We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Chemokine-based immunotherapy: delivery systems and combination therapies

    Elham Mohit

    Molecular Immunology & Vaccine Research Lab, Pasteur Institute of Iran, Tehran, 13164, Iran

    &
    Sima Rafati

    * Author for correspondence

    Molecular Immunology & Vaccine Research Lab, Pasteur Institute of Iran, Tehran, 13164, Iran.

    Published Online:https://doi.org/10.2217/imt.12.72

    A major role of chemokines is to mediate leukocyte migration through interaction with G-protein-coupled receptors. Various delivery systems have been developed to utilize the chemokine properties for combating disease. Viral and mutant viral vectors expressing chemokines, genetically modified dendritic cells with chemokine or chemokine receptors, engineered chemokine-expressing tumor cells and pDNA encoding chemokines are among these methods. Another approach for inducing a targeted immune response is fusion of a targeting antibody or antibody fragment to a chemokine. In addition, chemokines induce more effective antitumor immunity when used as adjuvants. In this regard, chemokines are codelivered along with antigens or fused as a targeting unit with antigenic moieties. In this review, several chemokines with their role in inducing immune response against different diseases are discussed, with a major emphasis on cancer.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Le Y, Zhou Y, Iribarren P, Wang J. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell. Mol. Immunol.1(2),95–104 (2004).
    • Slettenaar VI, Wilson JL. The chemokine network: a target in cancer biology? Adv. Drug. Deliv. Rev.58(8),962–974 (2006).
    • Flanagan K, Kaufman HL. Chemokines in tumor immunotherapy. Front. Biosci.11,1024–1030 (2006).
    • Schaerli P, Moser B. Chemokines: control of primary and memory T-cell traffic. Immunol. Res.31(1),57–74 (2005).
    • Laing KJ, Secombes CJ. Chemokines. Dev. Comp. Immunol.28(5),443–460 (2004).
    • Stewart TJ, Smyth MJ. Chemokine-chemokine receptors in cancer immunotherapy. Immunotherapy1(1),109–127 (2009).
    • Lillard JW Jr, Boyaka PN, Taub DD, McGhee JR. RANTES potentiates antigen-specific mucosal immune responses. J. Immunol.166(1),162–169 (2001).
    • Lillard JW Jr, Boyaka PN, Hedrick JA, Zlotnik A, McGhee JR. Lymphotactin acts as an innate mucosal adjuvant. J. Immunol.162(4),1959–1965 (1999).
    • Dell’Agnola C, Biragyn A. Clinical utilization of chemokines to combat cancer: the double-edged sword. Expert Rev. Vaccines6(2),267–283 (2007).
    • 10  Dhawan P, Richmond A. Role of CXCL1 in tumorigenesis of melanoma. J. Leukoc. Biol.72(1),9–18 (2002).
    • 11  Rollins BJ. Inflammatory chemokines in cancer growth and progression. Eur. J. Cancer42(6),760–767 (2006).
    • 12  Darash-Yahana M, Gillespie JW, Hewitt SM et al. The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers. PloS ONE4(8),e6695 (2009).
    • 13  Lazennec G, Richmond A. Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol. Med.16(3),133–144 (2010).
    • 14  Strieter RM, Polverini PJ, Kunkel SL et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem.270(45),27348–27357 (1995).
    • 15  Addison CL, Daniel TO, Burdick MD et al. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J. Immunol.165(9),5269–5277 (2000).
    • 16  Mach N, Dranoff G. Cytokine-secreting tumor cell vaccines. Curr. Opin Immunol.12(5),571–575 (2000).
    • 17  De Gruijl TD, Van Den Eertwegh AJ, Pinedo HM, Scheper RJ. Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol. Immunother.57(10),1569–1577 (2008).
    • 18  Moret-Tatay I, Diaz J, Marco FM, Crespo A, Alino SF. Complete tumor prevention by engineered tumor cell vaccines employing nonviral vectors. Cancer Gene Ther.10(12),887–897 (2003).
    • 19  Schadendorf D, Paschen A, Sun Y. Autologous, allogeneic tumor cells or genetically engineered cells as cancer vaccine against melanoma. Immunol. Lett.74(1),67–74 (2000).
    • 20  Gao JQ, Sugita T, Kanagawa N et al. Anti-tumor responses induced by chemokine CCL19 transfected into an ovarian carcinoma model via fiber-mutant adenovirus vector. Biol. Pharm. Bull.28(6),1066–1070 (2005).
    • 21  Gao JQ, Alexandre LS, Tsuda Y et al. Tumor-suppressive activities by chemokines introduced into OV-HM cells using fiber-mutant adenovirus vectors. Pharmazie59(3),238–239 (2004).
    • 22  Vicari AP, Ait-Yahia S, Chemin K, Mueller A, Zlotnik A, Caux C. Antitumor effects of the mouse chemokine 6Ckine/SLC through angiostatic and immunological mechanisms. J. Immunol.165(4),1992–2000 (2000).
    • 23  Vitale S, Cambien B, Karimdjee BF et al. Tissue-specific differential antitumour effect of molecular forms of fractalkine in a mouse model of metastatic colon cancer. Gut56(3),365–372 (2007).
    • 24  Wang YQ, Wada A, Ugai S, Tagawa M. Expression of the Mig (CXCL9) gene in murine lung carcinoma cells generated angiogenesis-independent antitumor effects. Oncol. Rep.10(4),909–913 (2003).
    • 25  Okada N, Gao JQ, Sasaki A et al. Anti-tumor activity of chemokine is affected by both kinds of tumors and the activation state of the host’s immune system: implications for chemokine-based cancer immunotherapy. Biochem. Biophys. Res. Commun.317(1),68–76 (2004).
    • 26  Braun SE, Chen K, Foster RG et al. The CC chemokine CK beta-11/MIP-3 beta/ELC/Exodus 3 mediates tumor rejection of murine breast cancer cells through NK cells. J. Immunol.164(8),4025–4031 (2000).
    • 27  Fioretti F, Fradelizi D, Stoppacciaro A et al. Reduced tumorigenicity and augmented leukocyte infiltration after monocyte chemotactic protein-3 (MCP-3) gene transfer: perivascular accumulation of dendritic cells in peritumoral tissue and neutrophil recruitment within the tumor. J. Immunol.161(1),342–346 (1998).
    • 28  Hu JY, Li GC, Wang WM et al. Transfection of colorectal cancer cells with chemokine MCP-3 (monocyte chemotactic protein-3) gene retards tumor growth and inhibits tumor metastasis. World J. Gastroenterol.8(6),1067–1072 (2002).
    • 29  Cairns CM, Gordon JR, Li F, Baca-Estrada ME, Moyana T, Xiang J. Lymphotactin expression by engineered myeloma cells drives tumor regression: mediation by CD4+ and CD8+ T cells and neutrophils expressing XCR1 receptor. J. Immunol.167(1),57–65 (2001).
    • 30  Rousseau RF, Haight AE, Hirschmann-Jax C et al. Local and systemic effects of an allogeneic tumor cell vaccine combining transgenic human lymphotactin with interleukin-2 in patients with advanced or refractory neuroblastoma. Blood101(5),1718–1726 (2003).
    • 31  Gao JQ, Tsuda Y, Katayama K et al. Antitumor effect by interleukin-11 receptor alpha-locus chemokine/CCL27, introduced into tumor cells through a recombinant adenovirus vector. Cancer Res.63(15),4420–4425 (2003).
    • 32  Okada N. Cell delivery system: a novel strategy to improve the efficacy of cancer immunotherapy by manipulation of immune cell trafficking and biodistribution. Biol. Pharm. Bull.28(9),1543–1550 (2005).▪ Emphasis on vaccine created by CCR7 gene transduction to manipulate immune cell trafficking and biodistribution in cancer immunotherapy.
    • 33  Janikashvili N, Larmonier N, Katsanis E. Personalized dendritic cell-based tumor immunotherapy. Immunotherapy2(1),57–68 (2010).
    • 34  Murugaiyan G, Saroj Basak S, Saha B. Dendritic cell-based immunotherapy: a promising approach for treatment of cancer. Gene Ther. Mol. Biol.9,343–358 (2005).
    • 35  Xia D, Moyana T, Xiang J. Combinational adenovirus-mediated gene therapy and dendritic cell vaccine in combating well-established tumors. Cell Res.16(3),241–259 (2006).
    • 36  Kirk CJ, Hartigan-O’connor D, Nickoloff BJ et al. T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy. Cancer Res.61(5),2062–2070 (2001).
    • 37  Matsuyoshi H, Senju S, Hirata S, Yoshitake Y, Uemura Y, Nishimura Y. Enhanced priming of antigen-specific CTLs in vivo by embryonic stem cell-derived dendritic cells expressing chemokine along with antigenic protein: application to antitumor vaccination. J. Immunol.172(2),776–786 (2004).
    • 38  Matsuyoshi H, Hirata S, Yoshitake Y et al. Therapeutic effect of alpha-galactosylceramide-loaded dendritic cells genetically engineered to express SLC/CCL21 along with tumor antigen against peritoneally disseminated tumor cells. Cancer Sci.96(12),889–896 (2005).
    • 39  Zhang W, He L, Cao X. Enhanced antitumor effects induced by lymphotactin gene-modified dendritic cells after pulsed with tumor antigen peptide. Zhonghua Yi Xue Za Zhi79(3),170–173 (1999).
    • 40  Cao X, Zhang W, He L et al. Lymphotactin gene-modified bone marrow dendritic cells act as more potent adjuvants for peptide delivery to induce specific antitumor immunity. J. Immunol.161(11),6238–6244 (1998).
    • 41  Zhang W, He L, Yuan Z et al. Enhanced therapeutic efficacy of tumor RNA-pulsed dendritic cells after genetic modification with lymphotactin. Hum. Gene Ther.10(7),1151–1161 (1999).
    • 42  Xia DJ, Zhang WP, Zheng S et al. Lymphotactin cotransfection enhances the therapeutic efficacy of dendritic cells genetically modified with melanoma antigen gp100. Gene Ther.9(9),592–601 (2002).
    • 43  Gao JQ, Okada N, Mayumi T, Nakagawa S. Immune cell recruitment and cell-based system for cancer therapy. Pharm. Res.25(4),752–768 (2008).
    • 44  Dubinett SM, Lee JM, Sharma S, Mule JJ. Chemokines: can effector cells be redirected to the site of the tumor? Cancer J.16(4),325–335 (2010).
    • 45  Terando A, Roessler B, Mule JJ. Chemokine gene modification of human dendritic cell-based tumor vaccines using a recombinant adenoviral vector. Cancer Gene Ther.11(3),165–173 (2004).
    • 46  Kamimura K, Suda T, Zhang G, Liu D. Advances in gene delivery systems. Pharmaceut. Med.25(5),293–306 (2011).
    • 47  Larocca C, Schlom J. Viral vector-based therapeutic cancer vaccines. Cancer J.17(5),359–371 (2011).
    • 48  Bolhassani A, Safaiyan S, Rafati S. Improvement of different vaccine delivery systems for cancer therapy. Mol. Cancer10,3 (2011).
    • 49  Guiducci C, Di Carlo E, Parenza M et al. Intralesional injection of adenovirus encoding CC chemokine ligand 16 inhibits mammary tumor growth and prevents metastatic-induced death after surgical removal of the treated primary tumor. J. Immunol.172(7),4026–4036 (2004).
    • 50  Hou JM, Zhao X, Tian L et al. Immunotherapy of tumors with recombinant adenovirus encoding macrophage inflammatory protein 3beta induces tumor-specific immune response in immunocompetent tumor-bearing mice. Acta Pharmacol. Sin.30(3),355–363 (2009).
    • 51  Kanagawa N, Niwa M, Hatanaka Y et al. CC-chemokine ligand 17 gene therapy induces tumor regression through augmentation of tumor-infiltrating immune cells in a murine model of preexisting CT26 colon carcinoma. Int. J. Cancer121(9),2013–2022 (2007).
    • 52  Okada N, Sasaki A, Niwa M et al. Tumor suppressive efficacy through augmentation of tumor-infiltrating immune cells by intratumoral injection of chemokine-expressing adenoviral vector. Cancer Gene Ther.13(4),393–405 (2006).
    • 53  Wetzel K, Struyf S, Van Damme J et al. MCP-3 (CCL7) delivered by parvovirus MVMp reduces tumorigenicity of mouse melanoma cells through activation of T lymphocytes and NK cells. Int. J. Cancer120(6),1364–1371 (2007).
    • 54  Giese NA, Raykov Z, Demartino L et al. Suppression of metastatic hemangiosarcoma by a parvovirus MVMp vector transducing the IP-10 chemokine into immunocompetent mice. Cancer Gene Ther.9(5),432–442 (2002).
    • 55  Flanagan K, Glover RT, Horig H, Yang W, Kaufman HL. Local delivery of recombinant vaccinia virus expressing secondary lymphoid chemokine (SLC) results in a CD4 T-cell dependent antitumor response. Vaccine22(21–22),2894–2903 (2004).
    • 56  Kutubuddin M, Federoff HJ, Challita-Eid PM et al. Eradication of pre-established lymphoma using herpes simplex virus amplicon vectors. Blood93(2),643–654 (1999).
    • 57  Shimizu Y, Inaba K, Kaneyasu K et al. A genetically engineered live-attenuated simian-human immunodeficiency virus that co-expresses the RANTES gene improves the magnitude of cellular immunity in rhesus macaques. Virology361(1),68–79 (2007).
    • 58  Villatoro-Hernandez J, Loera-Arias MJ, Gamez-Escobedo A et al. Secretion of biologically active interferon-gamma inducible protein-10 (IP-10) by Lactococcus lactis. Microb. Cell Fact.7,22 (2008).▪ Describes novel live nonpathogenic and food-grade lactic-acid bacterium for chemokine delivery.
    • 59  Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nature Rev. Immunol.6(2),148–158 (2006).
    • 60  Zavala-Flores LM, Villatoro-Hernandez J, Gamez-Escobedo A et al. Production of biologically active human lymphotactin (XCL1) by Lactococcus lactis. Biotechnol. Lett.31(2),215–220 (2009).
    • 61  Villatoro-Hernandez J, Arce-Mendoza AY, Rosas-Taraco AG et al. Murine interferon-gamma inducible protein-10 (IP-10) secreted by Lactococcus lactis chemo-attracts human CD3+ lymphocytes. Biotechnol. Lett.31(11),1795–1800 (2009).
    • 62  Cortes-Perez NG, Da Costa Medina LF, Lefevre F, Langella P, Bermudez-Humaran LG. Production of biologically active CXC chemokines by Lactococcus lactis: evaluation of its potential as a novel mucosal vaccine adjuvant. Vaccine26(46),5778–5783 (2008).
    • 63  Xiang R, Mizutani N, Luo Y et al. A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res.65(2),553–561 (2005).
    • 64  Ryan AA, Spratt JM, Britton WJ, Triccas JA. Secretion of functional monocyte chemotactic protein 3 by recombinant Mycobacterium bovis BCG attenuates vaccine virulence and maintains protective efficacy against M. tuberculosis infection. Infect. Immun.75(1),523–526 (2007).
    • 65  Lechardeur D, Lukacs GL. Intracellular barriers to non-viral gene transfer. Curr. Gene Ther.2(2),183–194 (2002).
    • 66  Nishikawa M, Huang L. Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum. Gene Ther.12(8),861–870 (2001).
    • 67  Ham AS, Cost MR, Sassi AB, Dezzutti CS, Rohan LC. Targeted delivery of PSC-RANTES for HIV-1 prevention using biodegradable nanoparticles. Pharm. Res.26(3),502–511 (2009).
    • 68  Lenter MC, Garidel P, Pelisek J, Wagner E, Ogris M. Stabilized nonviral formulations for the delivery of MCP-1 gene into cells of the vasculoendothelial system. Pharm. Res.21(4),683–691 (2004).
    • 69  Oh YK, Park JS, Yoon H, Kim CK. Enhanced mucosal and systemic immune responses to a vaginal vaccine coadministered with RANTES-expressing plasmid DNA using in situ-gelling mucoadhesive delivery system. Vaccine21(17–18),1980–1988 (2003).▪ Describes chemokine-based combinational therapy using a delivery system for induction of mucosal immunity.
    • 70  Kar UK, Srivastava MK, Andersson A et al. Novel CCL21-vault nanocapsule intratumoral delivery inhibits lung cancer growth. PloS ONE6(5),e18758 (2011).
    • 71  Narvaiza I, Mazzolini G, Barajas M et al. Intratumoral coinjection of two adenoviruses, one encoding the chemokine IFN-gamma-inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy. J. Immunol.164(6),3112–3122 (2000).
    • 72  Palmer K, Hitt M, Emtage PC, Gyorffy S, Gauldie J. Combined CXC chemokine and interleukin-12 gene transfer enhances antitumor immunity. Gene Ther.8(4),282–290 (2001).
    • 73  Gao JQ, Kanagawa N, Motomura Y et al. Cotransduction of CCL27 gene can improve the efficacy and safety of IL-12 gene therapy for cancer. Gene Ther.14(6),491–502 (2007).
    • 74  Guo JQ, Chen L, Ai HW et al. A novel fusion protein of IP10-scFv retains antibody specificity and chemokine function. Biochem. Biophys. Res. Commun.320(2),506–513 (2004).
    • 75  Weiss JM, Subleski JJ, Wigginton JM, Wiltrout RH. Immunotherapy of cancer by IL-12-based cytokine combinations. Expert Opin Biol. Ther.7(11),1705–1721 (2007).
    • 76  Kanegane C, Sgadari C, Kanegane H et al. Contribution of the CXC chemokines IP-10 and Mig to the antitumor effects of IL-12. J. Leukoc. Biol.64(3),384–392 (1998).
    • 77  Sgadari C, Angiolillo AL, Tosato G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood87(9),3877–3882 (1996).
    • 78  Car BD, Eng VM, Lipman JM, Anderson TD. The toxicology of interleukin-12: a review. Toxicol Pathol27(1),58–63 (1999).
    • 79  Nguyen-Hoai T, Baldenhofer G, Sayed Ahmed MS et al. CCL21 (SLC) improves tumor protection by a DNA vaccine in a Her2/neu mouse tumor model. Cancer Gene Ther.19(1),69–76 (2012).
    • 80  Nomura T, Hasegawa H, Kohno M, Sasaki M, Fujita S. Enhancement of anti-tumor immunity by tumor cells transfected with the secondary lymphoid tissue chemokine EBI-1-ligand chemokine and stromal cell-derived factor-1alpha chemokine genes. Int. J. Cancer91(5),597–606 (2001).
    • 81  Inoue H, Iga M, Xin M et al. TARC and RANTES enhance antitumor immunity induced by the GM-CSF-transduced tumor vaccine in a mouse tumor model. Cancer Immunol. Immunother.57(9),1399–1411 (2008).
    • 82  Sin J, Kim JJ, Pachuk C, Satishchandran C, Weiner DB. DNA vaccines encoding interleukin-8 and RANTES enhance antigen-specific Th1-type CD4(+) T-cell-mediated protective immunity against herpes simplex virus type 2 in vivo. J. Virol.74(23),11173–11180 (2000).
    • 83  Huang H, Xiang J. Synergistic effect of lymphotactin and interferon gamma-inducible protein-10 transgene expression in T-cell localization and adoptive T-cell therapy of tumors. Int. J. Cancer109(6),817–825 (2004).
    • 84  Tominaga M, Iwashita Y, Ohta M et al. Antitumor effects of the MIG and IP-10 genes transferred with poly [D,L-2,4-diaminobutyric acid] on murine neuroblastoma. Cancer Gene Ther.14(8),696–705 (2007).▪▪ Explains the combination of chemokine and delivery system to enhance antitumor effects.
    • 85  Zhang R, Tian L, Chen LJ et al. Combination of MIG (CXCL9) chemokine gene therapy with low-dose cisplatin improves therapeutic efficacy against murine carcinoma. Gene Ther.13(17),1263–1271 (2006).
    • 86  Li G, Tian L, Hou JM et al. Improved therapeutic effectiveness by combining recombinant CXC chemokine ligand 10 with cisplatin in solid tumors. Clin. Cancer Res.11(11),4217–4224 (2005).
    • 87  Mei K, Wang L, Tian L, Yu J, Zhang Z, Wei Y. Antitumor efficacy of combination of interferon-gamma-inducible protein 10 gene with gemcitabine, a study in murine model. J. Exp. Clin. Cancer Res.27,63 (2008).
    • 88  Tsuchiyama T, Nakamoto Y, Sakai Y et al. Prolonged, NK cell-mediated antitumor effects of suicide gene therapy combined with monocyte chemoattractant protein-1 against hepatocellular carcinoma. J. Immunol.178(1),574–583 (2007).
    • 89  Chen P, Yang LL, Yang HS et al. Synergistic antitumor effect of CXCL10 with hyperthermia. J. Cancer Res. Clin. Oncol.134(6),679–687 (2008).
    • 90  Yoon HA, Eo SK. Differential polarization of immune responses by genetic cotransfer of chemokines changes the protective immunity of DNA vaccine against pseudorabies virus. Immunology120(2),182–191 (2007).
    • 91  Westermann J, Nguyen-Hoai T, Baldenhofer G et al. CCL19 (ELC) as an adjuvant for DNA vaccination: induction of a Th1-type T-cell response and enhancement of antitumor immunity. Cancer Gene Ther.14(6),523–532 (2007).
    • 92  Lietz R, Bayer W, Ontikatze T et al. Co-delivery of the chemokine CCL3 by an adenovirus-based vaccine improves protection from retrovirus infection. J. Virol.86(3),1706–1716 (2011).
    • 93  Fredriksen AB, Bogen B. Chemokine-idiotype fusion DNA vaccines are potentiated by bivalency and xenogeneic sequences. Blood110(6),1797–1805 (2007).
    • 94  Ruffini PA, Grodeland G, Fredriksen AB, Bogen B. Human chemokine MIP1alpha increases efficiency of targeted DNA fusion vaccines. Vaccine29(2),191–199 (2010).
    • 95  Aravindaram K, Yu HH, Lan CW et al. Transgenic expression of human gp100 and RANTES at specific time points for suppression of melanoma. Gene Ther.16(11),1329–1339 (2009).
    • 96  Kim SJ, Lee C, Lee SY et al. Enhanced immunogenicity of human papillomavirus 16 L1 genetic vaccines fused to an ER-targeting secretory signal peptide and RANTES. Gene Ther.10(15),1268–1273 (2003).
    • 97  Kim SJ, Suh D, Park SE et al. Enhanced immunogenicity of DNA fusion vaccine encoding secreted hepatitis B surface antigen and chemokine RANTES. Virology314(1),84–91 (2003).
    • 98  Williman J, Young S, Buchan G et al. DNA fusion vaccines incorporating IL-23 or RANTES for use in immunization against influenza. Vaccine26(40),5153–5158 (2008).
    • 99  Biragyn A, Belyakov IM, Chow YH, Dimitrov DS, Berzofsky JA, Kwak LW. DNA vaccines encoding human immunodeficiency virus-1 glycoprotein 120 fusions with proinflammatory chemoattractants induce systemic and mucosal immune responses. Blood100(4),1153–1159 (2002).
    • 100  Qin H, Nehete PN, He H et al. Prime-boost vaccination using chemokine-fused gp120 DNA and HIV envelope peptides activates both immediate and long-term memory cellular responses in rhesus macaques. J. Biomed. Biotechnol.2010,860160 (2010).
    • 101  Biragyn A, Tani K, Grimm MC, Weeks S, Kwak LW. Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat. Biotechnol.17(3),253–258 (1999).
    • 102  Kang TH, Kim KW, Bae HC, Seong SY, Kim TW. Enhancement of DNA vaccine potency by antigen linkage to IFN-gamma-inducible protein-10. Int. J. Cancer128(3),702–714 (2011).▪ Original article describing the use of IP-10 for enhancing herpes simplex virus therapeutic vaccine.
    • 103  Challita-Eid PM, Abboud CN, Morrison SL et al. A RANTES-antibody fusion protein retains antigen specificity and chemokine function. J. Immunol.161(7),3729–3736 (1998).
    • 104  Li J, Hu P, Khawli LA, Epstein AL. LEC/chTNT-3 fusion protein for the immunotherapy of experimental solid tumors. J. Immunother.26(4),320–331 (2003).
    • 105  Liu R, Zhou C, Wang D et al. Enhancement of DNA vaccine potency by sandwiching antigen-coding gene between secondary lymphoid tissue chemokine (SLC) and IgG Fc fragment genes. Cancer Biol. Ther.5(4),427–434 (2006).
    • 106  Qin H, Zhou C, Wang D et al. Enhancement of antitumour immunity by a novel chemotactic antigen DNA vaccine encoding chemokines and multiepitopes of prostate-tumour-associated antigens. Immunology117(3),419–430 (2006).
    • 107  Lavergne E, Combadiere C, Iga M et al. Intratumoral CC chemokine ligand 5 overexpression delays tumor growth and increases tumor cell infiltration. J. Immunol.173(6),3755–3762 (2004).
    • 108  Dorgham K, Abadie V, Iga M, Hartley O, Gorochov G, Combadiere B. Engineered CCR5 superagonist chemokine as adjuvant in anti-tumor DNA vaccination. Vaccine26(26),3252–3260 (2008).
    • 109  Iga M, Boissonnas A, Mahe B, Bonduelle O, Combadiere C, Combadiere B. Single CX3CL1-Ig DNA administration enhances T cell priming in vivo. Vaccine25(23),4554–4563 (2007).
    • 110  Khawli LA, Hu P, Epstein AL. Cytokine, chemokine, and co-stimulatory fusion proteins for the immunotherapy of solid tumors. Handb. Exp. Pharmacol. (181),291–328 (2008).
    • 111  Jia Y, Li H, Chen W et al. Prevention of murine experimental autoimmune encephalomyelitis by in vivo expression of a novel recombinant immunotoxin DT390-RANTES. Gene Ther.13(18),1351–1359 (2006).
    • 112  Chen W, Li H, Jia Y et al.In vivo administration of plasmid DNA encoding recombinant immunotoxin DT390-IP-10 attenuates experimental autoimmune encephalomyelitis. J. Autoimmun.28(1),30–40 (2007).
    • 113  Kuroda T, Kitadai Y, Tanaka S et al. Monocyte chemoattractant protein-1 transfection induces angiogenesis and tumorigenesis of gastric carcinoma in nude mice via macrophage recruitment. Clin. Cancer Res.11(21),7629–7636 (2005).
    • 114  Nagai M, Masuzawa T. Vaccination with MCP-1 cDNA transfectant on human malignant glioma in nude mice induces migration of monocytes and NK cells to the tumor. Int. Immunopharmacol.1(4),657–664 (2001).
    • 115  Nishioka Y, Yano S, Fujiki F et al. Combined therapy of multidrug-resistant human lung cancer with anti-P-glycoprotein antibody and monocyte chemoattractant protein-1 gene transduction: the possibility of immunological overcoming of multidrug resistance. Int. J. Cancer71(2),170–177 (1997).
    • 116  Parker JN, Meleth S, Hughes KB, Gillespie GY, Whitley RJ, Markert JM. Enhanced inhibition of syngeneic murine tumors by combinatorial therapy with genetically engineered HSV-1 expressing CCL2 and IL-12. Cancer Gene Ther.12(4),359–368 (2005).
    • 117  Nakashima E, Mukaida N, Kubota Y et al. Human MCAF gene transfer enhances the metastatic capacity of a mouse cachectic adenocarcinoma cell line in vivo. Pharm. Res.12(11),1598–1604 (1995).
    • 118  Lu Y, Xin KQ, Hamajima K et al. Macrophage inflammatory protein-1alpha (MIP-1alpha) expression plasmid enhances DNA vaccine-induced immune response against HIV-1. Clin. Exp. Immunol.115(2),335–341 (1999).
    • 119  Youssef S, Wildbaum G, Maor G et al. Long-lasting protective immunity to experimental autoimmune encephalomyelitis following vaccination with naked DNA encoding C-C chemokines. J. Immunol.161(8),3870–3879 (1998).
    • 120  Youssef S, Wildbaum G, Karin N. Prevention of experimental autoimmune encephalomyelitis by MIP-1alpha and MCP-1 naked DNA vaccines. J. Autoimmun.13(1),21–29 (1999).
    • 121  Bhattacharyya S, Ghosh S, Dasgupta B, Mazumder D, Roy S, Majumdar S. Chemokine-induced leishmanicidal activity in murine macrophages via the generation of nitric oxide. J. Infect. Dis.185(12),1704–1708 (2002).
    • 122  Brandonisio O, Panaro MA, Fumarola I et al. Macrophage chemotactic protein-1 and macrophage inflammatory protein-1 alpha induce nitric oxide release and enhance parasite killing in Leishmania infantum-infected human macrophages. Clin. Exp. Med.2(3),125–129 (2002).
    • 123  Lapteva N, Huang XF. CCL5 as an adjuvant for cancer immunotherapy. Expert Opin Biol. Ther.10(5),725–733 (2010).▪▪ Comprehensive review of CCL5 that highlights its dual role in cancer development.
    • 124  Song S, Liu C, Wang J et al. Vaccination with combination of Fit3L and RANTES in a DNA prime–protein boost regimen elicits strong cell-mediated immunity and antitumor effect. Vaccine27(7),1111–1118 (2009).
    • 125  Lapteva N, Aldrich M, Weksberg D et al. Targeting the intratumoral dendritic cells by the oncolytic adenoviral vaccine expressing RANTES elicits potent antitumor immunity. J. Immunother.32(2),145–156 (2009).
    • 126  Manes S, Mira E, Colomer R et al. CCR5 expression influences the progression of human breast cancer in a p53-dependent manner. J. Exp. Med198(9),1381–1389 (2003).
    • 127  Xin KQ, Lu Y, Hamajima K et al. Immunization of RANTES expression plasmid with a DNA vaccine enhances HIV-1-specific immunity. Clin. Immunol.92(1),90–96 (1999).
    • 128  Frauenschuh A, Devico AL, Lim SP, Gallo RC, Garzino-Demo A. Differential polarization of immune responses by co-administration of antigens with chemokines. Vaccine23(4),546–554 (2004).
    • 129  Ma K, Xu W, Shao X et al. Coimmunization with RANTES plasmid polarized Th1 immune response against hepatitis B virus envelope via recruitment of dendritic cells. Antiviral Res.76(2),140–149 (2007).
    • 130  Villalta F, Zhang Y, Bibb KE, Kappes JC, Lima MF. The cysteine-cysteine family of chemokines RANTES, MIP-1alpha, and MIP-1beta induce trypanocidal activity in human macrophages via nitric oxide. Infect. Immun.66(10),4690–4695 (1998).
    • 131  Wetzel K, Menten P, Opdenakker G et al. Transduction of human MCP-3 by a parvoviral vector induces leukocyte infiltration and reduces growth of human cervical carcinoma cell xenografts. J. Gene Med.3(4),326–337 (2001).
    • 132  Giovarelli M, Cappello P, Forni G et al. Tumor rejection and immune memory elicited by locally released LEC chemokine are associated with an impressive recruitment of APCs, lymphocytes, and granulocytes. J. Immunol.164(6),3200–3206 (2000).
    • 133  Musiani P, Modesti A, Giovarelli M et al. Cytokines, tumour-cell death and immunogenicity: a question of choice. Immunol. Today18(1),32–36 (1997).
    • 134  Hornick JL, Sharifi J, Khawli LA et al. A new chemically modified chimeric TNT-3 monoclonal antibody directed against DNA for the radioimmunotherapy of solid tumors. Cancer Biother. Radiopharm.13(4),255–268 (1998).
    • 135  Li J, Hu P, Khawli LA, Epstein AL. Complete regression of experimental solid tumors by combination LEC/chTNT-3 immunotherapy and CD25(+) T-cell depletion. Cancer Res.63(23),8384–8392 (2003).
    • 136  Hillinger S, Yang SC, Zhu L et al. EBV-induced molecule 1 ligand chemokine (ELC/CCL19) promotes IFN-gamma-dependent antitumor responses in a lung cancer model. J. Immunol.171(12),6457–6465 (2003).
    • 137  Han YW, Aleyas AG, George JA et al. Genetic co-transfer of CCR7 ligands enhances immunity and prolongs survival against virulent challenge of pseudorabies virus. Immunol. Cell Biol.87(1),91–99 (2009).
    • 138  Mandai M, Hamanishi J, Abiko K et al. Suppression of metastatic murine ovarian cancer cells by transduced embryonic progenitor cells. Horm. Cancer1(6),291–296 (2010).
    • 139  Baba M, Imai T, Nishimura M et al. Identification of CCR6, the specific receptor for a novel lymphocyte-directed CC chemokine LARC. J. Biol. Chem.272(23),14893–14898 (1997).
    • 140  Guo JH, Fan MW, Sun JH, Jia R. Fusion of antigen to chemokine CCL20 or CXCL13 strategy to enhance DNA vaccine potency. Int. Immunopharmacol.9(7–8),925–930 (2009).
    • 141  He S, Wang L, Wu Y, Li D, Zhang Y. CCL3 and CCL20-recruited dendritic cells modified by melanoma antigen gene-1 induce anti-tumor immunity against gastric cancer ex vivo and in vivo. J. Exp. Clin. Cancer Res.29,37 (2010).
    • 142  Liang CM, Zhong CP, Sun RX et al. Local expression of secondary lymphoid tissue chemokine delivered by adeno-associated virus within the tumor bed stimulates strong anti-liver tumor immunity. J. Virol.81(17),9502–9511 (2007).
    • 143  Wu S, Lu X, Zhang ZL et al. CC chemokine ligand 21 enhances the immunogenicity of the breast cancer cell line MCF-7 upon assistance of TLR2. Carcinogenesis32(3),296–304 (2011).
    • 144  Flanagan K, Moroziewicz D, Kwak H, Horig H, Kaufman HL. The lymphoid chemokine CCL21 costimulates naive T cell expansion and Th1 polarization of non-regulatory CD4+ T cells. Cell. Immunol.231(1–2),75–84 (2004).
    • 145  Sharma S, Yang SC, Hillinger S et al. SLC/CCL21-mediated anti-tumor responses require IFNgamma, MIG/CXCL9 and IP-10/CXCL10. Mol. Cancer2,22 (2003).
    • 146  Yamano T, Kaneda Y, Hiramatsu SH et al. Immunity against breast cancer by TERT DNA vaccine primed with chemokine CCL21. Cancer Gene Ther.14(5),451–459 (2007).
    • 147  Yamano T, Kaneda Y, Huang S, Hiramatsu SH, Hoon DS. Enhancement of immunity by a DNA melanoma vaccine against TRP2 with CCL21 as an adjuvant. Mol. Ther.13(1),194–202 (2006).
    • 148  Nomura T, Hasegawa H. Chemokines and anti-cancer immunotherapy: anti-tumor effect of EBI1-ligand chemokine (ELC) and secondary lymphoid tissue chemokine (SLC). Anticancer Res.20(6A),4073–4080 (2000).
    • 149  Li N, Qin H, Li X et al. Potent systemic antitumor immunity induced by vaccination with chemotactic-prostate tumor associated antigen gene-modified tumor cell and blockade of B7-H1. J. Clin. Immunol.27(1),117–130 (2007).
    • 150  Oh SM, Oh K, Lee DS. Intratumoral administration of secondary lymphoid chemokine and unmethylated cytosine-phosphorothioate-guanine oligodeoxynucleotide synergistically inhibits tumor growth in vivo. J. Korean Med. Sci.26(10),1270–1276 (2011).
    • 151  Warren P, Song W, Holle E et al. Combined HSV-TK/GCV and secondary lymphoid tissue chemokine gene therapy inhibits tumor growth and elicits potent antitumor CTL response in tumor-bearing mice. Anticancer Res.22(2A),599–604 (2002).
    • 152  Tolba KA, Bowers WJ, Muller J et al. Herpes simplex virus (HSV) amplicon-mediated codelivery of secondary lymphoid tissue chemokine and CD40L results in augmented antitumor activity. Cancer Res.62(22),6545–6551 (2002).
    • 153  Hisada M, Yoshimoto T, Kamiya S et al. Synergistic antitumor effect by coexpression of chemokine CCL21/SLC and costimulatory molecule LIGHT. Cancer Gene Ther.11(4),280–288 (2004).
    • 154  Kirk CJ, Hartigan-O’connor D, Mule JJ. The dynamics of the T-cell antitumor response: chemokine-secreting dendritic cells can prime tumor-reactive T cells extranodally. Cancer Res.61(24),8794–8802 (2001).
    • 155  Yang SC, Hillinger S, Riedl K et al. Intratumoral administration of dendritic cells overexpressing CCL21 generates systemic antitumor responses and confers tumor immunity. Clin. Cancer Res.10(8),2891–2901 (2004).
    • 156  Yang SC, Batra RK, Hillinger S et al. Intrapulmonary administration of CCL21 gene-modified dendritic cells reduces tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Cancer Res.66(6),3205–3213 (2006).
    • 157  Baratelli F, Takedatsu H, Hazra S et al. Pre-clinical characterization of GMP grade CCL21-gene modified dendritic cells for application in a Phase I trial in non-small cell lung cancer. J. Transl Med.6,38 (2008).
    • 158  Okada N, Mori N, Koretomo R et al. Augmentation of the migratory ability of DC-based vaccine into regional lymph nodes by efficient CCR7 gene transduction. Gene Ther.12(2),129–139 (2005).
    • 159  Sharma S, Stolina M, Luo J et al. Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J. Immunol.164(9),4558–4563 (2000).
    • 160  Eo SK, Kumaraguru U, Rouse BT. Plasmid DNA encoding CCR7 ligands compensate for dysfunctional CD8+ T cell responses by effects on dendritic cells. J. Immunol.167(7),3592–3599 (2001).
    • 161  Lee Y, Eo SK, Rouse RJ, Rouse BT. Influence of CCR7 ligand DNA preexposure on the magnitude and duration of immunity. Virology312(1),169–180 (2003).
    • 162  Eo SK, Lee S, Kumaraguru U, Rouse BT. Immunopotentiation of DNA vaccine against herpes simplex virus via co-delivery of plasmid DNA expressing CCR7 ligands. Vaccine19(32),4685–4693 (2001).
    • 163  Vulcano M, Albanesi C, Stoppacciaro A et al. Dendritic cells as a major source of macrophage-derived chemokine/CCL22 in vitro and in vivo. Eur. J. Immunol.31(3),812–822 (2001).
    • 164  Lee JM, Merritt RE, Mahtabifard A et al. Intratumoral expression of macrophage-derived chemokine induces CD4+ T cell-independent antitumor immunity in mice. J. Immunother.26(2),117–129 (2003).
    • 165  Guo J, Wang B, Zhang M et al. Macrophage-derived chemokine gene transfer results in tumor regression in murine lung carcinoma model through efficient induction of antitumor immunity. Gene Ther.9(12),793–803 (2002).
    • 166  Morales J, Homey B, Vicari AP et al. CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc. Natl Acad. Sci. USA96(25),14470–14475 (1999).
    • 167  Kutzler MA, Kraynyak KA, Nagle SJ et al. Plasmids encoding the mucosal chemokines CCL27 and CCL28 are effective adjuvants in eliciting antigen-specific immunity in vivo. Gene Ther.17(1),72–82 (2010).
    • 168  Kraynyak KA, Kutzler MA, Cisper NJ et al. Systemic immunization with CCL27/CTACK modulates immune responses at mucosal sites in mice and macaques. Vaccine28(8),1942–1951 (2010).
    • 169  Whiting D, Hsieh G, Yun JJ et al. Chemokine monokine induced by IFN-gamma/CXC chemokine ligand 9 stimulates T lymphocyte proliferation and effector cytokine production. J. Immunol.172(12),7417–7424 (2004).
    • 170  Sgadari C, Farber JM, Angiolillo AL et al. Mig, the monokine induced by interferon-gamma, promotes tumor necrosis in vivo. Blood89(8),2635–2643 (1997).
    • 171  Addison CL, Arenberg DA, Morris SB et al. The CXC chemokine, monokine induced by interferon-gamma, inhibits non-small cell lung carcinoma tumor growth and metastasis. Hum. Gene Ther.11(2),247–261 (2000).
    • 172  Xiang R, Lode HN, Dolman CS et al. Elimination of established murine colon carcinoma metastases by antibody-interleukin 2 fusion protein therapy. Cancer Res.57(21),4948–4955 (1997).
    • 173  Ruehlmann JM, Xiang R, Niethammer AG et al.MIG (CXCL9) chemokine gene therapy combines with antibody-cytokine fusion protein to suppress growth and dissemination of murine colon carcinoma. Cancer Res.61(23),8498–8503 (2001).
    • 174  Yang X, Chu Y, Wang Y, Zhang R, Xiong S. Targeted in vivo expression of IFN-gamma-inducible protein 10 induces specific antitumor activity. J. Leukoc. Biol.80(6),1434–1444 (2006).
    • 175  Feldman ED, Weinreich DM, Carroll NM et al. Interferon gamma-inducible protein 10 selectively inhibits proliferation and induces apoptosis in endothelial cells. Ann. Surg. Oncol.13(1),125–133 (2006).
    • 176  Bodnar RJ, Yates CC, Wells A. IP-10 blocks vascular endothelial growth factor-induced endothelial cell motility and tube formation via inhibition of calpain. Circ. Res.98(5),617–625 (2006).
    • 177  Keyser J, Schultz J, Ladell K et al. IP-10-encoding plasmid DNA therapy exhibits anti-tumor and anti-metastatic efficiency. Exp. Dermatol.13(6),380–390 (2004).
    • 178  Arenberg DA, Kunkel SL, Polverini PJ et al. Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J. Exp. Med184(3),981–992 (1996).
    • 179  Sgadari C, Angiolillo AL, Cherney BW et al. Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo. Proc. Natl Acad. Sci. USA93(24),13791–13796 (1996).
    • 180  Iwashita Y, Ogawa T, Goto S, Nakanishi M, Goto T, Kitano S. Effective transfer of interleukin-12 gene to solid tumors using a novel gene delivery system, poly [D,L-2,4-diaminobutyric acid]. Cancer Gene Ther.11(2),103–108 (2004).
    • 181  Alexis F, Lo S, Wang S. Covalent attachment of low molecular weight poly(ethyleneimine) improves Tat peptide mediated gene delivery. Adv. Mater.18(16),2174–2178 (2006).
    • 182  Bolhassani A, Ghasemi N, Servis C, Taghikhani M, Rafati S. The efficiency of a novel delivery system (PEI600-Tat) in development of potent DNA vaccine using HPV16 E7 as a model antigen. Drug. Deliv.16(4),196–204 (2009).
    • 183  Lu XL, Jiang XB, Liu RE, Zhang SM. The enhanced anti-angiogenic and antitumor effects of combining flk1-based DNA vaccine and IP-10. Vaccine26(42),5352–5357 (2008).
    • 184  Jiang XB, Lu XL, Hu P, Liu RE. Improved therapeutic efficacy using vaccination with glioma lysate-pulsed dendritic cells combined with IP-10 in murine glioma. Vaccine27(44),6210–6216 (2009).
    • 185  Guo JQ, Li QM, Zhou JY et al. Efficient recovery of the functional IP10-scFv fusion protein from inclusion bodies with an on-column refolding system. Protein Expr. Purif.45(1),168–174 (2006).
    • 186  Zeng X, Moore TA, Newstead MW, Deng JC, Lukacs NW, Standiford TJ. IP-10 mediates selective mononuclear cell accumulation and activation in response to intrapulmonary transgenic expression and during adenovirus-induced pulmonary inflammation. J. Interferon Cytokine Res.25(2),103–112 (2005).
    • 187  Rodriguez MM, Ryu SM, Qian C et al. Immunotherapy of murine hepatocellular carcinoma by alpha-fetoprotein DNA vaccination combined with adenovirus-mediated chemokine and cytokine expression. Hum. Gene Ther.19(7),753–759 (2008).
    • 188  Liu Y, Huang H, Saxena A, Xiang J. Intratumoral coinjection of two adenoviral vectors expressing functional interleukin-18 and inducible protein-10, respectively, synergizes to facilitate regression of established tumors. Cancer Gene Ther.9(6),533–542 (2002).
    • 189  Huang H, Liu Y, Xiang J. Synergistic effect of adoptive T-cell therapy and intratumoral interferon gamma-inducible protein-10 transgene expression in treatment of established tumors. Cell. Immunol.217(1–2),12–22 (2002).
    • 190  Enderlin M, Kleinmann EV, Struyf S et al. TNF-alpha and the IFN-gamma-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Ther.16(2),149–160 (2009).
    • 191  Krathwohl MD, Anderson JL. Chemokine CXCL10 (IP-10) is sufficient to trigger an immune response to injected antigens in a mouse model. Vaccine24(15),2987–2993 (2006).
    • 192  Zeng X, Moore TA, Newstead MW et al. Interferon-inducible protein 10, but not monokine induced by gamma interferon, promotes protective type 1 immunity in murine Klebsiella pneumoniae pneumonia. Infect. Immun.73(12),8226–8236 (2005).
    • 193  Wiley R, Palmer K, Gajewska B et al. Expression of the Th1 chemokine IFN-gamma-inducible protein 10 in the airway alters mucosal allergic sensitization in mice. J. Immunol.166(4),2750–2759 (2001).
    • 194  Vasquez RE, Soong L. CXCL10/gamma interferon-inducible protein 10-mediated protection against Leishmania amazonensis infection in mice. Infect. Immun.74(12),6769–6777 (2006).
    • 195  Muller K, Van Zandbergen G, Hansen B et al. Chemokines, natural killer cells and granulocytes in the early course of Leishmania major infection in mice. Med. Microbiol. Immunol.190(1–2),73–76 (2001).
    • 196  Vasquez RE, Xin L, Soong L. Effects of CXCL10 on dendritic cell and CD4+ T-cell functions during Leishmania amazonensis infection. Infect. Immun.76(1),161–169 (2008).
    • 197  Breton M, Tremblay MJ, Ouellette M, Papadopoulou B. Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis. Infect. Immun.73(10),6372–6382 (2005).
    • 198  Mizbani A, Taheri T, Zahedifard F et al. Recombinant Leishmania tarentolae expressing the A2 virulence gene as a novel candidate vaccine against visceral leishmaniasis. Vaccine28(1),53–62 (2009).▪ Ellucidates Leishmania tarentolae as a live vaccine vector.
    • 199  Breton M, Zhao C, Ouellette M, Tremblay MJ, Papadopoulou B. A recombinant non-pathogenic Leishmania vaccine expressing human immunodeficiency virus 1 (HIV-1) Gag elicits cell-mediated immunity in mice and decreases HIV-1 replication in human tonsillar tissue following exposure to HIV-1 infection. J Gen Virol88(Pt 1),217–225 (2007).▪ Elucidates L. tarentolae as a live vaccine vector for expressing non-Leishmania gene.
    • 200  Huang H, Li F, Cairns CM, Gordon JR, Xiang J. Neutrophils and B cells express XCR1 receptor and chemotactically respond to lymphotactin. Biochem. Biophys. Res. Commun.281(2),378–382 (2001).
    • 201  Huang H, Li F, Gordon JR, Xiang J. Synergistic enhancement of antitumor immunity with adoptively transferred tumor-specific CD4+ and CD8+ T cells and intratumoral lymphotactin transgene expression. Cancer Res.62(7),2043–2051 (2002).
    • 202  Huang H, Bi XG, Yuan JY, Xu SL, Guo XL, Xiang J. Combined CD4+ Th1 effect and lymphotactin transgene expression enhance CD8+ Tc1 tumor localization and therapy. Gene Ther.12(12),999–1010 (2005).
    • 203  Dilloo D, Bacon K, Holden W et al. Combined chemokine and cytokine gene transfer enhances antitumor immunity. Nat. Med.2(10),1090–1095 (1996).
    • 204  Emtage PC, Wan Y, Hitt M et al. Adenoviral vectors expressing lymphotactin and interleukin 2 or lymphotactin and interleukin 12 synergize to fo facilitate tumor regression in murine breast cancer models. Hum. Gene Ther.10(5),697–709 (1999).
    • 205  Russell HV, Strother D, Mei Z et al. Phase I trial of vaccination with autologous neuroblastoma tumor cells genetically modified to secrete IL-2 and lymphotactin. J. Immunother.30(2),227–233 (2007).▪ Describes one of the clinical trials that used chemokine-based immunotherapy.
    • 206  Hundhausen C, Misztela D, Berkhout TA et al. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood102(4),1186–1195 (2003).
    • 207  Zeng Y HN, Fest S, Weixler S et al. Fractalkine (CX3CL1)- and interleukin-2-enriched neuroblastoma microenvironment induces eradication of metastases mediated by T cells and natural killer cells. Cancer Res.67(5),2331–2338 (2007).
    • 208  Lavergne E, Combadiere B, Bonduelle O et al. Fractalkine mediates natural killer-dependent antitumor responses in vivo. Cancer Res.63(21),7468–7474 (2003).
    • 209  Guo J, Chen T, Wang B et al. Chemoattraction, adhesion and activation of natural killer cells are involved in the antitumor immune response induced by fractalkine/CX3CL1. Immunol. Lett.89(1),1–7 (2003).
    • 210  Lode HN, Xiang R, Varki NM, Dolman CS, Gillies SD, Reisfeld RA. Targeted interleukin-2 therapy for spontaneous neuroblastoma metastases to bone marrow. J. Natl Cancer Inst.89(21),1586–1594 (1997).
    • 211  Zeng Y, Jiang J, Huebener N et al. Fractalkine gene therapy for neuroblastoma is more effective in combination with targeted IL-2. Cancer Lett.228(1–2),187–193 (2005).
    • 212  Gao JQ, Kanagawa N, Xu DH et al. Combination of two fiber-mutant adenovirus vectors, one encoding the chemokine FKN and another encoding cytokine interleukin 12, elicits notably enhanced anti-tumor responses. Cancer Immunol. Immunother.57(11),1657–1664 (2008).
    • 213  Nukiwa M, Andarini S, Zaini J et al. Dendritic cells modified to express fractalkine/CX3CL1 in the treatment of preexisting tumors. Eur. J. Immunol.36(4),1019–1027 (2006).