. nov., slightly halophilic and alkaliphilic marine lactic acid bacteria isolated from marine organisms and salted foods collected in Japan and Thailand. Int. J. Syst. Evol. Microbiol. 59(5), 1215–1226 (2009).
    • 62 Ntougias S, Russell NJ. Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters. Int. J. Syst. Evol. Microbiol. 51(3), 1161–1170 (2001).
    • 63 Hong SW, Kwon S-W, Kim S-J et al. Bacillus oryzaecorticis sp. nov., a moderately halophilic bacterium isolated from rice husks. Int. J. Syst. Evol. Microbiol. 64(Pt 8), 2786–2791 (2014).
    • 64 Choi EJ, Lee SH, Jung JY, Jeon CO. Brevibacterium jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol. 63(Pt 9), 3430–3436 (2013).
    • 65 Lo N, Lee SH, Jin HM, Jung JY, Schumann P, Jeon CO. Garicola koreensis gen. nov., sp. nov., isolated from saeu-jeot, traditional Korean fermented shrimp. Int. J. Syst. Evol. Microbiol. 65(Pt 3), 1015–1021 (2015).
    • 66 Tamang JP, Watanabe K, Holzapfel WH. Review: diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. 7, 377 (2016).
    • 67 Koo OK, Lee SJ, Chung KR, Jang DJ, Yang HJ, Kwon DY. Korean traditional fermented fish products: jeotgal. J. Ethn. Foods 3(2), 107–116 (2016).
    • 68 Shimoshige H, Yamada T, Minegishi H et al. Halobaculum magnesiiphilum sp. nov., a magnesium-dependent haloarchaeon isolated from commercial salt. Int. J. Syst. Evol. Microbiol. 63(Pt 3), 861–866 (2013).
    • 69 Nagaoka S, Minegishi H, Echigo A, Shimane Y, Kamekura M, Usami R. Halostagnicola alkaliphila sp. nov., an alkaliphilic haloarchaeon from commercial rock salt. Int. J. Syst. Evol. Microbiol. 61(Pt 5), 1149–1152 (2011).
    • 70 Kuda T, Izawa Y, Yoshida S, Koyanagi T, Takahashi H, Kimura B. Rapid identification of Tetragenococcus halophilus and Tetragenococcus muriaticus, important species in the production of salted and fermented foods, by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Food Control. 35(1), 419–425 (2014).
    • 71 Cadenas MB, Maggi RG, Diniz PPVP, Breitschwerdt KT, Sontakke S, Breithschwerdt EB. Identification of bacteria from clinical samples using Bartonella α-Proteobacteria growth medium. J. Microbiol. Methods 71(2), 147–155 (2007).
    • 72 Senghor B, Seck EH, Khelaifia S et al. Description of ‘Bacillus dakarensis’ sp. nov., ‘Bacillus sinesaloumensis’ sp. nov., ‘Gracilibacillus timonensis’ sp. nov., ‘Halobacillus massiliensis’ sp. nov., ‘Lentibacillus massiliensis’ sp. nov., ‘Oceanobacillus senegalensis’ sp. nov., ‘Oceanobacillus timonensis’ sp. nov., ‘Virgibacillus dakarensis’ sp. nov. and ‘Virgibacillus marseillensis’ sp. nov., nine halophilic new species isolated from human stool. New Microbes New Infect. 17, 45–51 (2017).
    • 73 Khelaifia S, Raoult D. Haloferax massiliensis sp. nov., the first human-associated halophilic archaea. New Microbes New Infect. 12, 96–98 (2016).
    • 74 Yeo SH, Kwak JH, Kim YU et al. Peritoneal dialysis-related peritonitis due to Halomonas hamiltonii. Medicine (Baltimore). 95(47), e5424 (2016).
    • 75 Seck EH, Fournier P-E, Raoult D, Khelaifia S. ‘Halomonas massiliensis’ sp. nov., a new halotolerant bacterium isolated from the human gut. New Microbes New Infect. 14, 19–20 (2016).
    • 76 Kim KK, Lee J-S, Stevens DA. Microbiology and epidemiology of Halomonas species. Future Microbiol. 8(12), 1559–1573 (2013).
    • 77 Brändle G, L'Huillier AG, Wagner N, Gervaix A, Wildhaber BE, Lacroix L. First report of Kocuria marina spontaneous peritonitis in a child. BMC Infect. Dis. 14, 719 (2014).
    • 78 Wareham D, Phee L, Hornsey M. P317 Isolation and characterisation of a novel Nesterenkonia species from a human bloodstream infection. Int. J. Antimicrob. Agents 2(Suppl. 42), S141–S142 (2013).
    • 79 Zhang Y-J, Tang S-K, Shi R et al. Salinisphaera halophila sp. nov., a moderately halophilic bacterium isolated from brine of a salt well. Int. J. Syst. Evol. Microbiol. 62(Pt 9), 2174–2179 (2012).
    • 80 Sinha M, Shivaprakash MR, Chakrabarti A, Shafiulla M, Babu KG, Jayshree RS. Bacteraemia caused by Sciscionella marina in a lymphoma patient: phenotypically mimicking Nocardia. J. Med. Microbiol. 62(Pt 6), 929–931 (2013).
    • 81 Kalinowski J, Ahrens B, Al-Dilaimi A et al. Isolation and whole genome analysis of endospore-forming bacteria from heroin. Forensic Sci. Int. Genet. 32(Suppl. C), 1–6 (2018).
    • 82 Khelaifia S, Croce O, Lagier J-C et al. Noncontiguous finished genome sequence and description of Virgibacillus massiliensis sp. nov., a moderately halophilic bacterium isolated from human gut. New Microbes New Infect. 8, 78–88 (2015).
    • 83 Chan K-S, Cheng K-C, Lee M-F, Yu W-L. A fish-stunning wound infection with acute cardiac injury. Am. J. Emerg. Med. 32(3), 289.e1–289.e2 (2014).
    • 84 Fewtrell L, Kay D. Recreational water and infection: a review of recent findings. Curr. Environ. Health Rep. 2(1), 85–94 (2015).
    • 85 Hugon P, Dufour J-C, Colson P, Fournier P-E, Sallah K, Raoult D. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect. Dis. 15(10), 1211–1219 (2015).
    • 86 Mengel MA, Delrieu I, Heyerdahl L, Gessner BD. Cholera outbreaks in Africa. In: Cholera Outbreaks. Springer, Berlin, Germany, 117–144 (2014) [cited 2017 Oct 16].
    • 87 Odeyemi OA. Incidence and prevalence of Vibrio parahaemolyticus in seafood: a systematic review and meta-analysis. SpringerPlus 5, 464 (2016).
    • 88 Tadié JM, Heming N, Serve E et al. Drowning associated pneumonia: a descriptive cohort. Resuscitation 83(3), 399–401 (2012).
    • 89 Vignier N, Barreau M, Olive C et al. Human infection with Shewanella putrefaciens and S. algae: report of 16 cases in Martinique and review of the literature. Am. J. Trop. Med. Hyg. 89(1), 151–156 (2013).
    • 90 Yamahara KM, Sassoubre LM, Goodwin KD, Boehm AB. Occurrence and persistence of bacterial pathogens and indicator organisms in beach sand along the California coast. Appl. Environ. Microbiol. 78(6), 1733–1745 (2012).