We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Corpus callosum in aging and neurodegenerative diseases

    Kristian Steen Frederiksen

    * Author for correspondence

    Memory Disorders Research Group, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.

    &
    Gunhild Waldemar

    Memory Disorders Research Group, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark

    Published Online:https://doi.org/10.2217/nmt.12.52

    SUMMARY The corpus callosum (CC) is a major white matter bundle that connects primarily homologous areas of the cortex. The structure may be involved in interhemispheric communication and enable the lateralization of certain cerebral functions. Despite its possible role as the main conduit for interhemispheric communication, interest from researchers has, at times, been sparse. Renewed interest has led to research that has shown that the CC may play a role in both cognitive aging and neurodegenerative diseases including Alzheimer´s disease and frontotemporal dementia. Studies employing structural MRI and diffusion-weighted MRI have found distinct subregional patterns of callosal atrophy in aging, Alzheimer´s disease and frontotemporal dementia. Furthermore, imaging studies may help to elucidate the underlying pathological mechanisms of callosal atrophy. The present review aims to provide an overview of the current knowledge of the structure and function of the CC and its role in aging and neurodegenerative disease.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Tomasch J. Size, distribution, and number of fibers in the human corpus callosum. Anat. Rec.119,119–135 (1954).
    • Di Paola M, Di Iulio F, Cherubini A et al. When, where, and how the corpus callosum changes in MCI and AD: a multimodal MRI study. Neurology74(14),1136–1142 (2010).▪ Large review of results from MRI studies on the corpus callosum (CC) in patients with Alzheimer’s disease.
    • Teipel S, Bayer W, Alexander G et al. Regional pattern of hippocampus and corpus callosum atrophy in Alzheimer’s disease in relation to dementia severity: evidence for early neocortical degeneration. Neurobiol. Aging24(1),85–94 (2003).
    • Frederiksen KS, Garde E, Skimminge A et al. Corpus callosum tissue loss and development of motor and global cognitive impairment: the LADIS study. Dement. Geriatr. Cogn. Disord.32(4),279–286 (2011).
    • Yamauchi H, Fukuyama H, Nagahama Y et al. Comparison of the pattern of atrophy of the corpus callosum in frontotemporal dementia, progressive supranuclear palsy, and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry69(1),623–629 (2000).
    • Di Paola M, Luders E, Cherubini A et al. Multimodal MRI analysis of the corpus callosum reveals white matter differences in presymptomatic and early Huntington’s disease. Cereb. Cortex doi:10.1093/cercor/bhr360 (2012) (Epub ahead of print).
    • Mitelman SA, Nikiforova YK, Canfield EL et al. A longitudinal study of the corpus callosum in chronic schizophrenia. Schizophr. Res.114(1–3),144–153 (2009).
    • Bloom JS, Hynd GW. The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition? Neuropsychol. Rev.15(2),59–71 (2005).▪ Excitatory and inhibitory models of the CC.
    • Gazzaniga MS. Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain123,1293–1326 (2000).▪ Review of the research in split-brain patients by one of the pioneers within the field.
    • 10  Voneida TJ. Roger Wolcott Sperry, 20 August 1913–1917 April 1994. Biogr. Mem. Fellows R. Soc.43,461–470 (1997).
    • 11  Fame RM, Macdonald JL, Macklis JD. Development, specification, and diversity of callosal projection neurons. Trends Neurosci.34(1),41–50 (2011).
    • 12  Aboitiz F, Scheibel AB, Fisher RS, Zaidel E. Fiber composition of the human corpus callosum. Science598(1–2),143–153 (1992).▪▪ Often-cited work on the fiber composition of the human CC.
    • 13  Aboitiz F, Scheibel AB, Fisher S, Zaidel E. Individual differences in brain asymmetries and fiber composition in the human corpus callosum. Brain598(1–2),154–161 (1992).
    • 14  Tate DF, Sampat M, Harezlak J et al. Regional areas and widths of the midsagittal corpus callosum among HIV-infected patients on stable antiretroviral therapies. J. Neurovirol.17(4),368–379 (2011).
    • 15  Hallam BJ, Brown WS, Ross C et al. Regional atrophy of the corpus callosum in dementia. J. Int. Neuropsychol. Soc.14(3),414–423 (2008).
    • 16  Thomann P, Wustenberg T, Pantel J, Essig M, Schroder J. Structural changes of the corpus callosum in mild cognitive impairment and Alzheimer’s disease. Dement. Geriatr. Cogn. Disord.21(4),215–220 (2006).
    • 17  Chaim TM, Duran FLS, Uchida RR, Périco CM, de Castro CC, Busatto GF. Volumetric reduction of the corpus callosum in Alzheimer’s disease in vivo as assessed with voxel-based morphometry. Psychiatry Res.154(1),59–68 (2007).
    • 18  Di Paola M, Luders E, Di Iulio F et al. Callosal atrophy in mild cognitive impairment and Alzheimer’s disease: different effects in different stages. Neuroimage49(1),141–149 (2010).
    • 19  Witelson SF. Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain112(Pt 3),799–835 (1989).
    • 20  Ryberg C, Rostrup E, Stegmann MB et al. Clinical significance of corpus callosum atrophy in a mixed elderly population. Neurobiol. Aging28(6),955–963 (2007).
    • 21  Wilson CJ. Morphology and synaptic connections of crossed corticostriatal neurons in the rat. J. Comp. Neurol.263(4),567–580 (1987).
    • 22  Jarbo K, Verstynen T, Schneider W. In vivo quantification of global connectivity in the human corpus callosum. Neuroimage59(3),1988–1996 (2012).
    • 23  Huang H, Zhang J, Jiang H et al. DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum. Neuroimage26(1),195–205 (2005).
    • 24  Cook ND. Homotopic callosal inhibition. Brain Lang.23(2),116–125 (1984).
    • 25  Westerhausen R, Kreuder F, Woerner W et al. Interhemispheric transfer time and structural properties of the corpus callosum. Neurosci. Lett.409(2),140–145 (2006).
    • 26  Voineskos AN, Farzan F, Barr MS et al. The role of the corpus callosum in transcranial magnetic stimulation induced interhemispheric signal propagation. Biol. Psychiatry68(9),825–831 (2010).
    • 27  Stephan KE, Penny WD, Marshall JC, Fink GR, Friston KJ. Investigating the functional role of callosal connections with dynamic causal models. Ann. NY Acad. Sci.1064,16–36 (2005).
    • 28  Nowicka A, Tacikowski P. Transcallosal transfer of information and functional asymmetry of the human brain. Laterality16(1),35–74 (2011).▪▪ Research on laterality in humans with emphasis on the role of the CC.
    • 29  Park H-J, Kim JJ, Lee S-K et al. Corpus callosal connection mapping using cortical gray matter parcellation and DT-MRI. Hum. Brain Mapp.29(5),503–516 (2008).▪ Extremely detailed map of cortical projections to the CC based on diffusion-weighted MRI.
    • 30  Zarei M, Johansen-Berg H, Smith S, Ciccarelli O, Thompson AJ, Matthews PM. Functional anatomy of interhemispheric cortical connections in the human brain. J. Anat.209(3),311–320 (2006).
    • 31  Le Bihan D, Mangin JF, Poupon C et al. Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging13(4),534–546 (2001).
    • 32  Chao YP, Cho KH, Yeh CH, Chou KH, Chen JH, Lin CP. Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography. Hum. Brain Mapp.30(10),3172–3187 (2009).
    • 33  Hofer S, Frahm J. Topography of the human corpus callosum revisited – comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage32(3),989–994 (2006).
    • 34  Shah A, Jhawar SS, Goel A. Analysis of the anatomy of the Papez circuit and adjoining limbic system by fiber dissection techniques. J. Clin. Neurosci.19(2),289–298 (2012).
    • 35  Ellenberg L, Sperry R. Capacity for holding sustained attention following commissurotomy. Cortex15,421–438 (1979).
    • 36  Dimond S. Depletion of attentional capacity after total commissurotomy in man. Brain99,347–356 (1976).
    • 37  David AS, Wacharasindhu A, Lishman WA. Severe psychiatric disturbance and abnormalities of the corpus callosum: review and case series. J. Neurol. Neurosurg. Psychiatry56,85–93 (1993).
    • 38  Zaidel D, Sperry R. Memory impairment after commissurotomy in man. Brain97,253–272 (1974).
    • 39  Devinsky O. Callosal lesions and behavior: history and modern concepts. Epilepsy Behav.4(6),607–617 (2003).
    • 40  Damasio A, Damasio H. Hemianopia, hemiachromatopsia and the mechanisms of alexia. Cortex22,161–169 (1986).
    • 41  Aralasmak A, Ulmer JL, Kocak M, Salvan CV, Hillis AE, Yousem DM. Association, commissural, and projection pathways and their functional deficit reported in literature. J. Comp. Assist. Tomog.30(5),695–715 (2006).
    • 42  Paul LK, Brown WS, Adolphs R et al. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat. Rev. Neurosci.8(4),287–299 (2007).
    • 43  Schulte T, Sullivan EV, Müller-Oehring EM, Adalsteinsson E, Pfefferbaum A. Corpus callosal microstructural integrity influences interhemispheric processing: a diffusion tensor imaging study. Cereb. Cortex15(9),1384–1392 (2005).
    • 44  Pogarell O, Teipel SJ, Juckel G et al. EEG coherence reflects regional corpus callosum area in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry76(1),109–111 (2005).
    • 45  Nowicka A, Grabowska A, Fersten E. Interhemispheric transmission of information and functional asymmetry of the human brain. Neuropsychologia34(2),147–151 (1996).
    • 46  Delbeuck X, Collette F, Van der Linden M. Is Alzheimer’s disease a disconnection syndrome? Evidence from a crossmodal audio-visual illusory experiment. Neuropsychologia45(14),3315–3323 (2007).
    • 47  Catani M, Mesulam M. What is a disconnection syndrome? Cortex44(8),911–913 (2008).
    • 48  Ota M, Obata T, Akine Y et al. Age-related degeneration of corpus callosum measured with diffusion tensor imaging. Neuroimage31(4),1445–1452 (2006).
    • 49  McLaughlin NC, Paul RH, Grieve SM et al. Diffusion tensor imaging of the corpus callosum: a cross-sectional study across the lifespan. Int. J. Dev. Neurosci.25(4),215–221 (2007).
    • 50  Michielse S, Coupland N, Camicioli R et al. Selective effects of aging on brain white matter microstructure: a diffusion tensor imaging tractography study. Neuroimage52(4),1190–1201 (2010).
    • 51  Davis S, Dennis N, Buchler NG, White LE, Madden DJ, Cabeza R. Assessing the effects of age on long white matter tracts using diffusion tensor tractography. Neuroimage46(2),530–541 (2009).
    • 52  Sullivan EV, Rohlfing T, Pfefferbaum A. Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: relations to timed performance. Neurobiol. Aging31(3),464–481 (2010).
    • 53  Bartzokis G, Sultzer D, Lu PH, Nuechterlein KH, Mintz J, Cummings JL. Heterogeneous age-related breakdown of white matter structural integrity: implications for cortical ‘disconnection’ in aging and Alzheimer’s disease. Neurobiol. Aging25(7),843–851 (2004).
    • 54  Aboitiz F, Scheibel ZE. Morphometry of the Sylvian fissure and the corpus callosum, with emphasis on sex differences. Brain115(Pt 5),1521–1541 (1992).
    • 55  Jokinen H, Ryberg C, Kalska H et al. Corpus callosum atrophy is associated with mental slowing and executive deficits in subjects with age-related white matter hyperintensities: the LADIS Study. J. Neurol. Neurosurg. Psychiatry78(5),491–496 (2007).
    • 56  Jokinen H, Frederiksen KS, Garde E et al. Callosal tissue loss parallels subtle decline in psychomotor speed. A longitudinal quantitative MRI study. The LADIS Study. Neuropsychologia50(7),1650–1655 (2012).
    • 57  Zahr NM, Rohlfing T, Pfefferbaum A, Sullivan EV. Problem solving, working memory, and motor correlates of association and commissural fiber bundles in normal aging: a quantitative fiber tracking study. Neuroimage44(3),1050–1062 (2009).
    • 58  Kennedy KM, Raz N. Aging white matter and cognition: differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia47(3),916–927 (2009).
    • 59  Fling BW, Chapekis M, Reuter-lorenz PA et al. Age differences in callosal contributions to cognitive processes. Neuropsychologia49(9),2564–2569 (2011).
    • 60  West RL. An application of prefrontal cortex function theory to cognitive aging. Psychol. Bull.120(Pt 5),272–292 (1996).
    • 61  Tisserand D, Jolles J. On the involvement of prefrontal networks in cognitive ageing. Cortex39(4–5),1107–1128 (2003).
    • 62  Lu P, Lee G, Raven E et al. Age-related slowing in cognitive processing speed is associated with myelin integrity in a very healthy elderly sample. J. Clin. Exp. Neuropsychol.33(10),1059–1068 (2011).
    • 63  Ryberg C, Rostrup E, Sjöstrand K et al. White matter changes contribute to corpus callosum atrophy in the elderly: the LADIS study. Am. J. Neuroradiol.29(8),1498–1504 (2008).
    • 64  Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging deficiency. Am. J. Roentgen.149(2),351–356 (1987).
    • 65  Awad IA, Spetzler RF, Hodak JA et al. Incidental subcortical lesions identified on magnetic resonance imaging in the elderly. 1. Correlation with age and cerebrovascular risk factors. Stroke17,1084–1089 (1986).
    • 66  Goldstein LB, Adams R, Alberts MJ et al. Primary prevention of ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council: cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Stroke37,1583–1633 (2006).
    • 67  van Swieten JC, van den Hout JH, van Ketel BA et al. Periventricular lesions in the white matter on magnetic resonance imaging in the elderly: a morphometric correlation with arteriolosclerosis and dilated perivascular spaces. Brain114(Pt 2),761–774 (1991).
    • 68  Pantoni L, Garcia JH. The significance of cerebral white matter abnormalities 100 years after Binswanger’s report: a review. Stroke26,1293–1301 (1995).
    • 69  Meguro K, Constans JM, Courtheoux P, Theron J, Viader F, Yamadori A. Atrophy of the corpus callosum correlates with white matter lesions in patients with cerebral ischaemia. Neuroradiology42,413–419 (2000).
    • 70  Griebe M, Förster A, Wessa M et al. Loss of callosal fibre integrity in healthy elderly with age-related white matter changes. J. Neurol.258(8),1451–1459 (2011).
    • 71  Frederiksen KS, Garde E, Skimminge A et al. Corpus callosum atrophy in patients with mild Alzheimer’s disease. Neurodegener. Dis.8(6),476–482 (2011).
    • 72  Teipel SJ, Bayer W, Alexander GE et al. Progression of corpus callosum atrophy in Alzheimer disease. Arch. Neurol.59(2),243–248 (2002).
    • 73  Teipel SJ, Hampel H, Alexander GE et al. Dissociation between corpus callosum atrophy and white matter pathology in Alzheimer’ s disease. Neurology51(5),1381–1385 (1998).
    • 74  Hampel H, Teipel SJ, Alexander GE et al. Corpus callosum atrophy is a possible indicator of region- and cell type-specific neuronal degeneration in Alzheimer disease: a magnetic resonance imaging analysis. Arch. Neurol.55(2),193–198 (1998).
    • 75  Yamauchi H, Fukuyama H, Shio H. Corpus callosum atrophy in patients with leukoaraiosis may indicate global cognitive impairment. Stroke31,1515–1520 (2000).
    • 76  Cabeza R, Anderson ND, Locantore JK, McIntosh AR. Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage17(3),1394–1402 (2002).
    • 77  Cabeza R. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol. Aging17(1),85–100 (2002).
    • 78  Davis S, Kragel JE, Madden D, Cabeza R. The architecture of cross-hemispheric communication in the aging brain: linking behavior to functional and structural connectivity. Cereb. Cortex22(1),232–242 (2012).
    • 79  Persson J, Nyberg L, Lind J et al. Structure-function correlates of cognitive decline in aging. Cereb. Cortex16,907–915 (2006).
    • 80  Dolcos F, Rice HJ, Cabeza R. Hemispheric asymmetry and aging: right hemisphere decline or asymmetry reduction. Neurosci. Biobehav. Rev.26(7),819–825 (2002).
    • 81  Wang PJ, Saykin AJ, Flashman L et al. Regionally specific atrophy of the corpus callosum in AD, MCI and cognitive complaints. Neurobiol. Aging27(11),1613–1617 (2006).
    • 82  Lyoo IK, Satlin A, Lee CK, Renshaw PF. Regional atrophy of the corpus callosum in subjects with Alzheimer’s disease and multi-infarct dementia. Psychiatry Res.16(74),63–72 (1997).
    • 83  Hensel A, Wolf H, Kruggel F et al. Morphometry of the corpus callosum in patients with questionable and mild dementia. J. Neurol. Neurosurg. Psychiatry73(1),59–61 (2002).
    • 84  Zarei M, Damoiseaux JS, Morgese C et al. Regional white matter integrity differentiates between vascular dementia and Alzheimer disease. Stroke40(3),773–779 (2009).
    • 85  Chen TF, Lin CC, Chen YF et al. Diffusion tensor changes in patients with amnesic mild cognitive impairment and various dementias. Psychiatry Res.173(1),15–21 (2009).
    • 86  Stahl R, Dietrich O, Teipel SJ, Hampel H, Reiser MF, Schoenberg SO. White matter damage in Alzheimer disease and mild cognitive impairment: assessment with diffusion-tensor MR imaging and parallel imaging techniques. Radiology243(2),483–492 (2007).
    • 87  Ukmar M, Makuc E, Onor ML, Garbin G, Trevisiol M, Cova MA. Evaluation of white matter damage in patients with Alzheimer’s disease and in patients with mild cognitive impairment by using diffusion tensor imaging. Radiol. Med.113(6),915–922 (2008).
    • 88  Wang L, Goldstein FC, Veledar E et al. Alterations in cortical thickness and white matter integrity in mild cognitive impairment measured by whole-brain cortical thickness mapping and diffusion tensor imaging. Am. J. Neuroradiol.30(5),893–899 (2009).
    • 89  Lee JH, Kim SH, Kim GH et al. Identification of pure subcortical vascular dementia using 11C-Pittsburgh compound B. Neurology77(1),18–25 (2011).
    • 90  Tomimoto H, Lin JX, Matsuo A et al. Different mechanisms of corpus callosum atrophy in Alzheimer’s disease and vascular dementia. J. Neurol.251(4),398–406 (2004).
    • 91  Thompson PM, Hayashi KM, De Zubicaray G et al. Dynamics of gray matter loss in Alzheimer’s disease. J. Neurosci.23(3),994–1005 (2003).
    • 92  Sydykova D, Stahl R, Dietrich O et al. Fiber connections between the cerebral cortex and the corpus callosum in Alzheimer’s disease: a diffusion tensor imaging and voxel-based morphometry study. Cereb. Cortex17(10),2276–2282 (2007).
    • 93  Avants BB, Cook PA, Ungar L, Gee JC, Grossman M. Dementia induces correlated reductions in white matter integrity and cortical thickness: a multivariate neuroimaging study with sparse canonical correlation analysis. Neuroimage50(3),1004–1016 (2010).
    • 94  Agosta F, Pievani M, Sala S et al. White matter damage in Alzheimer disease and its relationship to gray matter atrophy. Radiology258(3),853–863 (2011).
    • 95  Janowsky JS, Kaye, JA, Carper RA. Atrophy of the corpus callosum in Alzheimer’s disease versus healthy aging. J. Am. Geriatr. Soc.44,798–803 (1996).
    • 96  Tomaiuolo F, Scapin M, Di Paola M et al. Gross anatomy of the corpus callosum in Alzheimer’s disease: regions of degeneration and their neuropsychological correlates. Dement. Geriatr. Cogn. Disord.23(2),96–103 (2007).
    • 97  Meguro K, Constans JM, Shimada M et al. Corpus callosum atrophy, white matter lesions, and frontal executive dysfunction in normal aging and Alzheimer’s disease. A community-based study: the Tajiri Project. Int. Psychogeriatr.15(1),9–25 (2003).
    • 98  Rosas HD, Lee SY, Bender AC et al. Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical ‘disconnection’. Neuroimage49(4),2995–3004 (2010).
    • 99  Filippini N, Knight S, Talbot K, Turner MR. Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology75(18),1645–1652 (2010).
    • 100  Yamauchi H, Fukuyama H, Ouchi Y et al. Corpus callosum atrophy in amyotrophic lateral sclerosis. Science134(1–2),189–196 (1995).
    • 101  Firbank MJ, Blamire AM, Teodorczuk A, Teper E, Mitra D, O’Brien JT. Diffusion tensor imaging in Alzheimer’s disease and dementia with Lewy bodies. Psychiatry Res.194(2),176–183 (2011).
    • 102  Wiltshire K, Concha L, Gee M, Bouchard T, Beaulieu C, Camicioli R. Corpus callosum and cingulum tractography in Parkinson’s disease. Can. J. Neurol. Sci.37,595–600 (2010).
    • 103  Wiltshire K, Camicioli R, Kaye JA, Small BJ. Corpus callosum in neurodegenerative diseases: findings in Parkinson’s disease. Dement. Geriatr. Cogn. Disord.7(6),345–351 (2005).
    • 104  Zhang Y, Schuff N, Du AT et al. White matter damage in frontotemporal dementia and Alzheimer’s disease measured by diffusion MRI. Brain132(Pt 9),2579–2592 (2009).
    • 105  Matsuo K, Mizuno T, Yamada K et al. Cerebral white matter damage in frontotemporal dementia assessed by diffusion tensor tractography. Neuroradiology50(7),605–611 (2008).
    • 106  Agosta F, Henry RG, Migliaccio R et al. Language networks in semantic dementia. Brain133(Pt 1),286–299 (2010).
    • 107  Tartaglia M, Zhang Y, Racine C, Laluz V. Executive dysfunction in frontotemporal dementia is related to abnormalities in frontal white matter tracts. J. Neurol.259(6),1071–1080 (2012).
    • 108  Perry RJ, Graham A, Williams G et al. Patterns of frontal lobe atrophy in frontotemporal dementia: a volumetric MRI study. Dement. Geriatr. Cog. Disord.22(4),278–287 (2006).
    • 109  Whitwell JL, Jack CR, Senjem ML, Josephs KA. Patterns of atrophy in pathologically confirmed FTLD with and without motor neuron degeneration. Neurology66(1),102–104 (2006).
    • 110  Gazzaniga MS. Forty-five years of split-brain research and still going strong. Nat. Rev. Neurosci.6(8),653–659 (2005).
    • 111  Bouma A, Gootjes L. Effects of attention on dichotic listening in elderly and patients with dementia of the Alzheimer type. Brain Cogn.76(2),286–293 (2011).