We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Special Focus on the 4th Biologie Prospective Santorini Conference: 'Functional Genomics Towards personalized Healthcare' - Review

Epigenetic and microRNA-dependent control of cytochrome P450 expression: a gap between DNA and protein

    Alvin Gomez

    Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, Nanna Svartz väg 2, SE-171 77, Stockholm, Sweden.

    &
    Magnus Ingelman-Sundberg

    † Author for correspondence

    Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, Nanna Svartz väg 2, SE-171 77, Stockholm, Sweden.

    Published Online:https://doi.org/10.2217/pgs.09.56

    Although pharmacogenetics has been instrumental in describing interindividual variations in drug metabolism, epigenetic factors offer another blanket of information that could give a more vivid picture and help in developing a more personalized therapy. The dynamic aspect of epigenetics could likewise provide more definite answers to the role of changing environmental factors in drug response: the bridge that connects the environment to the genome. In this review we discuss known epigenetic and microRNA-dependent regulation of the human drug-metabolizing cytochromes P450 to help explain the unknown factors of variable drug response.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Ingelman-Sundberg M, Sim SC, Gomez A et al.: Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol. Ther.116,496–526 (2007).▪ In this review, we present that a number of the drug-metabolizing members of the CYP superfamily are potentially under DNA methylation control due to the presence of high density CpG islands in their promoters.
    • Rodríguez-Antona C, Ingelman-Sundberg M: Cytochrome P450 pharmacogenetics and cancer. Oncogene25,1679–1691 (2006).
    • Ingelman-Sundberg M, Rodríguez-Antona C: Pharmacogenetics of drug-metabolizing enzymes: implications for a safer and more effective drug therapy. Philos. Trans. R Soc. Lond. B Biol. Sci.360,1563–1570 (2005).
    • Estabrook RW: A passion for P450s (rememberances of the early history of research on cytochrome P450). Drug Metab. Dispos.31,1461–1473 (2003).
    • Guengerich FP: Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J.8,E101–E111 (2006).
    • Fukasawa T, Suzuki A, Otani K: Effects of genetic polymorphism of cytochrome P450 enzymes on the pharmacokinetics of benzodiazepines. J. Clin. Pharm. Ther.32,333–341 (2007).
    • Ozdemir V, Kalow W, Tang BK et al.: Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics10,373–388 (2000).
    • Reik W: Stability and flexibility of epigenetic gene regulation in mammalian development. Nature447,425–432 (2007).
    • Klose RJ, Bird AP: Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci.31,89–97 (2006).
    • 10  Ballestar E, Esteller M: The impact of chromatin in human cancer: linking DNA methylation to gene silencing. Carcinogenesis23,1103–1109 (2002).
    • 11  Georgel PT: Role of chromatin/epigenetic modifications on DNA accessibility. Drug News Perspect.20,549–556 (2007).
    • 12  Galm O, Esteller M: Beyond genetics – the emerging role of epigenetic changes in hematopoietic malignancies. Int. J. Hematol.80,120–127 (2004).
    • 13  Baylin SB, Esteller M, Rountree MR et al.: Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum. Mol. Genet.10,687–692 (2001).
    • 14  Holliday R: Epigenetics: a historical overview. Epigenetics1,76–80 (2006).
    • 15  Flanagan JM, Wild L: An epigenetic role for noncoding RNAs and intragenic DNA methylation. Genome Biol.8,307 (2007).
    • 16  Matzke M, Matzke AJ, Kooter JM: RNA: guiding gene silencing. Science293,1080–1083 (2001).
    • 17  Pauler FM, Koerner MV, Barlow DP: Silencing by imprinted noncoding RNAs: is transcription the answer? Trends Genet.23,284–292 (2007).
    • 18  Costa FF: Non-coding RNAs: lost in translation? Gene386,1–10 (2007).
    • 19  Mattick JS, Makunin IV: Non-coding RNA. Hum. Mol. Genet.15(Spec. No. 1),R17–R29 (2006).
    • 20  Eddy SR: Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet.2,919–929 (2001).
    • 21  Petronis A, Gottesman, II, Kan P et al.: Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr. Bull.29,169–178 (2003).
    • 22  Fraga MF, Ballestar E, Paz MF et al.: Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA102,10604–10609 (2005).▪▪ Very important finding showing that in genetically similar monozygotic twins, phenotypic differences could occur through epigenetic means.
    • 23  Jaenisch R, Bird A: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. (Suppl. 33),245–254 (2003).
    • 24  Poulsen P, Esteller M, Vaag A et al.: The epigenetic basis of twin discordance in age-related diseases. Pediatr. Res.61,38R–42R (2007).
    • 25  Esteller M: Epigenetics in cancer. N. Engl. J. Med.358,1148–1159 (2008).
    • 26  Bateson P, Barker D, Clutton-Brock T et al.: Developmental plasticity and human health. Nature430,419–421 (2004).
    • 27  Jiang YH, Bressler J, Beaudet AL: Epigenetics and human disease. Annu. Rev. Genomics Hum. Genet.5,479–510 (2004).
    • 28  Ptak C, Petronis A: Epigenetics and complex disease: from etiology to new therapeutics. Annu. Rev. Pharmacol. Toxicol.48,257–276 (2008).
    • 29  Heijmans BT, Tobi EW, Stein AD et al.: Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA105,17046–17049 (2008).
    • 30  Weaver IC, Cervoni N, Champagne FA et al.: Epigenetic programming by maternal behavior. Nat Neurosci.7,847–854 (2004).
    • 31  Jirtle RL, Skinner MK: Environmental epigenomics and disease susceptibility. Nat. Rev. Genet.8,253–262 (2007).
    • 32  Bestor TH: The DNA methyltransferases of mammals. Hum. Mol. Genet.9,2395–2402 (2000).
    • 33  Li E, Bestor TH, Jaenisch R: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69,915–926 (1992).
    • 34  Miranda TB, Jones PA: DNA methylation: the nuts and bolts of repression. J. Cell Physiol.213,384–390 (2007).
    • 35  Goll MG, Bestor TH: Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem.74,481–514 (2005).
    • 36  Pradhan S, Esteve PO: Mammalian DNA (cytosine-5) methyltransferases and their expression. Clin. Immunol.109,6–16 (2003).
    • 37  Imai K, Yamamoto H: Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis29,673–680 (2008).
    • 38  Kawasaki T, Nosho K, Ohnishi M et al.: IGFBP3 promoter methylation in colorectal cancer: relationship with microsatellite instability, CpG island methylator phenotype, and p53. Neoplasia9,1091–1098 (2007).
    • 39  Ogino S, Kawasaki T, Nosho K et al.: LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int. J. Cancer122,2767–2773 (2008).
    • 40  Doerfler W: De novo methylation, long-term promoter silencing, methylation patterns in the human genome, and consequences of foreign DNA insertion. Curr. Top. Microbiol. Immunol.301,125–175 (2006).
    • 41  Jass JR: Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology50,113–130 (2007).
    • 42  Raja P, Sanville BC, Buchmann RC et al.: Viral genome methylation as an epigenetic defense against geminiviruses. J. Virol.82,8997–9007 (2008).
    • 43  Hochstein N, Muiznieks I, Mangel L et al.: Epigenetic status of an adenovirus type 12 transgenome upon long-term cultivation in hamster cells. J. Virol.81,5349–5361 (2007).
    • 44  Sutter D, Westphal M, Doerfler W: Patterns of integration of viral DNA sequences in the genomes of adenovirus type 12-transformed hamster cells. Cell14,569–585 (1978).
    • 45  Rountree MR, Bachman KE, Herman JG et al.: DNA methylation, chromatin inheritance, and cancer. Oncogene20,3156–3165 (2001).
    • 46  Stirzaker C, Song JZ, Davidson B et al.: Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells. Cancer Res.64,3871–3877 (2004).
    • 47  Tate PH, Bird AP: Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev.3,226–231 (1993).
    • 48  Caiafa P, Zampieri M: DNA methylation and chromatin structure: the puzzling CpG islands. J. Cell Biochem.94,257–265 (2005).
    • 49  Keshet I, Lieman-Hurwitz J, Cedar H: DNA methylation affects the formation of active chromatin. Cell44,535–543 (1986).
    • 50  Padjen K, Ratnam S, Storb U: DNA methylation precedes chromatin modifications under the influence of the strain-specific modifier Ssm1. Mol. Cell Biol.25,4782–4791 (2005).
    • 51  Tokizane T, Shiina H, Igawa M et al.: Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clin. Cancer Res.11,5793–5801 (2005).▪ One of the most important papers in the field of P450 epigenetics showing the involvement of epigenetics, particularly DNA methylation, in the regulation of a CYP gene.
    • 52  Denissenko MF, Pao A, Tang M et al.: Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science274,430–432 (1996).
    • 53  Shimada T, Martin MV, Pruess-Schwartz D et al.: Roles of individual human cytochrome P-450 enzymes in the bioactivation of benzo(a)pyrene, 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons. Cancer Res.49,6304–6312 (1989).
    • 54  Shou M, Korzekwa KR, Crespi CL et al.: The role of 12 cDNA-expressed human, rodent, and rabbit cytochromes P450 in the metabolism of benzo[a]pyrene and benzo[a]pyrene trans-7,8-dihydrodiol. Mol. Carcinog.10,159–168 (1994).
    • 55  Whitlock JP Jr.: Induction of cytochrome P4501A1. Annu. Rev. Pharmacol. Toxicol.39,103–125 (1999).
    • 56  McLemore TL, Adelberg S, Liu MC et al.: Expression of CYP1A1 gene in patients with lung cancer: evidence for cigarette smoke-induced gene expression in normal lung tissue and for altered gene regulation in primary pulmonary carcinomas. J. Natl Cancer Inst.82,1333–1339 (1990).
    • 57  Pasquini R, Sforzolini GS, Cavaliere A et al.: Enzymatic activities of human lung tissue: relationship with smoking habits. Carcinogenesis9,1411–1416 (1988).
    • 58  Denison MS, Pandini A, Nagy SR et al.: Ligand binding and activation of the Ah receptor. Chem. Biol. Interact.141,3–24 (2002).
    • 59  Anttila S, Hakkola J, Tuominen P et al.: Methylation of cytochrome P4501A1 promoter in the lung is associated with tobacco smoking. Cancer Res.63,8623–8628 (2003).▪▪ Study showed that the environment, a very important factor in directing epigenetic changes, is instrumental in causing variation in drug response by affecting the expression of a CYP gene.
    • 60  Okino ST, Pookot D, Li LC et al.: Epigenetic inactivation of the dioxin-responsive cytochrome P4501A1 gene in human prostate cancer. Cancer Res.66,7420–7428 (2006).
    • 61  Murray GI, Melvin WT, Greenlee WF et al.: Regulation, function, and tissue-specific expression of cytochrome P450 CYP1B1. Annu. Rev. Pharmacol. Toxicol.41,297–316 (2001).
    • 62  Mimura J, Fujii-Kuriyama Y: Functional role of AhR in the expression of toxic effects by TCDD. Biochim. Biophys. Acta1619,263–268 (2003).
    • 63  Murray GI, Taylor MC, McFadyen MC et al.: Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res.57,3026–3031 (1997).
    • 64  McFadyen MC, Breeman S, Payne S et al.: Immunohistochemical localization of cytochrome P450 CYP1B1 in breast cancer with monoclonal antibodies specific for CYP1B1. J. Histochem. Cytochem.47,1457–1464 (1999).
    • 65  McFadyen MC, Cruickshank ME, Miller ID et al.: Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer. Br. J. Cancer85,242–246 (2001).
    • 66  Gunes A, Dahl ML: Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics9,625–637 (2008).
    • 67  Quattrochi LC, Tukey RH: The human cytochrome CYP1A2 gene contains regulatory elements responsive to 3-methylcholanthrene. Mol. Pharmacol.36,66–71 (1989).
    • 68  Cross SH, Bird AP: CpG islands and genes. Curr. Opin. Genet. Dev.5,309–314 (1995).
    • 69  Jones PA, Takai D: The role of DNA methylation in mammalian epigenetics. Science293,1068–1070 (2001).
    • 70  Larsen F, Gundersen G, Lopez R et al.: CpG islands as gene markers in the human genome. Genomics13,1095–1107 (1992).
    • 71  Gardiner-Garden M, Frommer M: CpG islands in vertebrate genomes. J. Mol. Biol.196,261–282 (1987).
    • 72  Takai D, Jones PA: Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA99,3740–3745 (2002).
    • 73  Ghotbi R, Gomez A, Milani L et al.: Allele-specific expression and gene methylation in the control of CYP1A2 mRNA level in human livers. Pharmacogenomics J.9(3),208–217 (2009).
    • 74  Karlgren M, Gomez A, Stark K et al.: Tumor-specific expression of the novel cytochrome P450 enzyme, CYP2W1. Biochem. Biophys. Res. Commun.341,451–458 (2006).
    • 75  Gomez A, Karlgren M, Edler D et al.: Expression of CYP2W1 in colon tumors: regulation by gene methylation. Pharmacogenomics8,1315–1325 (2007).▪ CYP2W1 has been shown to be expressed in the developing embryo and is re-expressed in colon tumor through aberrant changes in DNA methylation.
    • 76  Oneta CM, Lieber CS, Li J et al.: Dynamics of cytochrome P4502E1 activity in man: induction by ethanol and disappearance during withdrawal phase. J. Hepatol.36,47–52 (2002).
    • 77  Jones SM, Boobis AR, Moore GE et al.: Expression of CYP2E1 during human fetal development: methylation of the CYP2E1 gene in human fetal and adult liver samples. Biochem. Pharmacol.43,1876–1879 (1992).
    • 78  Vieira I, Pasanen M, Raunio H et al.: Expression of CYP2E1 in human lung and kidney during development and in full-term placenta: a differential methylation of the gene is involved in the regulation process. Pharmacol. Toxicol.83,183–187 (1998).
    • 79  Dannenberg LO, Edenberg HJ: Epigenetics of gene expression in human hepatoma cells: expression profiling the response to inhibition of DNA methylation and histone deacetylation. BMC Genomics7,181 (2006).
    • 80  Nan X, Ng HH, Johnson CA et al.: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature393,386–389 (1998).
    • 81  Staynov DZ: The controversial 30 nm chromatin fibre. Bioessays30,1003–1009 (2008).
    • 82  Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ: Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature389,251–260 (1997).
    • 83  Schones DE, Zhao K: Genome-wide approaches to studying chromatin modifications. Nat. Rev. Genet.9,179–191 (2008).
    • 84  Strahl BD, Allis CD: The language of covalent histone modifications. Nature403,41–45 (2000).
    • 85  Happel N, Stoldt S, Schmidt B et al.: M-phase-specific phosphorylation of histone H1.5 at threonine 10 by GSK-3. J. Mol. Biol.386(2),339–350 (2008).
    • 86  Wu J, Huen MS, Lu LY et al.: Histone ubiquitination associates with BRCA1-dependent DNA damage response. Mol. Cell Biol.29,849–860 (2009).
    • 87  Nathan D, Ingvarsdottir K, Sterner DE et al.: Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev.20,966–976 (2006).
    • 88  Wang Y, Li M, Stadler S et al.: Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol.184(2),205–213 (2009).
    • 89  Lafon-Hughes L, Di Tomaso MV, Mendez-Acuna L et al.: Chromatin-remodelling mechanisms in cancer. Mutat. Res.658,191–214 (2008).
    • 90  Cosgrove MS, Wolberger C: How does the histone code work? Biochem. Cell Biol.83,468–476 (2005).
    • 91  Jenuwein T, Allis CD: Translating the histone code. Science293,1074–1080 (2001).
    • 92  Schnekenburger M, Peng L, Puga A: HDAC1 bound to the CYP1A1 promoter blocks histone acetylation associated with Ah receptor-mediated trans-activation. Biochim. Biophys. Acta1769,569–578 (2007).
    • 93  Wei YD, Tepperman K, Huang MY et al.: Chromium inhibits transcription from polycyclic aromatic hydrocarbon-inducible promoters by blocking the release of histone deacetylase and preventing the binding of p300 to chromatin. J. Biol. Chem.279,4110–4119 (2004).
    • 94  Li Y, Cui Y, Hart SN, Klaassen CD, Zhong X: Dynamic patterns of histone methylation are associated with ontogenic expression of the Cyp3a genes during mouse liver maturation. Mol. Pharmacol.75(5),1171–1179 (2009).▪▪ The developmental switch in the expression of Cyp3 members in mice was shown in this study to be due to histone modification changes in a locus-specific manner while DNA methylation did not change.
    • 95  Ambros V: The functions of animal microRNAs. Nature431,350–355 (2004).
    • 96  Wienholds E, Plasterk RH: MicroRNA function in animal development. FEBS Lett.579,5911–5922 (2005).
    • 97  Tsuchiya Y, Nakajima M, Takagi S et al.: MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res.66,9090–9098 (2006).
    • 98  Kalscheuer S, Zhang X, Zeng Y et al.: Differential expression of microRNAs in early-stage neoplastic transformation in the lungs of F344 rats chronically treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis29,2394–2399 (2008).▪▪ The expression pattern of miRNAs in carcinogenesis could potentially lead to the expression of CYPs and even promote the carcinogenic process.
    • 99  Schembri F, Sridhar S, Perdomo C et al.: MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc. Natl Acad. Sci. USA106(7),2319–2324 (2009).
    • 100  Gonzalez FJ: CYP3A4 and pregnane X receptor humanized mice. J. Biochem. Mol. Toxicol.21,158–162 (2007).
    • 101  Takagi S, Nakajima M, Mohri T et al.: Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J. Biol. Chem.283,9674–9680 (2008).
    • 102  Mu YM, Yanase T, Nishi Y et al.: A nuclear receptor system constituted by RAR and RXR induces aromatase activity in MCF-7 human breast cancer cells. Mol. Cell Endocrinol.166,137–145 (2000).
    • 103  Youssef EM, Lotan D, Issa JP et al.: Hypermethylation of the retinoic acid receptor-β(2) gene in head and neck. Carcinogenesis Clin. Cancer Res.10,1733–1742 (2004).
    • 104  Bovenzi V, Momparler RL: Antineoplastic action of 5-aza-2´-deoxycytidine and histone deacetylase inhibitor and their effect on the expression of retinoic acid receptor β and estrogen receptor α genes in breast carcinoma cells. Cancer Chemother. Pharmacol.48,71–76 (2001).
    • 105  Tsuchiya Y, Nakajima M, Yokoi T: Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett.227,115–124 (2005).
    • 106  Westberry JM, Prewitt AK, Wilson ME: Epigenetic regulation of the estrogen receptor a promoter in the cerebral cortex following ischemia in male and female rats. Neuroscience152,982–989 (2008).
    • 201  Home Page of the Human Cytochrome P450 (CYP) Allele Nomenclature Committee. www.cypalleles.ki.se
    • 202  microRNA.org: a resource for predicted microRNA targets and expression. www.microrna.org