We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pharmacogenomic implications of population admixture: Brazil as a model case

    Guilherme Suarez-Kurtz

    * Author for correspondence

    Programa de Farmacologia, Instituto Nacional do Câncer, Rio de Janeiro, RJ, 20231-050, Brazil.

    ,
    Daniela Polessa Paula

    Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23890-000, Brazil

    &
    Claudio J Struchiner

    Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil

    Published Online:https://doi.org/10.2217/pgs.13.238

    The heterogeneous Brazilian population, with European, African and Amerindian ancestral roots is a model case for exploring the impact of population admixture on the frequency distribution of polymorphisms in pharmacogenes, and the design and interpretation of pharmacogenomics trials. Examples drawn from studies carried out by researchers of the Brazilian pharmacogenomics network, support the following conclusions: the distribution of polymorphisms varies across geographical regions and self-reported ‘race/color’ categories, and is best modeled as continuous functions of individual proportions of European and African ancestry; the differential frequency of polymorphisms impacts the calculations of sample sizes required for adequate statistical power in clinical trials performed in different segments of the Brazilian population; and extrapolation of pharmacogenomics data from well-defined ethnic groups to Brazilians is plagued with uncertainty. Data for warfarin and tacrolimus are reviewed to highlight the advantages and challenges of performing pharmacogenomic trials in Brazilians.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Callegari-Jacques SM, Salzano FM. Brazilian Indian/non Indian interactions and their effects. Cienc. Cult.51(3–4),166–174 (1999).
    • Suarez-Kurtz G, Pena SDJ. Pharmacogenetic studies in the Brazilian population. In: Pharmacogenomics in Admixed Populations. Suarez-Kurtz G (Ed.). Landes Biosciences, Austin, TX, USA, 75–98 (2007).
    • Suarez-Kurtz G. Pharmacogenomic applications in the developing world: the American continent. In: Genomics Applications for the Developing World. Nelson KE, Jones-Nelson B (Eds). Springer, Heidelberg, Germany, 147–160 (2012).
    • Suarez-Kurtz G, Pena SDJ, Struchiner CJ, Hutz MH. Pharmacogenomic diversity among Brazilians: influence of diversity, self reported color and geographical origin. Front. Pharmacol.3,191 (2012).
    • Bastos-Rodrigues L, Pimenta JR, Pena SDJ. The genetic structure of human populations studied through short insertion–deletion polymorphisms. Ann. Hum. Genet.70(5),658–665 (2006).
    • Salzano FM, Bortolini MC. The Evolution and Genetics of Latin American Populations. Cambridge University Press, Cambridge, UK (2002).▪ Overview of population genetics in Latin America.
    • Parra FC, Amado RC, Lambertucci JR, Rocha J, Antunes CM, Pena SDJ. Color and genomic ancestry in Brazilians. Proc. Natl Acad. Sci. USA100(1),177–182 (2003).
    • Pena SDJ, Di-Pietro G, Fuchshuber-Moraes M et al. The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PLoS ONE6(2),e17063 (2011).▪▪ Analysis of the biogeographical ancestry of Brazilians, using a validated panel of ancestry-informative markers.
    • Suarez-Kurtz G. Pharmacogenetics in the Brazilian population. Front. Pharmacol.1(118),1–10 (2010).▪▪ Overview of the population structure and pharmacogenomics of Brazilians.
    • 10  Suarez-Kurtz G, Vargens DD, Struchiner CJ, Bastos-Rodrigues L, Pena SDJ. Self-reported skin color, genomic ancestry and the distribution of GST polymorphisms. Pharmacogenet. Genomics17(9),765–771 (2007).
    • 11  Suarez-Kurtz G, Perini JA, Bastos-Rodrigues L, Pena SD, Struchiner C. Impact of population admixture on the distribution of the CYP3A5*3 polymorphism. Pharmacogenomics8,1299–1306 (2007).
    • 12  Estrela RC, Ribeiro FS, Carvalho RS et al. Distribution of ABCB1 polymorphisms among Brazilians: impact of population admixture. Pharmacogenomics9,267–276 (2008).
    • 13  Vargens DD, Almendra L, Struchiner CJ, Suarez-Kurtz G. Distribution of the GNB3 825C>T polymorphism among Brazilians: impact of population structure. Eur. J. Clin. Pharmacol.3,253–256 (2008).
    • 14  Suarez-Kurtz G, Amorim A, Damasceno A et al.VKORC1 polymorphisms in Brazilians, comparison with the Portuguese and Portuguese-speaking Africans and pharmacogenetic implications. Pharmacogenomics11,1257–1267 (2010).▪ Original study of warfarin pharmacogenomics in Latin American populations.
    • 15  Suarez-Kurtz G, Genro JP, Moraes MO et al. Global pharmacogenomics: impact of population diversity on the distribution of polymorphisms in the CYP2C cluster among Brazilians. Pharmacogenomics J.12,267–276 (2012).
    • 16  Perini JA, Petzl-Erler ML, Tsuneto LT, Suarez-Kurtz G. VKORC1 polymorphisms in Amerindian populations of Brazil. Pharmacogenomics9,1623–1629 (2008).
    • 17  Vargens DD, Damasceno A, Petzl-Erler ML, Suarez-Kurtz G. Combined CYP2C9, VKORC1 and CYP4F2 frequencies among Amerindians, Mozambicans and Brazilians. Pharmacogenomics12,769–772 (2011).
    • 18  Suarez-Kurtz G, Pena SD, Hutz MH. Application of the F(ST) statistics to explore pharmacogenomic diversity in the Brazilian population. Pharmacogenomics13,771–777 (2012).▪ Examines the extent of pharmacogenomic diversity among Brazilians and between Brazilians and HapMap populations.
    • 19  Wright S. The genetic structure of populations. Ann. Eugen.15,323–3543 (1951).
    • 20  Wright S. Variability Within and Among Natural Populations. University of Chicago Press, IL, USA, 4 (1978).
    • 21  Estrela RC, Santoro AB, Barroso PF, Tuyama M, Suarez-Kurtz G. CYP3A5 genotype has no impact on plasma trough concentrations of lopinavir and ritonavir in HIV-infected subjects. Clin. Pharmacol. Ther.84,205–207 (2008).
    • 22  Kohlrausch FB, Salatino-Oliveira A, Gama CS, Lobato MI, Belmonte-de-Abreu P, Hutz MH. G-protein gene 825C>T polymorphism is associated with response to clozapine in Brazilian schizophrenics. Pharmacogenomics9,1429–1436 (2008).
    • 23  Perini JA, Struchiner CJ, Silva-Assuncao E et al. Pharmacogenetics of warfarin: development of a dosing algorithm for Brazilian patients. Clin. Pharmacol. Ther.84,722–728 (2008).
    • 24  Suarez-Kurtz G, Perini JA, Silva-Assuncao E, Struchiner CJ. Relative contribution of VKORC1, CYP2C9 and INR response to warfarin stable dose. Blood113,4125–4126 (2009).
    • 25  Perini JA, Struchiner CJ, Silva-Assuncao E, Suarez-Kurtz G. Impact of CYP4F2 rs2108622 on the stable warfarin dose in an admixed patient cohort. Clin. Pharmacol. Ther.87,417–420 (2010).
    • 26  Gage BF, Eby C, Johnson JA et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin. Pharmacol. Ther.84,326–331 (2008).
    • 27  International Warfarin Pharmacogenetics Consortium, Klein TE, Altman RB et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med.360(8),753–764 (2009). Erratum in: N. Engl. J. Med.361(16),1613 (2009).
    • 28  Limdi NA, Wadelius M, Cavallari L et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across three racial groups. Blood115,3827–3834 (2010).
    • 29  Botton M, Bandinelli E, Rohde L, Amon L, Hutz M. Influence of genetic, biological and pharmacological factors on warfarin dose in a southern Brazilian population of European ancestry. Br. J. Clin. Pharmacol.72(3),442–450 (2011).
    • 30  Suarez-Kurtz G. Population diversity and the performance of warfarin dosing algorithms. Br. J. Clin. Pharmacol.72,451–453 (2011).
    • 31  Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clin. Pharmacokinet.49,141–175 (2010).
    • 32  Tavira B, Coto E, Diaz-Corte C et al. Pharmacogenetics of tacrolimus after renal transplantation: analysis of polymorphisms in genes encoding 16 drug metabolizing enzymes. Clin. Chem. Lab. Med.49,825–833 (2011).
    • 33  Elens L, Bouamar R, Hesselink DA et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin. Chem.57,1574–1583 (2011).
    • 34  de Jonge H, de Loor H, Verbeke K, Vanrenterghem Y, Kuypers DR. In vivoCYP3A4 activity, CYP3A5 genotype, and hematocrit predict tacrolimus dose requirements and clearance in renal transplant patients. Clin. Pharmacol. Ther.92,366–375 (2012).
    • 35  Santoro A, Felipe CR, Tedesco-Silva H et al. Pharmacogenetics of calcineurin inhibitors in Brazilian renal transplant patients. Pharmacogenomics12,1293–1303 (2011).▪ First demonstration of the gene–dose effect of CYP3A5 polymorphisms on tacrolimus dose requirements in renal transplant recipients.
    • 36  Santoro AB, Struchiner CJ, Felipe CR et al.CYP3A5 genotype, but not CYP3A4*1b, CYP3A4*22, or hematocrit, predicts tacrolimus dose requirements in Brazilian renal transplant patients. Clin. Pharmacol. Ther.94(2),201–202 (2013).
    • 37  van Gelder T, van Schaik RH, Hesselink DA. Practicability of pharmacogenetics in transplantation medicine. Clin. Pharmacol. Ther. doi:10.1038/clpt.2013.169 (2013) (Epub ahead of print).
    • 38  Johnson EG, Horne BD, Carlquist JF, Anderson JL. Genotype-based dosing algorithms for warfarin therapy: data review and recommendations. Mol. Diagn. Ther.15(5),255–264 (2011).
    • 39  Suarez-Kurtz G. Pharmacogenetics in admixed populations. Trends Pharmacol. Sci.26(4),196–201 (2005).
    • 40  Suarez-Kurtz G (Ed.). Pharmacogenomics in Admixed Populations. Landes Biosciences, Austin, TX, USA (2007).
    • 101  Countries ranked by Gross Domestic Product. http://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)
    • 102  The Human Development Index used by the United Nations Development Program to rank countries. http://en.wikipedia.org/wiki/Human_Development_Index
    • 103  Home Page of the Instituto Brasileiro de Geografia e Estatística (IBGE), responsible for the Brazilian Census. www.ibge.gov.br
    • 104  Brazilian Pharmacogenomics Network, Refargen. www.refargen.org.br
    • 105  Refargen database of pharmacogenomic polymorphisms in Brazilians. www.refargen.org.br/rubrique.php3?id_rubrique=28
    • 106  Pharmacogenomics Knowledge Base (PharmGKB): Browse Annotated PGx Genes. www.pharmgkb.org/search/browseVip.action?browseKey=annotatedGenes
    • 107  International HapMap project. http://hapmap.ncbi.nlm.nih.gov