We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Repertoire of human breast and milk microbiota: a systematic review

    Amadou Togo

    IHU-Méditerranée Infection, Marseille, France

    Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France

    ,
    Jean-Charles Dufour

    Aix Marseille Univ, APHM, INSERM, IRD, SESSTIM, Hop Timone, BioSTIC, Marseille, France

    ,
    Jean-Christophe Lagier

    IHU-Méditerranée Infection, Marseille, France

    Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France

    ,
    Gregory Dubourg

    IHU-Méditerranée Infection, Marseille, France

    Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France

    ,
    Didier Raoult

    IHU-Méditerranée Infection, Marseille, France

    Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France

    &
    Matthieu Million

    *Author for correspondence:

    E-mail Address: matthieumillion@gmail.com

    IHU-Méditerranée Infection, Marseille, France

    Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France

    Published Online:https://doi.org/10.2217/fmb-2018-0317

    Breastfeeding is a major determinant of human health. Breast milk is not sterile and ecological large-scale sequencing methods have revealed an unsuspected microbial diversity that plays an important role. However, microbiological analysis at the species level has been neglected while it is a prerequisite before understanding which microbe is associated with symbiosis or dysbiosis, and health or disease. We review the currently known bacterial repertoire from the human breast and milk microbiota using a semiautomated strategy. Total 242 articles from 38 countries, 11,124 women and 15,489 samples were included. Total 820 species were identified mainly composed of Proteobacteria and Firmicutes. We report variations according to the analytical method (culture or molecular method), the anatomical site (breast, colostrum or milk) and the infectious status (healthy control, mastitis, breast abscess, neonatal infection). In addition, we compared it with the other human repertoires. Finally, we discuss its putative origin and role in health and disease.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Victora CG, Bahl R, Barros AJ et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387(10017), 475–490 (2016). •• Breastfeeding is a major determinant of human health.
    • 2 Gartner LM, Morton J, Lawrence RA et al. Breastfeeding and the use of human milk. Pediatrics 115(2), 496–506 (2005).
    • 3 Klement E, Cohen RV, Boxman J, Joseph A, Reif S. Breastfeeding and risk of inflammatory bowel disease: a systematic review with meta-analysis. Am. J. Clin. Nutr. 80(5), 1342–1352 (2004).
    • 4 Williams CD. A nutritional disease of childhood associated with a maize diet. Arch. Dis. Child. 8(48), 423–433 (1933).
    • 5 Newburg DS. Innate immunity and human milk. J. Nutr. 135(5), 1308–1312 (2005).
    • 6 Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr. Clin. North Am. 60(1), 49–74 (2013).
    • 7 Lönnerdal B, Erdmann P, Thakkar SK, Sauser J, Destaillats F. Longitudinal evolution of true protein, amino acids and bioactive proteins in breast milk: a developmental perspective. J. Nutr. Biochem. 41, 1–11 (2017).
    • 8 Pannaraj PS, Li F, Cerini C et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 171(7), 647–654 (2017).
    • 9 Heikkilä MP, Saris PEJ. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J. Appl. Microbiol. 95(3), 471–478 (2003).
    • 10 Urbaniak C, Cummins J, Brackstone M et al. Microbiota of human breast tissue. Appl. Environ. Microbiol. 80(10), 3007–3014 (2014).
    • 11 Martín R, Langa S, Reviriego C et al. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediatr. 143(6), 754–758 (2003). • Demonstrates the vertical transmission of Lactobacillus at the strain level.
    • 12 Berardi A, Rossi C, Creti R et al. Group B streptococcal colonization in 160 mother-baby pairs: a prospective cohort study. J. Pediatr. 163(4), 1099.e1091–1104.e1091 (2013).
    • 13 Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ. Microbiol. 16(9), 2891–2904 (2014).
    • 14 Asnicar F, Manara S, Zolfo M et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2(1), pii:e00164–16 (2017).
    • 15 Perez PF, Doré J, Leclerc M et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119(3), e724–e732 (2007).
    • 16 Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science 352(6285), 539–544 (2016).
    • 17 Ho NT, Li F, Lee-Sarwar KA et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat. Commun. 9(1), 4169 (2018).
    • 18 Xuan C, Shamonki JM, Chung A et al. Microbial dysbiosis is associated with human breast cancer. PLoS ONE 9(1), e83744 (2014).
    • 19 Urbaniak C, Gloor GB, Brackstone M, Scott L, Tangney M, Reid G. The microbiota of breast tissue and its association with breast cancer. Appl. Environ. Microbiol. 82(16), 5039–5048 (2016).
    • 20 Jiménez E, De Andrés J, Manrique M et al. Metagenomic analysis of milk of healthy and mastitis-suffering women. J. Hum. Lact. 31(3), 406–415 (2015).
    • 21 Lagier JC, Armougom F, Million M et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 18(12), 1185–1193 (2012).
    • 22 Lagier JC, Dubourg G, Million M et al. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. doi:10.1038/s41579-018-0041-0 540-550 (2018) (Epub ahead of print). •• Microbial culturomics offers an unprecedented opportunity to study and manipulate the human microbiome.
    • 23 Lagier J-C, Khelaifia S, Alou MT et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 1, 16203 (2016).
    • 24 Seck E-H, Senghor B, Merhej V et al. Salt in stools is associated with obesity, gut halophilic microbiota and Akkermansia muciniphila depletion in humans. Int. J. Obes. doi:10.1038/s41366-018-0201-3 (2018) (Epub ahead of print).
    • 25 Dickson I. Gut microbiota: Culturomics: illuminating microbial dark matter. Nat. Rev. Gastroenterol. Hepatol. 14(1), 3 (2017).
    • 26 Hugon P, Dufour J-C, Colson P, Fournier P-E, Sallah K, Raoult D. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect. Dis. 15(10), 1211–1219 (2015).
    • 27 Bilen M, Dufour J-C, Lagier J-C et al. The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species. Microbiome 6(1), 94 (2018).
    • 28 Fonkou M-D, Dufour J-C, Dubourg G, Raoult D. Repertoire of bacterial species cultured from the human oral cavity and respiratory tract. Future Microbiol. 13, 1611–1624 (2018).
    • 29 Morand A, Cornu F, Dufour J-C, Tsimaratos M, Lagier JC, Raoult D. Human bacterial repertoire of urinary tract: a paradigm shift. J. Clin. Microbiol. doi:10.1128/JCM.00675-18 (2018) (Epub ahead of print).
    • 30 Diop K, Dufour J-C, Levasseur A, Fenollar F. Exhaustive repertoire of human vaginal microbiota. Hum. Microbiome J. doi:10.1016/j.humic.2018.11.002 (2018) (Epub ahead of print).
    • 31 Million M, Angelakis E, Maraninchi M et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int. J. Obes. (Lond.) 37(11), 1460–1466 (2013).
    • 32 Million M, Angelakis E, Paul M, Armougom F, Leibovici L, Raoult D. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb. Pathog. 53(2), 100–108 (2012).
    • 33 Million M, Maraninchi M, Henry M et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int. J. Obes. (Lond.) 36(6), 817–825 (2012).
    • 34 Million M, Raoult D. Species and strain specificity of Lactobacillus probiotics effect on weight regulation. Microb. Pathog. 55, 52–54 (2013).
    • 35 Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the internet. Int. J. Syst. Evol. Microbiol. 47(2), 590–592 (1997).
    • 36 Parte AC. LPSN – List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int. J. Syst. Evol. Microbiol. 68(6), 1825–1829 (2018).
    • 37 Million M, Tidjani Alou M, Khelaifia S et al. Increased gut redox and depletion of anaerobic and methanogenic prokaryotes in severe acute malnutrition. Sci. Rep. 6, 26051 (2016).
    • 38 Million M, Raoult D. Linking gut redox to human microbiome. Hum. Microbiome J. 10, 27–32 (2018).
    • 39 Campbell C, Dikiy S, Bhattarai SK et al. Extrathymically generated regulatory T cells establish a niche for intestinal border-dwelling bacteria and affect physiologic metabolite balance. Immunity 48(6), 1245.e1249–1257.e1249 (2018).
    • 40 Loy A, Pfann C, Steinberger M et al. Lifestyle and horizontal gene transfer-mediated evolution of mucispirillum schaedleri, a core member of the murine gut microbiota. mSystems 2(1), pii:e00171-16 (2017).
    • 41 Everard A, Belzer C, Geurts L et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110(22), 9066–9071 (2013).
    • 42 Million M, Diallo A, Raoult D. Gut microbiota and malnutrition. Microb. Pathog. 106, 127–138 (2017).
    • 43 Togo AH, Diop A, Bittar F et al. Description of Mediterraneibacter massiliensis, gen. nov., sp. nov., a new genus isolated from the gut microbiota of an obese patient and reclassification of Ruminococcus faecis, Ruminococcus lactaris, Ruminococcus torques, Ruminococcus gnavus and Clostridium glycyrrhizinilyticum as Mediterraneibacter faecis comb. nov., Mediterraneibacter lactaris comb. nov., Mediterraneibacter torques comb. nov., Mediterraneibacter gnavus comb. nov. and Mediterraneibacter glycyrrhizinilyticus comb. nov. Antonie Van Leeuwenhoek doi:10.1007/s10482-018-1104-y (2018) (Epub ahead of print).
    • 44 Patel SH, Vaidya YH, Patel RJ, Pandit RJ, Joshi CG, Kunjadiya AP. Culture independent assessment of human milk microbial community in lactational mastitis. Sci. Rep. 7(1), 7804 (2017).
    • 45 Biagi E, Quercia S, Aceti A et al. The bacterial ecosystem of mother's milk and infant's mouth and gut. Front. Microbiol. 8, 1214 (2017).
    • 46 Li S-W, Watanabe K, Hsu C-C et al. Bacterial composition and diversity in breast milk samples from mothers living in Taiwan and mainland China. Front. Microbiol. 8, 965 (2017).
    • 47 Milani C, Mancabelli L, Lugli GA et al. Exploring vertical transmission of bifidobacteria from mother to child. Appl. Environ. Microbiol. 81(20), 7078–7087 (2015).
    • 48 Samuel B-S, Gordon J-I. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc. Natl Acad. Sci. USA 103(26), 10011–6 (2006).
    • 49 Samuel BS, Hansen EE, Manchester JK et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc. Natl Acad. Sci. USA 104(25), 10643–8 (2007).
    • 50 Ward TL, Hosid S, Ioshikhes I, Altosaar I. Human milk metagenome: a functional capacity analysis. BMC Microbiol. 13, 116 (2013).
    • 51 Koren O, Goodrich Julia K, Cullender Tyler C et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150(3), 470–480 (2012).
    • 52 Arroyo R, Martín V, Maldonado A, Jiménez E, Fernández L, Rodríguez Juan M. Treatment of infectious mastitis during lactation: antibiotics versus oral administration of Lactobacilli isolated from breast milk. Clin. Inf. Dis. 50(12), 1551–1558 (2010). •• Treatment of infectious mastitis by oral administration of Lactobacilli.
    • 53 Schafer P, Furrer C, Mermillod B. An association of cigarette smoking with recurrent subareolar breast abscess. Int. J. Epidemiol. 17(4), 810–813 (1988).
    • 54 Co M, Cheng VCC, Wei J et al. Idiopathic granulomatous mastitis: a 10-year study from a multicentre clinical database. Pathology doi:10.1016/j.pathol.2018.08.010 (2018) (Epub ahead of print).
    • 55 Bundred NJ, Dover MS, Coley S, Morrison JM. Breast abscesses and cigarette smoking. Br. J. Sur. 79(1), 58–59 (1992).
    • 56 Bharat A, Gao F, Aft RL, Gillanders WE, Eberlein TJ, Margenthaler JA. Predictors of primary breast abscesses and recurrence. World J. Surg. 33(12), 2582–2586 (2009).
    • 57 Gollapalli V, Liao J, Dudakovic A, Sugg SL, Scott-Conner CE, Weigel RJ. Risk factors for development and recurrence of primary breast abscesses. J. Am. Coll. Surg. 211(1), 41–48 (2010).
    • 58 Martin V, Manes-Lazaro R, Rodriguez JM, Maldonado-Barragan A. Streptococcus lactarius sp. nov., isolated from breast milk of healthy women. Int. J. Syst. Evol. Microbiol. 61(5), 1048–1052 (2011).
    • 59 Yatsunenko T, Rey FE, Manary MJ et al. Human gut microbiome viewed across age and geography. Nature 486(7402), 222–227 (2012). • Bifidobacterium breve, Bifidobacterium longum and Bifidobacterium dentium are the three species particularly associated with breastfeeding and with a higher relative abundance in babies versus adults (see supplementary data of this article).
    • 60 Jost T, Lacroix C, Braegger CP, Chassard C. New insights in gut microbiota establishment in healthy breast fed neonates. PLoS ONE 7(8), e44595 (2012).
    • 61 Solís G, De Los Reyes-Gavilan CG, Fernández N, Margolles A, Gueimonde M. Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe 16(3), 307–310 (2010).
    • 62 Million M, Tomas J, Wagner C, Lelouard H, Raoult D, Gorvel J-P. New insights in gut microbiota and mucosal immunity of the small intestine. Human Microbiome J. 7–8, 10 (2018).
    • 63 Thornton JW, Argenta LC, Mcclatchey KD, Marks MW. Studies on the endogenous flora of the human breast. Ann. Plast. Surg. 20(1), 39–42 (1988).
    • 64 Ransjo U, Asplund OA, Gylbert L, Jurell G. Bacteria in the female breast. Scand. J. Plast. Reconstr. Surg. 19(1), 87–89 (1985).
    • 65 Lelouard H, Fallet M, De Bovis B, Meresse S, Gorvel JP. Peyer's patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores. Gastroenterology 142(3), 592.e3–601.e3 (2012).
    • 66 Hashiguchi M, Kashiwakura Y, Kojima H, Kobayashi A, Kanno Y, Kobata T. Peyer's patch innate lymphoid cells regulate commensal bacteria expansion. Immunol. Lett. 165(1), 1–9 (2015).
    • 67 Nielsen ML, Raahave D, Stage JG, Justesen T. Anaerobic and aerobic skin bacteria before and after skin-disinfection with chlorhexidine: an experimental study in volunteers. J. Clin. Pathol. 28(10), 793–797 (1975).
    • 68 Delgado S, Arroyo R, Martín R, Rodríguez JM. PCR-DGGE assessment of the bacterial diversity of breast milk in women with lactational infectious mastitis. BMC infect. Dis. 8, 51 (2008).
    • 69 Donaire A, Guillen J, Rajegowda B. Neonatal breast hypertrophy: Revisited. Pediatr. Thera. 6(3), 2 (2016).
    • 70 Raveenthiran V. Neonatal mastauxe (breast enlargement of the newborn). J. Neonatal Surg. 2(3), 31 (2013).
    • 71 Kunisawa J, Kiyono H. Alcaligenes is commensal bacteria habituating in the gut-associated lymphoid tissue for the regulation of intestinal IgA responses. Front. Immunol. 3, 65 (2012).
    • 72 Obata T, Goto Y, Kunisawa J et al. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc. Natl Acad. Sci. USA 107(16), 7419–7424 (2010).
    • 73 Riboulet-Bisson E, Sturme MH, Jeffery IB et al. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota. PLoS ONE 7(2), e31113 (2012).
    • 74 Murphy EF, Cotter PD, Hogan A et al. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut 62(2), 220–226 (2013).
    • 75 Le Doare K, Holder B, Bassett A, Pannaraj PS. Mother's milk: a purposeful contribution to the development of the infant microbiota and immunity. Front. Immunol. 9, 361 (2018).
    • 76 Devaux CA, Raoult D. The microbiological memory, an epigenetic regulator governing the balance between good health and metabolic disorders. Front. Microbiol. 9, 1379 (2018).
    • 77 Ferrari A, Brusa T, Rutili A, Canzi E, Biavati B. Isolation and characterization of Methanobrevibacter oralis sp. nov. Curr. Microbiol. 29(1), 6 (1994).
    • 78 Miller TL, Wolin MJ, Conway De Macario E, Macario AJ. Isolation of Methanobrevibacter smithii from human feces. Appl. Environ. Microbiol. 43(1), 227–232 (1982).
    • 79 Grine G, Boualam MA, Drancourt M. Methanobrevibacter smithii, a methanogen consistently colonising the newborn stomach. Eur. J. Clin. Microbiol. Infec. Dis. 36(12), 2449–2455 (2017). • Suggests that Methanobrevibacter smithii, the main human gut methanogenic archaea, is transmitthed through breastfeeding.
    • 80 Desnues B, Al Moussawi K, Raoult D. Defining causality in emerging agents of acute bacterial diarrheas: a step beyond the Koch's postulates. Future Microbiol. 5(12), 1787–1797 (2010).