We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fmb.11.50

The limitations of current antimicrobials for highly virulent pathogens considered as potential bioterrorism agents drives the requirement for new antimicrobials that are suitable for use in populations in the event of a deliberate release. Strategies targeting bacterial virulence offer the potential for new countermeasures to combat bacterial bioterrorism agents, including those active against a broad spectrum of pathogens. Although early in the development of antivirulence approaches, inhibitors of bacterial type III secretion systems and cell division mechanisms show promise for the future.

Papers of special note have been highlighted as: ▪ of interest

Bibliography

  • Meselson M, Guillemin J, Hugh-Jones M et al.: The Sverdolovsk anthrax outbreak of 1979. Science266,1202–1208 (1994).
  • Inglesby T, Dennis D, Henderson D et al.: Plague as a biological weapon. J. Am. Med. Assoc.23,2281–2290 (2000).
  • Mohammed M, Marston C, Popovic T, Weyant R, Tenover F: Antimicrobial susceptibility of Bacillus anthracis: comparison of results obtained by using the National Committee for Clinical Laboratory Standards broth microdilution reference and E-test agar gradient diffusion methods. J. Clin. Microbiol.40,1902–1907 (2002).
  • Steward J, Lever MS, Simpson AJH, Sefton AM, Brooks TJG: Post-exposure prophylaxis of systemic anthrax in mice and treatment with fluoroquinolones. J. Antimicrob. Chemother.54,95–99 (2004).
  • Heine HS, Bassett J, Miller L et al.: Determination of antibiotic efficacy against Bacillus anthracis in a mouse aerosol challenge model. Antimicrob. Agents Chemother.51,1373–1379 (2007).
  • Peterson JW, Moen ST, Healy D et al.: Protection afforded by fluoroquinolones in animal models of respiratory infections with Bacillus anthracis, Yersinia pestis and Francisella tularensis. Open Microbiol.4,34–46 (2010).
  • Friedlander AM, Welkos SL, Pitt ML et al.: Postexposure prophylaxis against experimental inhalation anthrax. J. Infect. Dis.167,1239–1243 (1993).
  • Deziel MR, Heine HA, Louie M et al.: Effective antimicrobial regimens for use in humans for therapy of Bacillus anthracis infections and postexposure prophylaxis. Antimicrob. Agents Chemother.49,5099–5106 (2005).
  • Kao M, Bush K, Barnewall R et al.: Pharmacokinetic considerations and efficacy of levofloxacin in an inhalational anthrax (postexposure) rhesus monkey model. Antimicrob. Agents Chemother.50,3535–3542 (2006).
  • 10  Oyston PC: Francisella tularensis: unravelling the secrets of an intracellular pathogen. J. Med. Microbiol.57,921–930 (2008).
  • 11  Dennis D, Inglesby T, Henderson D et al.: Tularemia as a biological weapon. J. Am. Med. Assoc.285,2763–2773 (2001).
  • 12  Russell P, Eley SM, Fulop MJ, Bell DL, Titball RW: The efficacy of ciprofloxacin and doxycycline against experimental tularemia. J. Antimicrob. Chemother.41,461–465 (1998).
  • 13  Chocarro A, Gonzalez A, Garcia I: Treatment of tularemia with ciprofloxacin. Clin. Infect. Dis.31,623 (2000).
  • 14  Limaye A, Hooper C: Treatment of tularemia with fluoroquinolones: two cases and a review. Clin. Infect. Dis.29,922–924 (1999).
  • 15  Pérez-Castrillión J, Bachiller-Lurque P, Martín-Luquero M, Mena-Martin F, Herreros V: Tularemia epidemic in northwestern Spain: clinical description and therapeutic response. Clin. Infect. Dis.33,573–576 (2001).
  • 16  Johansson A, Berglund L, Gothefors L, Sjöstedt A, Tärnvik A: Ciprofloxacin for treatment of tularemia in children. Paediatr. Infect. Dis. J.19,449–453 (2000).
  • 17  Johansson A, Berglund L, Gothefors L, Sjöstedt A, Tärnvik A: Ciprofloxacin for treatment of tularemia. Clin. Infect. Dis.33,267–268 (2001).
  • 18  Nelson M, Lever MS, Dean RE, Pearce PC, Stevens DJ, Simpson AJ: Bioavailability and efficacy of levofloxacin against Francisella tularensis in the common marmoset (Callithrix jacchus). Antimicrob. Agents Chemother.54,3922–3926 (2010).
  • 19  Inglesby TV, Dennis DT, Henderson DA et al.: Plague as a biological weapon: Medical and public health management. J. Am. Med. Assoc.283,2281–2290 (2000).
  • 20  Wong J, Barash J, Sandfort R, Janda J: Susceptibilities of Yersinia pestis strains to 12 antimicrobial agents. Antimicrob. Agents Chemother.44,1995–1996 (2000).
  • 21  Smith M, Vinh D, Hoa N, Wain J, Thung D, White N: In vitro antimicrobial susceptibilities of strains of Yersinia pestis. Antimicrob. Agents Chemother.39,2153–2154 (1995).
  • 22  Russell P, Eley SM, Green M et al.: Efficacy of doxycycline and ciprofloxacin against experimental Yersinia pestis infection. J. Antimicrob. Chemother.41,301–305 (1998).
  • 23  Byrne W, Welkos S, Pitt M et al.: Antibiotic treatment of experimental pneumonic plague in mice. Antimicrob. Agents Chemother.42,675–681 (1998).
  • 24  Galimand M, Guiyoule A, Gerbaud G et al.: Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N. Engl. J. Med.337,677–680 (1997).
  • 25  Goiyoule A, Gerbaud G, Buchrieser C et al.: Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg. Infect. Dis.7,43–48 (2001).
  • 26  Currie BJ, Fisher DB, Anstey NM, Jacups SP: Melioidosis: acute and chronic disease, relapse and re-activation. Trans. R. Soc. Trop. Med. Hyg.94,301–304 (2000).
  • 27  Ngauy V, Lemeshev Y, Sadkowski L, Crawford G: Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J. Clin. Microbiol.43,970–972 (2005).
  • 28  Wagg DM, DeShazer D: Glanders, new insights into an old disease. In: Biological Weapons Defense: Infectious Diseases and Counterterrorism. Lindler LE, Lebeda FJ, Korch GW (Eds). Humana Press, Inc., Totowa, NJ, USA, 209–238 (2004).
  • 29  Hawley RJ, Eitzen EM: Biological weapons – a primer for microbiologists. Ann. Rev. Microbiol.55,235–253 (2001).
  • 30  White NJ: Melioidosis. Lancet361,1715–1722 (2003).
  • 31  Heptonstall J, Gent N: CRBN Incidents: Clinical Management & Health Protection. Health Protection Agency, London, UK (2008).
  • 32  Russell P, Eley SM, Ellis J et al.: Comparison of efficacy of ciprofloxacin and doxycycline against experimental melioidosis and glanders. J. Antimicrob. Chemother.45,813–818 (2000).
  • 33  Sivalingam SP, Sim SH, Jasper LC, Wang D, Liu Y, Ooi EE: Pre- and post-exposure prophylaxis of experimental Burkholderia pseudomallei infection with doxycycline, amoxicillin/clavulanic acid and co-trimoxazole. J. Antimicrob. Chemother.61,674–678 (2008).
  • 34  Bertino J Jr, Fish D: The safety profile of the fluoroquinolones. Clin. Ther.22,798–817 (2000).
  • 35  Brouillard JE, Terriff CM, Tofan A, Garrison MW: Antibiotic selection and resistance issues with fluoroquinolones and doxycycline against bioterrorism agents. Pharmacotherapy26,3–14 (2006).▪ Highlights the issues surrounding currently available antibiotics that are effective against most bioterrorism agents.
  • 36  Rotz LD, Khan AS, Lillibridge SR et al.: Public health assessment of potential biological terrorism agents. Emerg. Infect. Dis.8,225–230 (2002).
  • 37  Galimand M, Carniel E, Courvalin P: Resistance of Yersinia pestis to antimicrobial agents. Antimicrob. Agents Chemother.50,3233–3236 (2006).
  • 38  Viktorov DV, Zakharova IB, Podshivalova MV et al.: High-level resistance to fluoroquinolones and cephalosporins in Burkholderia pseudomallei and closely related species. Trans. R. Soc. Trop. Med. Hyg.102,S103–S110 (2008).
  • 39  Holden MT, Titball RW, Peacock SJ et al.: Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc. Natl Acad. Sci. USA101,14240–14245 (2004).
  • 40  Nierman WC, DeShazer D, Kim HS et al.: Structural flexibility in the Burkholderia mallei genome. Proc. Natl Acad. Sci. USA101,14246–14251 (2004).
  • 41  Larsson P, Oyston PC, Chain P et al.: The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nature Genet.37,153–159 (2005).
  • 42  Parkhill J, Wren BW, Thomson NR et al.: Genome sequence of Yersinia pestis, the causative agent of plague. Nature413,523–527 (2001).
  • 43  Read TD, Peterson SN, Tourasse N et al.: The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature423,81–86 (2003).
  • 44  Thomson N, Holden M, Parkhill J: Brothers in arms. Nature Rev. Microbiol.3,100–101 (2005).▪ Interesting article on genome comparison of some bioterrorism agents to their lesser pathogenic relations.
  • 45  Chain PS, Carniel E, Larimer FW et al.: Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc. Natl Acad. Sci. USA101,13826–13831 (2004).
  • 46  Zhang R, Lin Y: DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res.37,D455–D458 (2009).
  • 47  Zhang R, Ou HY, Zhang CT: DEG: a database of essential genes. Nucleic Acids Res.32,D271–D272 (2004).
  • 48  Duffield M, Cooper I, McAlister E et al.: Predicting conserved essential genes in bacteria: in silico identification of putative drug targets. Mol. Biosystems6,2482–2489 (2010).
  • 49  Cuccui J, Easton A, Chu KK et al.: Development of signature-tagged mutagenesis in Burkholderia pseudomallei to identify genes important in survival and pathogenesis. Infect. Immun.75,1186–1195 (2007).
  • 50  Flashner Y, Mamroud E, Tidhar A et al.: Identification of genes involved in Yersinia pestis virulence by signature-tagged mutagenesis. Adv. Exp. Med. Biol.31–33 (2003).
  • 51  Leigh SA, Forman S, Perry RD et al.: Unexpected results from the application of signature-tagged mutagenesis to identify Yersinia pestis genes required for adherence and invasion. Microb. Pathog.38,259–266 (2005).
  • 52  Su JL, Yang J, Zhao DM et al.: Genome-wide identification of Francisella tularensis virulence determinants. Infect. Immun.75,3089–3101 (2007).
  • 53  Atkins TP, Prior R, Mack K et al.: Characterisation of an acapsular mutant of Burkholderia pseudomallei identified by signature tagged mutagenesis. J. Med. Microbiol.51,539–547 (2002).
  • 54  DeShazer D, Brett P, Woods D: The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required from serum resistance and virulence. Mol. Microbiol.30,1081–1100 (1998).
  • 55  DeShazer D, Waag DM, Fritz DL et al.: Identification of a Burkholderia mallei polysaccharide gene cluster by subtractive hybridisation and demonstration that the encoded capsule is an essential virulence determinant. Microb. Pathog.30,253–269 (2001).
  • 56  Reckseidler S, DeShazer D, Sokol PA et al.: Detection of bacterial virulence genes by subtractive hybridisation: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant. Infect. Immun.69,34–44 (2001).
  • 57  Milne TS, Michell SL, Diaper H et al.: A 55 kDa hypothetical membrane protein is an iron-regulated virulence factor of Francisella tularensis subsp novicida U 112. J. Med. Microbiol.56,1268–1276 (2007).
  • 58  Dufva M, Christensen CBV: Diagnostic and analytical applications of protein microarrays. Expert Rev. Proteom.2,41–48 (2005).
  • 59  Felgner PL, Kayala MA, Vigil A et al.: A Burkholderia pseudomallei protein microarray reveals serodiagnostic nd cross-reactive antigens. Proc. Natl Acad. Sci. USA106,13499–13504 (2009).
  • 60  Frearson JA, Wyatt PG, Gilbert IH et al.: Target assessment for antiparasitic drug discovery. Trends Parasitol.23,589–595 (2007).▪ Relevant publication on antimicrobial target selection and prioritization.
  • 61  Galan JE, Wolf-Watz H: Protein delivery into eukaryotic cells by type III secretion machines. Nature444,567–573 (2006).
  • 62  Cornelis GR: The Yersinia YSC-YOP ‘type III’ weaponry. Nature Rev. Mol. Cell Biol.3,742–752 (2002).
  • 63  Aiello D, Williams JD, Majgier-Baranowska H et al.: Discovery and characterization of inhibitors of Pseudomonas aeruginosa type III Secretion. Antimicrob. Agents Chemother.54,1988–1999 (2010).
  • 64  Felise HB, Nguyen HV, Pfuetzner RA et al.: An inhibitor of Gram-negative bacterial virulence protein secretion. Cell Host Microbe4,325–336 (2008).
  • 65  Kauppi AM, Nordfelth R, Uvell H et al.: Targeting bacterial virulence: inhibitors of type III secretion in Yersinia. Chem. Biol.10,241–249 (2003).
  • 66  Pan NJ, Brady MJ, Leong JM et al.: Targeting type III secretion in Yersinia pestis. Antimicrob. Agents Chemother.53,385–392 (2009).
  • 67  Cornelis GR, Boland A, Boyd AP et al.: The virulence plasmid of Yersinia, an antihost genome. Microbiol. Mol. Biol. Rev.4,1315 (1998).
  • 68  Wren BW: The Yersiniae – a model genus to study the rapid evolution of bacterial pathogens. Nature Rev. Microbiol.1,55–64 (2003).
  • 69  Nordfelth R, Kauppi AM, Norberg HA, Wolf-Watz H, Elofsson M: Small-molecule inhibitors specifically targeting type III secretion. Infect. Immun.73,3104–3114 (2005).
  • 70  Harmon DE, Davis AJ, Castillo C et al.: Identification and characterization of small-molecule inhibitors of YOP translocation in Yersinia pseudotuberculosis. Antimicrob. Agents Chemother.54,3241–3254 (2010).
  • 71  Sun GW, Gan YH: Unraveling type III secretion systems in the highly versatile Burkholderia pseudomallei. Trends Microbiol.18,561–568 (2010).
  • 72  Stevens M, Wood MW, Taylor LA et al.: An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol. Microbiol.46,649–659 (2002).
  • 73  Stevens MP, Friebel A, Taylor LA et al.: A Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucleotide exchange factor activity. J. Bacteriol.185,4992–4996 (2003).
  • 74  Stevens MP, Haque A, Atkins T et al.: Attenuated virulence and protective efficacy of a Burkholderia pseudomallei BSA type III secretion mutant in murine models of melioidosis. Microbiology150,2669–2676 (2004).
  • 75  Erskine PT, Knight MJ, Ruaux A et al.: High resolution structure of BipD: an invasion protein associated with the type III secretion system of Burkholderia pseudomallei. J. Mol. Biol.363,125–136 (2006).
  • 76  Pal M, Erskine PT, Gill RS et al.: Near-atomic resolution analysis of BipD, a component of the type III secretion system of Burkholderia pseudomallei. Acta Cryst. Struct. Biol. Crystal Comm.66,990–993 (2010).
  • 77  Graumann PL: Cytoskeletal elements in bacteria. Ann. Rev. Microbiol.61,589–618 (2007).
  • 78  Margalit DN, Romberg L, Mets RB et al.: Targeting cell division: small-molecule inhibitors of FtsZ GTPase perturb cytokinetic ring assembly and induce bacterial lethality. Proc. Natl Acad. Sci. USA101,11821–11826 (2004).
  • 79  Paradis-Bleau C, Sanschagrin F, Levesque RC: Peptide inhibitors of the essential cell division protein FtsA. Prot. Eng. Design Select.18,85–91 (2005).
  • 80  Stokes NR, Sievers J, Barker S et al.: Novel inhibitors of bacterial cytokinesis identified by a cell-based antibiotic screening assay. J. Biol. Chem.280,39709–39715 (2005).
  • 81  Foss MH, Weibel DB: Oligochlorophens are potent inhibitors of Bacillus anthracis. Antimicrob. Agents Chemother.54,3988–3990 (2010).
  • 82  Paul SM, Mytelka DS, Dunwiddie CT et al.: How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nature Rev. Drug Discov.9,203–214 (2010).▪ Interesting review of the challenges faced by the biopharmaceutical industry in development of novel antimicrobials.
  • 83  Payne D: Approaches for tackling the challenges of antibacterial discovery. Presented at: Antibiotics 2001 – Where Now? London, UK, 20 January 2011.
  • 101  Centers for Disease Control and Prevention: Bioterrorism agents/diseases www.bt.cdc.gov/agent/agentlist-category.asp
  • 102  Health Protection Agency: Tularemia: guidelines for action in the event of a deliberate release, 6 November 2009 www.hpa.org.uk/web/HPAwebFile/HPAweb_C/1194947357555