Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography

Filip B. Maciejewski1,2,3, Zoltán Zimborás4,5,6, and Michał Oszmaniec2,3

1University of Warsaw, Faculty of Physics, Ludwika Pasteura 5, 02-093 Warszawa, Poland
2International Centre for Theory of Quantum Technologies, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
3Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland
4Wigner Research Centre for Physics of the Hungarian Academy of Sciences, H-1525 Budapest, P.O.Box 49, Hungary
5BME-MTA Lendület Quantum Information Theory Research Group, Budapest, Hungary
6Mathematical Institute, Budapest University of Technology and Economics, P.O.Box 91, H-1111, Budapest, Hungary

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We propose a simple scheme to reduce readout errors in experiments on quantum systems with finite number of measurement outcomes. Our method relies on performing classical post-processing which is preceded by Quantum Detector Tomography, i.e., the reconstruction of a Positive-Operator Valued Measure (POVM) describing the given quantum measurement device. If the measurement device is affected only by an invertible classical noise, it is possible to correct the outcome statistics of future experiments performed on the same device. To support the practical applicability of this scheme for near-term quantum devices, we characterize measurements implemented in IBM's and Rigetti's quantum processors. We find that for these devices, based on superconducting transmon qubits, classical noise is indeed the dominant source of readout errors. Moreover, we analyze the influence of the presence of coherent errors and finite statistics on the performance of our error-mitigation procedure. Applying our scheme on the IBM's 5-qubit device, we observe a significant improvement of the results of a number of single- and two-qubit tasks including Quantum State Tomography (QST), Quantum Process Tomography (QPT), the implementation of non-projective measurements, and certain quantum algorithms (Grover's search and the Bernstein-Vazirani algorithm). Finally, we present results showing improvement for the implementation of certain probability distributions in the case of five qubits.

Most researchers believe that quantum computing, if ever actually developed, could offer major advances in numerous areas of scientific research. Yet, this technology is currently in its infancy, and the state of the art devices suffer from various problems. One of the most serious obstacles we need to overcome is the noise affecting the qubits. In this context, an important task arises of developing methods to reduce the errors.

In this work, we focus on the noise affecting quantum measurements. We propose a simple procedure to mitigate measurement errors via classical post-processing of the experimental outcome statistics. The procedure works perfectly provided measurement noise is classical and one operates in the infinite-statistics regime. Naturally, neither of those two assumptions is fulfilled exactly in practice, therefore we study the performance of our mitigation scheme in the presence of their violations. Importantly, we show how to validate the model of noise via the procedure known as Quantum Detector Tomography, which allows one to obtain the classical description of the quantum detector.

Our aim is to present a paper exploring the whole procedure of readout error mitigation: from the detailed description of necessary assumptions, through validation of those, finishing at the implementation of presented ideas on the actual quantum hardware from IBM and Rigetti. We believe that such an approach makes the work accessible to readers not necessarily familiar with the formalism of quantum measurements.

To encourage the practical realization of our findings, we developed an open-source GitHub repository implementing the ideas from the paper https://github.com/fbm2718/QREM.

► BibTeX data

► References

[1] John Preskill ``Quantum Computing in the NISQ era and beyond'' Quantum 2, 79 (2018).
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[2] Héctor Abraham, Ismail Yunus Akhalwaya, Gadi Aleksandrowicz, Thomas Alexander, Gadi Alexandrowics, Eli Arbel, Abraham Asfaw, Carlos Azaustre, AzizNgoueya, Panagiotis Barkoutsos, George Barron, Luciano Bello, Yael Ben-Haim, Daniel Bevenius, Lev S. Bishop, Samuel Bosch, Sergey Bravyi, David Bucher, Fran Cabrera, Padraic Calpin, Lauren Capelluto, Jorge Carballo, Ginés Carrascal, Adrian Chen, Chun-Fu Chen, Richard Chen, Jerry M. Chow, Christian Claus, Christian Clauss, Abigail J. Cross, Andrew W. Cross, Simon Cross, Juan Cruz-Benito, Chris Culver, Antonio D. Córcoles-Gonzales, Sean Dague, Tareq El Dandachi, Matthieu Dartiailh, DavideFrr, Abdón Rodríguez Davila, Delton Ding, Jun Doi, Eric Drechsler, Drew, Eugene Dumitrescu, Karel Dumon, Ivan Duran, Kareem EL-Safty, Eric Eastman, Pieter Eendebak, Daniel Egger, Mark Everitt, Paco Martín Fernández, Axel Hernández Ferrera, Albert Frisch, Andreas Fuhrer, MELVIN GEORGE, Julien Gacon, Gadi, Borja Godoy Gago, Jay M. Gambetta, Adhisha Gammanpila, Luis Garcia, Shelly Garion, Juan Gomez-Mosquera, Salvador de la Puente González, Ian Gould, Donny Greenberg, Dmitry Grinko, Wen Guan, John A. Gunnels, Isabel Haide, Ikko Hamamura, Vojtech Havlicek, Joe Hellmers, Łukasz Herok, Stefan Hillmich, Hiroshi Horii, Connor Howington, Shaohan Hu, Wei Hu, Haruki Imai, Takashi Imamichi, Kazuaki Ishizaki, Raban Iten, Toshinari Itoko, Ali Javadi-Abhari, Jessica, Kiran Johns, Tal Kachmann, Naoki Kanazawa, Kang-Bae, Anton Karazeev, Paul Kassebaum, Spencer King, Knabberjoe, Arseny Kovyrshin, Vivek Krishnan, Kevin Krsulich, Gawel Kus, Ryan LaRose, Raphaël Lambert, Joe Latone, Scott Lawrence, Dennis Liu, Peng Liu, Yunho Maeng, Aleksei Malyshev, Jakub Marecek, Manoel Marques, Dolph Mathews, Atsushi Matsuo, Douglas T. McClure, Cameron McGarry, David McKay, Dan McPherson, Srujan Meesala, Martin Mevissen, Antonio Mezzacapo, Rohit Midha, Zlatko Minev, Abby Mitchell, Nikolaj Moll, Michael Duane Mooring, Renier Morales, Niall Moran, Prakash Murali, Jan Müggenburg, David Nadlinger, Giacomo Nannicini, Paul Nation, Yehuda Naveh, Patrick Neuweiler, Pradeep Niroula, Hassi Norlen, Lee James O'Riordan, Oluwatobi Ogunbayo, Pauline Ollitrault, Steven Oud, Dan Padilha, Hanhee Paik, Simone Perriello, Anna Phan, Marco Pistoia, Alejandro Pozas-iKerstjens, Viktor Prutyanov, Daniel Puzzuoli, Jesús Pérez, Quintiii, Rudy Raymond, Rafael Martín-Cuevas Redondo, Max Reuter, Julia Rice, Diego M. Rodríguez, Max Rossmannek, Mingi Ryu, Tharrmashastha SAPV, SamFerracin, Martin Sandberg, Ninad Sathaye, Bruno Schmitt, Chris Schnabel, Zachary Schoenfeld, Travis L. Scholten, Eddie Schoute, Joachim Schwarm, Ismael Faro Sertage, Kanav Setia, Nathan Shammah, Yunong Shi, Adenilton Silva, Andrea Simonetto, Nick Singstock, Yukio Siraichi, Iskandar Sitdikov, Seyon Sivarajah, Magnus Berg Sletfjerding, John A. Smolin, Mathias Soeken, Igor Olegovich Sokolov, SooluThomas, Dominik Steenken, Matt Stypulkoski, Jack Suen, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor, Pete Taylour, Soolu Thomas, Mathieu Tillet, Maddy Tod, Enrique de la Torre, Kenso Trabing, Matthew Treinish, TrishaPe, Wes Turner, Yotam Vaknin, Carmen Recio Valcarce, Francois Varchon, Almudena Carrera Vazquez, Desiree Vogt-Lee, Christophe Vuillot, James Weaver, Rafal Wieczorek, Jonathan A. Wildstrom, Robert Wille, Erick Winston, Jack J. Woehr, Stefan Woerner, Ryan Woo, Christopher J. Wood, Ryan Wood, Stephen Wood, James Wootton, Daniyar Yeralin, Richard Young, Jessie Yu, Christopher Zachow, Laura Zdanski, Christa Zoufal, Zoufalc, azulehner, bcamorrison, brandhsn, chlorophyll zz, dan1pal, dime10, drholmie, elfrocampeador, faisaldebouni, fanizzamarco, gruu, kanejess, klinvill, kurarrr, lerongil, ma5x, merav aharoni, ordmoj, sethmerkel, strickroman, sumitpuri, tigerjack, toural, vvilpas, welien, willhbang, yang.luh, yelojakit, and yotamvakninibm, ``Qiskit: An Open-source Framework for Quantum Computing'' (2019).
https:/​/​doi.org/​10.5281/​zenodo.2562110

[3] IBM ``https:/​/​quantumexperience.ng.bluemix.net/​qx/​'' (Access: 2018.12.28).
https:/​/​quantumexperience.ng.bluemix.net/​qx/​

[4] Rigetti ``https:/​/​www.rigetti.com/​forest'' (Access: 2018.12.28).
https:/​/​www.rigetti.com/​forest

[5] D-Wave ``https:/​/​cloud.dwavesys.com/​qubist/​'' [Access: 2018.12.28].
https:/​/​cloud.dwavesys.com/​qubist/​

[6] Michael A. Nielsenand Isaac L. Chuang ``Quantum Computation and Quantum Information: 10th Anniversary Edition'' Cambridge University Press (2010).
https:/​/​doi.org/​10.1017/​CBO9780511976667

[7] I. M. Georgescu, S. Ashhab, and Franco Nori, ``Quantum simulation'' Reviews of Modern Physics 86, 153–185 (2014).
https:/​/​doi.org/​10.1103/​RevModPhys.86.153
arXiv:1308.6253

[8] Kentaro Tamuraand Yutaka Shikano ``Quantum Random Numbers generated by the Cloud Superconducting Quantum Computer'' (2019).
arXiv:1906.04410

[9] Ying Liand Simon C. Benjamin ``Efficient variational quantum simulator incorporating active error minimisation'' Phys Rev X 7, 021050 (2017).
https:/​/​doi.org/​10.1103/​PhysRevX.7.021050
arXiv:1611.09301

[10] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta, ``Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets'' Nature 549, 242–246 (2017).
https:/​/​doi.org/​10.1038/​nature23879
arXiv:1704.05018

[11] Abhinav Kandala, Kristan Temme, Antonio D. Corcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta, ``Extending the computational reach of a noisy superconducting quantum processor'' Nature 567, 491 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-1040-7
arXiv:1805.04492

[12] Kristan Temme, Sergey Bravyi, and Jay M. Gambetta, ``Error Mitigation for Short-Depth Quantum Circuits'' Phys. Rev. Lett. 119, 180509 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.180509
arXiv:1612.02058

[13] Suguru Endo, Simon C. Benjamin, and Ying Li, ``Practical Quantum Error Mitigation for Near-Future Applications'' Physical Review X 8, 031027 (2018).
https:/​/​doi.org/​10.1103/​PhysRevX.8.031027
arXiv:1712.09271

[14] Vickram N. Premakumarand Robert Joynt ``Error Mitigation in Quantum Computers subject to Spatially Correlated Noise'' arXiv e-prints arXiv:1812.07076 (2018).
arXiv:1812.07076

[15] X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E. O'Brien, ``Low-cost error mitigation by symmetry verification'' Phys. Rev. A 98, 062339 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.062339
arXiv:1807.10050

[16] Joshua Combes, Christopher Granade, Christopher Ferrie, and Steven T. Flammia, ``Logical Randomized Benchmarking'' arXiv e-prints (2017).
arXiv:1702.03688

[17] Mingyu Sunand Michael R. Geller ``Efficient characterization of correlated SPAM errors'' arXiv e-prints (2018).
arXiv:1810.10523

[18] J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, ``Tomography of quantum detectors'' Nature Physics 5, 27 (2008).
https:/​/​doi.org/​10.1038/​nphys1133

[19] Lijian Zhang, Hendrik B. Coldenstrodt-Ronge, Animesh Datta, Graciana Puentes, Jeff S. Lundeen, Xian-Min Jin, Brian J. Smith, Martin B. Plenio, and Ian A. Walmsley, ``Mapping coherence in measurement via full quantum tomography of a hybrid optical detector'' Nature Photonics 6, 364 (2012).
https:/​/​doi.org/​10.1038/​nphoton.2012.107

[20] Lijian Zhang, Animesh Datta, Hendrik B. Coldenstrodt-Ronge, Xian-Min Jin, Jens Eisert, Martin B. Plenio, and Ian A. Walmsley, ``Recursive quantum detector tomography'' New Journal of Physics 14, 115005 (2012).
https:/​/​doi.org/​10.1088/​1367-2630/​14/​11/​115005
arXiv:1207.3501

[21] J. J. Renema, G. Frucci, Z. Zhou, F. Mattioli, A. Gaggero, R. Leoni, M. J. A. de Dood, A. Fiore, and M. P. van Exter, ``Modified detector tomography technique applied to a superconducting multiphoton nanodetector'' Opt. Express 20, 2806–2813 (2012).
https:/​/​doi.org/​10.1364/​OE.20.002806
http:/​/​www.opticsexpress.org/​abstract.cfm?URI=oe-20-3-2806

[22] J. Z. Blumoff, K. Chou, C. Shen, M. Reagor, C. Axline, R. T. Brierley, M. P. Silveri, C. Wang, B. Vlastakis, S. E. Nigg, L. Frunzio, M. H. Devoret, L. Jiang, S. M. Girvin, and R. J. Schoelkopf, ``Implementing and Characterizing Precise Multiqubit Measurements'' Phys. Rev. X 6, 031041 (2016).
https:/​/​doi.org/​10.1103/​PhysRevX.6.031041

[23] Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, ``Charge-insensitive qubit design derived from the Cooper pair box'' Phys. Rev. A 76, 042319 (2007).
https:/​/​doi.org/​10.1103/​PhysRevA.76.042319

[24] Michał Oszmaniec, Filip B. Maciejewski, and Zbigniew Puchała, ``Simulating all quantum measurements using only projective measurements and postselection'' Physical Review A 100 (2019).
https:/​/​doi.org/​10.1103/​physreva.100.012351

[25] Lov K. Grover ``A fast quantum mechanical algorithm for database search'' arXiv e-prints quant–ph/​9605043 (1996).

[26] E. Bernsteinand U. Vazirani ``Quantum complexity theory'' Proc. of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC ’93) 11–20 (1993).

[27] Asher Peres ``Quantum theory: Concepts and methods'' Springer Science & Business Media (2006).
https:/​/​doi.org/​10.1007/​0-306-47120-5

[28] Zdeněk Hradil, Jaroslav Řeháček, Jaromír Fiurášek, and Miroslav Ježek, ``3 Maximum-Likelihood Methods in Quantum Mechanics'' Springer Berlin Heidelberg (2004).
https:/​/​doi.org/​10.1007/​978-3-540-44481-7_3

[29] Jaromír Fiurášek ``Maximum-likelihood estimation of quantum measurement'' Physical Review A 64, 024102 (2001).
https:/​/​doi.org/​10.1103/​PhysRevA.64.024102

[30] Aram W. Harrowand Ashley Montanaro ``Quantum computational supremacy'' Nature 549, 203–209 (2017).
https:/​/​doi.org/​10.1038/​nature23458
arXiv:1809.07442

[31] Hakop Pashayan, Stephen D. Bartlett, and David Gross, ``From estimation of quantum probabilities to simulation of quantum circuits'' Quantum 4, 223 (2020).
https:/​/​doi.org/​10.22331/​q-2020-01-13-223

[32] Miguel Navascuésand Sandu Popescu ``How Energy Conservation Limits Our Measurements'' Phys. Rev. Lett. 112, 140502 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.112.140502
arXiv:1211.2101

[33] Z. Puchała, Ł. Pawela, A. Krawiec, and R. Kukulski, ``Strategies for optimal single-shot discrimination of quantum measurements'' Phys. Rev. A 98, 042103 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.042103
arXiv:1804.05856

[34] Zbigniew Puchała, Łukasz Pawela, Aleksand ra Krawiec, Ryszard Kukulski, and Michał Oszmaniec, ``Multiple-shot and unambiguous discrimination of von Neumann measurements'' arXiv e-prints arXiv:1810.05122 (2018).
arXiv:1810.05122

[35] John Watrous ``The Theory of Quantum Information'' Cambridge University Press (2018).
https:/​/​doi.org/​10.1017/​9781316848142

[36] Erkka Haapasalo, Teiko Heinosaari, and Juha-Pekka Pellonpaa, ``Quantum measurements on finite dimensional systems: relabeling and mixing'' Quant. Inf. Process. 11, 1751–1763 (2012).
https:/​/​doi.org/​10.1007/​s11128-011-0330-2

[37] M. Oszmaniec, L. Guerini, P. Wittek, and A. Acín, ``Simulating Positive-Operator-Valued Measures with Projective Measurements'' Physical Review Letters 119, 190501 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.190501
arXiv:1609.06139

[38] Leonardo Guerini, Jessica Bavaresco, Marcelo Terra Cunha, and Antonio Acín, ``Operational framework for quantum measurement simulability'' Journal of Mathematical Physics 58, 092102 (2017).
https:/​/​doi.org/​10.1063/​1.4994303
arXiv:1705.06343

[39] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, ``Randomized benchmarking of quantum gates'' Physical Review A 77, 012307 (2008).
https:/​/​doi.org/​10.1103/​PhysRevA.77.012307
arXiv:0707.0963

[40] Jay M. Gambetta, A. D. Córcoles, S. T. Merkel, B. R. Johnson, John A. Smolin, Jerry M. Chow, Colm A. Ryan, Chad Rigetti, S. Poletto, Thomas A. Ohki, Mark B. Ketchen, and M. Steffen, ``Characterization of Addressability by Simultaneous Randomized Benchmarking'' Phys. Rev. Lett. 109, 240504 (2012).
https:/​/​doi.org/​10.1103/​PhysRevLett.109.240504
arXiv:1204.6308

[41] Madalin Guta, Jonas Kahn, Richard Kueng, and Joel A. Tropp, ``Fast state tomography with optimal error bounds'' arXiv e-prints arXiv:1809.11162 (2018).
arXiv:1809.11162

[42] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdul, and M. J. Weinberger, ``Inequalities for the L1 Deviation of the Empirical Distribution'' Technical Report HPL-2003-97R1, Hewlett-Packard Labs (2003).

[43] M. S. Andersen, J. Dahl, and L. Vandenberghe, ``CVXOPT: A Python package for convex optimization, version 1.2'' (2019).
https:/​/​cvxopt.org/​

[44] IBM ``Qiskit Github repository'' (Access: 2019.07.09).

[45] Robin Blume-Kohout, John King Gamble, Erik Nielsen, Jonathan Mizrahi, Jonathan D. Sterk, and Peter Maunz, ``Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit'' arXiv e-prints arXiv:1310.4492 (2013).
arXiv:1310.4492

[46] Seth T. Merkel, Jay M. Gambetta, John A. Smolin, Stefano Poletto, Antonio D. Córcoles, Blake R. Johnson, Colm A. Ryan, and Matthias Steffen, ``Self-consistent quantum process tomography'' Phys. Rev. A 87, 062119 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.87.062119
arXiv:1211.0322

[47] Michael D. Mazurek, Matthew F. Pusey, Kevin J. Resch, and Robert W. Spekkens, ``Experimentally bounding deviations from quantum theory in the landscape of generalized probabilistic theories'' arXiv e-prints arXiv:1710.05948 (2017).
arXiv:1710.05948

[48] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann, ``A Quantum Approximate Optimization Algorithm'' arXiv e-prints arXiv:1411.4028 (2014).
arXiv:1411.4028

[49] John A. Smolin, Jay M. Gambetta, and Graeme Smith, ``Maximum Likelihood, Minimum Effort'' Phys. Rev. Lett 108, 070502 (2012).
https:/​/​doi.org/​10.1103/​PhysRevLett.108.070502
arXiv:1106.5458

[50] Benjamin Schumacher ``Sending quantum entanglement through noisy channels'' arXiv e-prints quant–ph/​9604023 (1996).

[51] Pawel Horodecki, Michal Horodecki, and Ryszard Horodecki, ``General teleportation channel, singlet fraction and quasi-distillation'' arXiv e-prints quant–ph/​9807091 (1998).

[52] Anthony Chefles ``Unambiguous discrimination between linearly independent quantum states'' Physics Letters A 239, 339–347 (1998).
https:/​/​doi.org/​10.1016/​S0375-9601(98)00064-4

[53] Stephen M. Barnettand Sarah Croke ``Quantum state discrimination'' Advances in Optics and Photonics 1, 238 (2009).
https:/​/​doi.org/​10.1364/​AOP.1.000238
arXiv:0810.1970

[54] Joseph M. Renes, Robin Blume-Kohout, A. J. Scott, and Carlton M. Caves, ``Symmetric informationally complete quantum measurements'' Journal of Mathematical Physics 45, 2171–2180 (2004).
https:/​/​doi.org/​10.1063/​1.1737053

[55] Satoshi Ishizakaand Tohya Hiroshima ``Asymptotic Teleportation Scheme as a Universal Programmable Quantum Processor'' Phys. Rev. Lett. 101, 240501 (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.101.240501
arXiv:0807.4568

[56] Andrew M. Childsand Wim van Dam ``Quantum algorithms for algebraic problems'' Rev. Mod. Phys. 82, 1–52 (2010).
https:/​/​doi.org/​10.1103/​RevModPhys.82.1

[57] John Preskill ``Quantum computing and the entanglement frontier'' arXiv e-prints (2012).
arXiv:1203.5813

[58] Patrick J. Coles, Stephan Eidenbenz, Scott Pakin, Adetokunbo Adedoyin, John Ambrosiano, Petr Anisimov, William Casper, Gopinath Chennupati, Carleton Coffrin, Hristo Djidjev, David Gunter, Satish Karra, Nathan Lemons, Shizeng Lin, Andrey Lokhov, Alexander Malyzhenkov, David Mascarenas, Susan Mniszewski, Balu Nadiga, Dan O'Malley, Diane Oyen, Lakshman Prasad, Randy Roberts, Phil Romero, Nandakishore Santhi, Nikolai Sinitsyn, Pieter Swart, Marc Vuffray, Jim Wendelberger, Boram Yoon, Richard Zamora, and Wei Zhu, ``Quantum Algorithm Implementations for Beginners'' arXiv e-prints (2018).
arXiv:1804.03719

[59] Additional experimental data, such as the exact form of the implemented and reconstructed operators, is accessible online in the github repository – https:/​/​github.com/​fbm2718/​mitigation_paper2019. For the Python code implementing the ideas from the work, see GitHub repository: https:/​/​github.com/​fbm2718/​QREM.

[60] Nikolaj Moll, Panagiotis Barkoutsos, Lev S. Bishop, Jerry M. Chow, Andrew Cross, Daniel J. Egger, Stefan Filipp, Andreas Fuhrer, Jay M. Gambetta, and Marc Ganzhorn, ``Quantum optimization using variational algorithms on near-term quantum devices'' Quantum Science and Technology 3, 030503 (2018).
https:/​/​doi.org/​10.1088/​2058-9565/​aab822
arXiv:1710.01022

[61] Jinzhao Wang, Volkher B. Scholz, and Renato Renner, ``Confidence Polytopes in Quantum State Tomography'' Phys. Rev. Lett. 122, 190401 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.190401
arXiv:1808.09988

[62] Yanzhu Chen, Maziar Farahzad, Shinjae Yoo, and Tzu-Chieh Wei, ``Detector tomography on IBM quantum computers and mitigation of an imperfect measurement'' Physical Review A 100 (2019).
https:/​/​doi.org/​10.1103/​physreva.100.052315

Cited by

[1] Laurin E. Fischer, Daniel Miller, Francesco Tacchino, Panagiotis Kl. Barkoutsos, Daniel J. Egger, and Ivano Tavernelli, "Ancilla-free implementation of generalized measurements for qubits embedded in a qudit space", Physical Review Research 4 3, 033027 (2022).

[2] Muqing Zheng, Ang Li, Tamás Terlaky, and Xiu Yang, "A Bayesian Approach for Characterizing and Mitigating Gate and Measurement Errors", ACM Transactions on Quantum Computing 4 2, 1 (2023).

[3] Zhenyu Cai, Ryan Babbush, Simon C. Benjamin, Suguru Endo, William J. Huggins, Ying Li, Jarrod R. McClean, and Thomas E. O’Brien, "Quantum error mitigation", Reviews of Modern Physics 95 4, 045005 (2023).

[4] Mario Motta, Gavin O. Jones, Julia E. Rice, Tanvi P. Gujarati, Rei Sakuma, Ieva Liepuoniute, Jeannette M. Garcia, and Yu-ya Ohnishi, "Quantum chemistry simulation of ground- and excited-state properties of the sulfonium cation on a superconducting quantum processor", Chemical Science 14 11, 2915 (2023).

[5] Benjamin Weder, Uwe Breitenbucher, Frank Leymann, and Karoline Wild, 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC) 279 (2020) ISBN:978-0-7381-2394-3.

[6] Clement Charles, Erik J. Gustafson, Elizabeth Hardt, Florian Herren, Norman Hogan, Henry Lamm, Sara Starecheski, Ruth S. Van de Water, and Michael L. Wagman, "Simulating Z2 lattice gauge theory on a quantum computer", Physical Review E 109 1, 015307 (2024).

[7] Kieran Dalton, Christopher K. Long, Yordan S. Yordanov, Charles G. Smith, Crispin H. W. Barnes, Normann Mertig, and David R. M. Arvidsson-Shukur, "Quantifying the effect of gate errors on variational quantum eigensolvers for quantum chemistry", npj Quantum Information 10 1, 18 (2024).

[8] Filip B. Maciejewski, Zbigniew Puchała, and Michał Oszmaniec, "Exploring Quantum Average-Case Distances: Proofs, Properties, and Examples", IEEE Transactions on Information Theory 69 7, 4600 (2023).

[9] Chufan Lyu, Victor Montenegro, and Abolfazl Bayat, "Accelerated variational algorithms for digital quantum simulation of many-body ground states", Quantum 4, 324 (2020).

[10] Benjamin Weder, Johanna Barzen, Frank Leymann, and Marie Salm, "Automated Quantum Hardware Selection for Quantum Workflows", Electronics 10 8, 984 (2021).

[11] Teiko Heinosaari, Daniel Reitzner, and Alessandro Toigo, "Anticipative measurements in hybrid quantum-classical computation", Physical Review A 107 3, 032612 (2023).

[12] Alessandro Carbone, Davide Emilio Galli, Mario Motta, and Barbara Jones, "Quantum Circuits for the Preparation of Spin Eigenfunctions on Quantum Computers", Symmetry 14 3, 624 (2022).

[13] Jinzhao Sun, Xiao Yuan, Takahiro Tsunoda, Vlatko Vedral, Simon C. Benjamin, and Suguru Endo, "Mitigating Realistic Noise in Practical Noisy Intermediate-Scale Quantum Devices", Physical Review Applied 15 3, 034026 (2021).

[14] Marco Cattaneo, Matteo A. C. Rossi, Keijo Korhonen, Elsi-Mari Borrelli, Guillermo García-Pérez, Zoltán Zimborás, and Daniel Cavalcanti, "Self-consistent quantum measurement tomography based on semidefinite programming", Physical Review Research 5 3, 033154 (2023).

[15] Kostas Blekos, Dean Brand, Andrea Ceschini, Chiao-Hui Chou, Rui-Hao Li, Komal Pandya, and Alessandro Summer, "A review on Quantum Approximate Optimization Algorithm and its variants", Physics Reports 1068, 1 (2024).

[16] Michael R. Geller, "Conditionally Rigorous Mitigation of Multiqubit Measurement Errors", Physical Review Letters 127 9, 090502 (2021).

[17] Julian Schuhmacher, Laura Boggia, Vasilis Belis, Ema Puljak, Michele Grossi, Maurizio Pierini, Sofia Vallecorsa, Francesco Tacchino, Panagiotis Barkoutsos, and Ivano Tavernelli, "Unravelling physics beyond the standard model with classical and quantum anomaly detection", Machine Learning: Science and Technology 4 4, 045031 (2023).

[18] Dayue Qin, Xiaosi Xu, and Ying Li, "An overview of quantum error mitigation formulas", Chinese Physics B 31 9, 090306 (2022).

[19] Kento Tsubouchi, Yasunari Suzuki, Yuuki Tokunaga, Nobuyuki Yoshioka, and Suguru Endo, "Virtual quantum error detection", Physical Review A 108 4, 042426 (2023).

[20] L Sherin Beevi, P. M. Joe Prathap, Sudhish Reddy D, Agnes Joshy S, and W Vinil Dani, 2024 International Conference on Emerging Smart Computing and Informatics (ESCI) 1 (2024) ISBN:979-8-3503-0661-3.

[21] Shi‐Xin Zhang, Zhou‐Quan Wan, Chang‐Yu Hsieh, Hong Yao, and Shengyu Zhang, "Variational Quantum‐Neural Hybrid Error Mitigation", Advanced Quantum Technologies 6 10, 2300147 (2023).

[22] Chong Ying, Bin Cheng, Youwei Zhao, He-Liang Huang, Yu-Ning Zhang, Ming Gong, Yulin Wu, Shiyu Wang, Futian Liang, Jin Lin, Yu Xu, Hui Deng, Hao Rong, Cheng-Zhi Peng, Man-Hong Yung, Xiaobo Zhu, and Jian-Wei Pan, "Experimental Simulation of Larger Quantum Circuits with Fewer Superconducting Qubits", Physical Review Letters 130 11, 110601 (2023).

[23] Wentao Chen, Shuaining Zhang, Jialiang Zhang, Xiaolu Su, Yao Lu, Kuan Zhang, Mu Qiao, Ying Li, Jing-Ning Zhang, and Kihwan Kim, "Error-mitigated quantum simulation of interacting fermions with trapped ions", npj Quantum Information 9 1, 122 (2023).

[24] V Leyton-Ortega, S Majumder, and R C Pooser, "Quantum error mitigation by hidden inverses protocol in superconducting quantum devices * ", Quantum Science and Technology 8 1, 014008 (2023).

[25] Yink Loong Len, Tuvia Gefen, Alex Retzker, and Jan Kołodyński, "Quantum metrology with imperfect measurements", Nature Communications 13 1, 6971 (2022).

[26] Ivana Miháliková, Matej Pivoluska, Martin Plesch, Martin Friák, Daniel Nagaj, and Mojmír Šob, "The Cost of Improving the Precision of the Variational Quantum Eigensolver for Quantum Chemistry", Nanomaterials 12 2, 243 (2022).

[27] Bálint Koczor, "Exponential Error Suppression for Near-Term Quantum Devices", Physical Review X 11 3, 031057 (2021).

[28] Martin Beisel, Johanna Barzen, Frank Leymann, Felix Truger, Benjamin Weder, and Vladimir Yussupov, "Configurable Readout Error Mitigation in Quantum Workflows", Electronics 11 19, 2983 (2022).

[29] William J. Huggins, Sam McArdle, Thomas E. O’Brien, Joonho Lee, Nicholas C. Rubin, Sergio Boixo, K. Birgitta Whaley, Ryan Babbush, and Jarrod R. McClean, "Virtual Distillation for Quantum Error Mitigation", Physical Review X 11 4, 041036 (2021).

[30] Tanmay Singal, Filip B. Maciejewski, and Michał Oszmaniec, "Implementation of quantum measurements using classical resources and only a single ancillary qubit", npj Quantum Information 8 1, 82 (2022).

[31] Joseph Vovrosh, Kiran E. Khosla, Sean Greenaway, Christopher Self, M. S. Kim, and Johannes Knolle, "Simple mitigation of global depolarizing errors in quantum simulations", Physical Review E 104 3, 035309 (2021).

[32] Mohan Sarovar, Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and Robin Blume-Kohout, "Detecting crosstalk errors in quantum information processors", Quantum 4, 321 (2020).

[33] Gary J Mooney, Gregory A L White, Charles D Hill, and Lloyd C L Hollenberg, "Generation and verification of 27-qubit Greenberger-Horne-Zeilinger states in a superconducting quantum computer", Journal of Physics Communications 5 9, 095004 (2021).

[34] Zachary Parks, Arnaud Carignan-Dugas, Erik Gustafson, Yannick Meurice, and Patrick Dreher, "Applying the noiseless extrapolation error mitigation protocol to calculate real-time quantum field theory scattering phase shifts", Physical Review D 109 1, 014505 (2024).

[35] Hwan-Seop Yeo, Seungwook Woo, Jeongwon Kim, Youngdu Kim, Beomgyu Choi, Gahyun Choi, Jiman Choi, Sun Kyung Lee, Woon Song, and Yonuk Chong, "High-Fidelity Multiplexed Single-Shot Readout for Transmon Qubits With High-Power Measurement", IEEE Transactions on Applied Superconductivity 33 5, 1 (2023).

[36] Mario Motta and Julia E. Rice, "Emerging quantum computing algorithms for quantum chemistry", WIREs Computational Molecular Science 12 3, e1580 (2022).

[37] Emilie Huffman, Miguel García Vera, and Debasish Banerjee, "Toward the real-time evolution of gauge-invariant Z2 and U(1) quantum link models on noisy intermediate-scale quantum hardware with error mitigation", Physical Review D 106 9, 094502 (2022).

[38] Katrina Barnes, Peter Battaglino, Benjamin J. Bloom, Kayleigh Cassella, Robin Coxe, Nicole Crisosto, Jonathan P. King, Stanimir S. Kondov, Krish Kotru, Stuart C. Larsen, Joseph Lauigan, Brian J. Lester, Mickey McDonald, Eli Megidish, Sandeep Narayanaswami, Ciro Nishiguchi, Remy Notermans, Lucas S. Peng, Albert Ryou, Tsung-Yao Wu, and Michael Yarwood, "Assembly and coherent control of a register of nuclear spin qubits", Nature Communications 13 1, 2779 (2022).

[39] Zoltán Guba, István Finta, Ákos Budai, Lóránt Farkas, Zoltán Zimborás, and András Pályi, "Resource analysis for quantum-aided Byzantine agreement with the four-qubit singlet state", Quantum 8, 1324 (2024).

[40] Syahri Ramadhani, Junaid Ur Rehman, and Hyundong Shin, "Quantum Error Mitigation for Quantum State Tomography", IEEE Access 9, 107955 (2021).

[41] Alistair W. R. Smith, Kiran E. Khosla, Chris N. Self, and M. S. Kim, "Qubit readout error mitigation with bit-flip averaging", Science Advances 7 47, eabi8009 (2021).

[42] Benjamin Weder, Johanna Barzen, Frank Leymann, and Daniel Vietz, Quantum Software Engineering 61 (2022) ISBN:978-3-031-05323-8.

[43] Senrui Chen, Wenjun Yu, Pei Zeng, and Steven T. Flammia, "Robust Shadow Estimation", PRX Quantum 2 3, 030348 (2021).

[44] Unpil Baek, Diptarka Hait, James Shee, Oskar Leimkuhler, William J. Huggins, Torin F. Stetina, Martin Head-Gordon, and K. Birgitta Whaley, "Say NO to Optimization: A Nonorthogonal Quantum Eigensolver", PRX Quantum 4 3, 030307 (2023).

[45] Rawad Mezher, James Mills, and Elham Kashefi, "Mitigating errors by quantum verification and postselection", Physical Review A 105 5, 052608 (2022).

[46] I. Gianani, Y.S. Teo, V. Cimini, H. Jeong, G. Leuchs, M. Barbieri, and L.L. Sánchez-Soto, "Compressively Certifying Quantum Measurements", PRX Quantum 1 2, 020307 (2020).

[47] Alistair W R Smith, A J Paige, and M S Kim, "Faster variational quantum algorithms with quantum kernel-based surrogate models", Quantum Science and Technology 8 4, 045016 (2023).

[48] Hongye Yu, Yusheng Zhao, and Tzu-Chieh Wei, "Simulating large-size quantum spin chains on cloud-based superconducting quantum computers", Physical Review Research 5 1, 013183 (2023).

[49] Pedro M. Q. Cruz and J. Fernández-Rossier, "Testing complementarity on a transmon quantum processor", Physical Review A 104 3, 032223 (2021).

[50] Rebecca Hicks, Bryce Kobrin, Christian W. Bauer, and Benjamin Nachman, "Active readout-error mitigation", Physical Review A 105 1, 012419 (2022).

[51] Siwei Tan, Liqiang Lu, Hanyu Zhang, Jia Yu, Congliang Lang, Yongheng Shang, Xinkui Zhao, Mingshuai Chen, Yun Liang, and Jianwei Yin, Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 948 (2024) ISBN:9798400703850.

[52] Benedikt Fauseweh and Jian-Xin Zhu, "Digital quantum simulation of non-equilibrium quantum many-body systems", Quantum Information Processing 20 4, 138 (2021).

[53] Yujun Choi, Tanmay Singal, Young-Wook Cho, Sang-Wook Han, Kyunghwan Oh, Sung Moon, Yong-Su Kim, and Joonwoo Bae, "Single-Copy Certification of Two-Qubit Gates Without Entanglement", Physical Review Applied 18 4, 044046 (2022).

[54] Filip B. Maciejewski, Zbigniew Puchała, and Michał Oszmaniec, "Operational Quantum Average-Case Distances", Quantum 7, 1106 (2023).

[55] Zhi-Peng Yang, Huan-Yu Ku, Alakesh Baishya, Yu-Ran Zhang, Anton Frisk Kockum, Yueh-Nan Chen, Fu-Li Li, Jaw-Shen Tsai, and Franco Nori, "Deterministic one-way logic gates on a cloud quantum computer", Physical Review A 105 4, 042610 (2022).

[56] Wan-Guan Chang, Chia-Yi Ju, Guang-Yin Chen, Yueh-Nan Chen, and Huan-Yu Ku, "Visually quantifying single-qubit quantum memory", Physical Review Research 6 2, 023035 (2024).

[57] Haggai Landa, Dekel Meirom, Naoki Kanazawa, Mattias Fitzpatrick, and Christopher J. Wood, "Experimental Bayesian estimation of quantum state preparation, measurement, and gate errors in multiqubit devices", Physical Review Research 4 1, 013199 (2022).

[58] Krzysztof Werner, Kamil Wereszczyński, and Agnieszka Michalczuk, Lecture Notes in Computer Science 13353, 195 (2022) ISBN:978-3-031-08759-2.

[59] Majid Zahedian, Max Keller, Minsik Kwon, Javid Javadzade, Jonas Meinel, Vadim Vorobyov, and Jörg Wrachtrup, "On readout and initialisation fidelity by finite demolition single shot readout", Quantum Science and Technology 9 1, 015023 (2024).

[60] Diego García-Martín, Martín Larocca, and M. Cerezo, "Effects of noise on the overparametrization of quantum neural networks", Physical Review Research 6 1, 013295 (2024).

[61] Narendra N. Hegade, Koushik Paul, Yongcheng Ding, Mikel Sanz, F. Albarrán-Arriagada, Enrique Solano, and Xi Chen, "Shortcuts to Adiabaticity in Digitized Adiabatic Quantum Computing", Physical Review Applied 15 2, 024038 (2021).

[62] Benjamin Lienhard, Antti Vepsäläinen, Luke C.G. Govia, Cole R. Hoffer, Jack Y. Qiu, Diego Ristè, Matthew Ware, David Kim, Roni Winik, Alexander Melville, Bethany Niedzielski, Jonilyn Yoder, Guilhem J. Ribeill, Thomas A. Ohki, Hari K. Krovi, Terry P. Orlando, Simon Gustavsson, and William D. Oliver, "Deep-Neural-Network Discrimination of Multiplexed Superconducting-Qubit States", Physical Review Applied 17 1, 014024 (2022).

[63] Charles H. Baldwin, Karl Mayer, Natalie C. Brown, Ciarán Ryan-Anderson, and David Hayes, "Re-examining the quantum volume test: Ideal distributions, compiler optimizations, confidence intervals, and scalable resource estimations", Quantum 6, 707 (2022).

[64] Fereshte Shahbeigi, Mahsa Karimi, and Vahid Karimipour, "Simulating of X-states and the two-qubit XYZ Heisenberg system on IBM quantum computer", Physica Scripta 97 2, 025101 (2022).

[65] Yousef Hindy, Jessica Pointing, Meltem Tolunay, Sreeram Venkatarao, Mario Motta, and Joseph A. Latone, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 681 (2023) ISBN:979-8-3503-4323-6.

[66] Yong Siah Teo and Luis L. Sánchez-Soto, "Modern compressive tomography for quantum information science", International Journal of Quantum Information 19 08, 2140003 (2021).

[67] Benjamin Weder, Johanna Barzen, Martin Beisel, and Frank Leymann, "Provenance-Preserving Analysis and Rewrite of Quantum Workflows for Hybrid Quantum Algorithms", SN Computer Science 4 3, 233 (2023).

[68] Michael R. Geller, Andrew Arrasmith, Zoë Holmes, Bin Yan, Patrick J. Coles, and Andrew Sornborger, "Quantum simulation of operator spreading in the chaotic Ising model", Physical Review E 105 3, 035302 (2022).

[69] Gary J. Mooney, Gregory A. L. White, Charles D. Hill, and Lloyd C. L. Hollenberg, "Whole‐Device Entanglement in a 65‐Qubit Superconducting Quantum Computer", Advanced Quantum Technologies 4 10, 2100061 (2021).

[70] Junaid ur Rehman and Hyundong Shin, "Entanglement-Free Parameter Estimation of Generalized Pauli Channels", Quantum 5, 490 (2021).

[71] Kentaro Heya and Naoki Kanazawa, "Cross-Cross Resonance Gate", PRX Quantum 2 4, 040336 (2021).

[72] Ewout van den Berg, Sergey Bravyi, Jay M. Gambetta, Petar Jurcevic, Dmitri Maslov, and Kristan Temme, "Single-shot error mitigation by coherent Pauli checks", Physical Review Research 5 3, 033193 (2023).

[73] Benedikt Fauseweh, "Quantum many-body simulations on digital quantum computers: State-of-the-art and future challenges", Nature Communications 15 1, 2123 (2024).

[74] Paul D. Nation, Hwajung Kang, Neereja Sundaresan, and Jay M. Gambetta, "Scalable Mitigation of Measurement Errors on Quantum Computers", PRX Quantum 2 4, 040326 (2021).

[75] Christian W. Bauer, Zohreh Davoudi, A. Baha Balantekin, Tanmoy Bhattacharya, Marcela Carena, Wibe A. de Jong, Patrick Draper, Aida El-Khadra, Nate Gemelke, Masanori Hanada, Dmitri Kharzeev, Henry Lamm, Ying-Ying Li, Junyu Liu, Mikhail Lukin, Yannick Meurice, Christopher Monroe, Benjamin Nachman, Guido Pagano, John Preskill, Enrico Rinaldi, Alessandro Roggero, David I. Santiago, Martin J. Savage, Irfan Siddiqi, George Siopsis, David Van Zanten, Nathan Wiebe, Yukari Yamauchi, Kübra Yeter-Aydeniz, and Silvia Zorzetti, "Quantum Simulation for High-Energy Physics", PRX Quantum 4 2, 027001 (2023).

[76] Donghwa Lee, Jinil Lee, Seongjin Hong, Hyang-Tag Lim, Young-Wook Cho, Sang-Wook Han, Hyundong Shin, Junaid ur Rehman, and Yong-Su Kim, "Error-mitigated photonic variational quantum eigensolver using a single-photon ququart", Optica 9 1, 88 (2022).

[77] Samudra Dasgupta and Travis S. Humble, "Characterizing the Reproducibility of Noisy Quantum Circuits", Entropy 24 2, 244 (2022).

[78] Suguru Endo, Zhenyu Cai, Simon C. Benjamin, and Xiao Yuan, "Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation", Journal of the Physical Society of Japan 90 3, 032001 (2021).

[79] Xuanqiang Zhao, Benchi Zhao, Zihan Xia, and Xin Wang, "Information recoverability of noisy quantum states", Quantum 7, 978 (2023).

[80] Bacui Li, Lorcán O. Conlon, Ping Koy Lam, and Syed M. Assad, "Optimal single-qubit tomography: Realization of locally optimal measurements on a quantum computer", Physical Review A 108 3, 032605 (2023).

[81] F. Cosco and N. Lo Gullo, "Enhancing qubit readout with Bayesian learning", Physical Review A 108 6, L060402 (2023).

[82] Hamza Jnane, Jonathan Steinberg, Zhenyu Cai, H. Chau Nguyen, and Bálint Koczor, "Quantum Error Mitigated Classical Shadows", PRX Quantum 5 1, 010324 (2024).

[83] Megan L. Dahlhauser and Travis S. Humble, "Modeling noisy quantum circuits using experimental characterization", Physical Review A 103 4, 042603 (2021).

[84] Miroslav Urbanek, Benjamin Nachman, Vincent R. Pascuzzi, Andre He, Christian W. Bauer, and Wibe A. de Jong, "Mitigating Depolarizing Noise on Quantum Computers with Noise-Estimation Circuits", Physical Review Letters 127 27, 270502 (2021).

[85] Ming-Cheng Chen, Ming Gong, Xiaosi Xu, Xiao Yuan, Jian-Wen Wang, Can Wang, Chong Ying, Jin Lin, Yu Xu, Yulin Wu, Shiyu Wang, Hui Deng, Futian Liang, Cheng-Zhi Peng, Simon C. Benjamin, Xiaobo Zhu, Chao-Yang Lu, and Jian-Wei Pan, "Demonstration of Adiabatic Variational Quantum Computing with a Superconducting Quantum Coprocessor", Physical Review Letters 125 18, 180501 (2020).

[86] Sergey Bravyi, Sarah Sheldon, Abhinav Kandala, David C. Mckay, and Jay M. Gambetta, "Mitigating measurement errors in multiqubit experiments", Physical Review A 103 4, 042605 (2021).

[87] Takahiro Ohgoe, Hokuto Iwakiri, Masaya Kohda, Kazuhide Ichikawa, Yuya O. Nakagawa, Hubert Okadome Valencia, and Sho Koh, "Demonstrating quantum computation for quasiparticle band structures", Physical Review Research 6 2, L022022 (2024).

[88] He-Liang Huang, Xiao-Yue Xu, Chu Guo, Guojing Tian, Shi-Jie Wei, Xiaoming Sun, Wan-Su Bao, and Gui-Lu Long, "Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation", Science China Physics, Mechanics & Astronomy 66 5, 250302 (2023).

[89] Can Wang, Feng-Ming Liu, Ming-Cheng Chen, He Chen, Xian-He Zhao, Chong Ying, Zhong-Xia Shang, Jian-Wen Wang, Yong-Heng Huo, Cheng-Zhi Peng, Xiaobo Zhu, Chao-Yang Lu, and Jian-Wei Pan, "Realization of fractional quantum Hall state with interacting photons", Science 384 6695, 579 (2024).

[90] Dian Wu, Qi Zhao, Can Wang, Liang Huang, Yang-Fan Jiang, Bing Bai, You Zhou, Xue-Mei Gu, Feng-Ming Liu, Ying-Qiu Mao, Qi-Chao Sun, Ming-Cheng Chen, Jun Zhang, Cheng-Zhi Peng, Xiao-Bo Zhu, Qiang Zhang, Chao-Yang Lu, and Jian-Wei Pan, "Closing the Locality and Detection Loopholes in Multiparticle Entanglement Self-Testing", Physical Review Letters 128 25, 250401 (2022).

[91] Seungchan Seo and Joonwoo Bae, "Measurement Crosstalk Errors in Cloud-Based Quantum Computing", IEEE Internet Computing 26 1, 26 (2022).

[92] E. O. Kiktenko, A. O. Malyshev, A. S. Mastiukova, V. I. Man'ko, A. K. Fedorov, and D. Chruściński, "Probability representation of quantum dynamics using pseudostochastic maps", Physical Review A 101 5, 052320 (2020).

[93] Ahmad Farooq, Muhammad Asad Ullah, Junaid ur Rehman, Kyesan Lee, and Hyundong Shin, "Self-guided quantum state learning for mixed states", Quantum Information Processing 21 7, 243 (2022).

[94] Christian W. Bauer, Benjamin Nachman, and Marat Freytsis, "Simulating Collider Physics on Quantum Computers Using Effective Field Theories", Physical Review Letters 127 21, 212001 (2021).

[95] Seungchan Seo, Jiheon Seong, and Joonwoo Bae, "Correlations in Noisy Measurements", Open Systems & Information Dynamics 29 02, 2250009 (2022).

[96] Lana Mineh and Ashley Montanaro, "Accelerating the variational quantum eigensolver using parallelism", Quantum Science and Technology 8 3, 035012 (2023).

[97] Jacob C. Curtis, Connor T. Hann, Salvatore S. Elder, Christopher S. Wang, Luigi Frunzio, Liang Jiang, and Robert J. Schoelkopf, "Single-shot number-resolved detection of microwave photons with error mitigation", Physical Review A 103 2, 023705 (2021).

[98] Andreas J. C. Woitzik, Lukas Hoffmann, Andreas Buchleitner, and Edoardo G. Carnio, "An Energy Estimation Benchmark for Quantum Computing Hardware", Open Systems & Information Dynamics 31 01, 2450006 (2024).

[99] Bibek Pokharel and Daniel A. Lidar, "Better-than-classical Grover search via quantum error detection and suppression", npj Quantum Information 10 1, 23 (2024).

[100] Ludmila Botelho, Adam Glos, Akash Kundu, Jarosław Adam Miszczak, Özlem Salehi, and Zoltán Zimborás, "Error mitigation for variational quantum algorithms through mid-circuit measurements", Physical Review A 105 2, 022441 (2022).

[101] Hyeokjea Kwon and Joonwoo Bae, "A Hybrid Quantum-Classical Approach to Mitigating Measurement Errors in Quantum Algorithms", IEEE Transactions on Computers 70 9, 1401 (2021).

[102] Bharat Thotakura and Tzu-Chieh Wei, "Quantum state transfer: interplay between gate and readout errors", Quantum Information Processing 22 7, 275 (2023).

[103] Filip B. Maciejewski, Flavio Baccari, Zoltán Zimborás, and Michał Oszmaniec, "Modeling and mitigation of cross-talk effects in readout noise with applications to the Quantum Approximate Optimization Algorithm", Quantum 5, 464 (2021).

[104] Benjamin Nachman, Miroslav Urbanek, Wibe A. de Jong, and Christian W. Bauer, "Unfolding quantum computer readout noise", npj Quantum Information 6 1, 84 (2020).

[105] Kun Wang, Yu-Ao Chen, and Xin Wang, "Mitigating quantum errors via truncated Neumann series", Science China Information Sciences 66 8, 180508 (2023).

[106] Kentaro Heya, Ken M. Nakanishi, Kosuke Mitarai, Zhiguang Yan, Kun Zuo, Yasunari Suzuki, Takanori Sugiyama, Shuhei Tamate, Yutaka Tabuchi, Keisuke Fujii, and Yasunobu Nakamura, "Subspace variational quantum simulator", Physical Review Research 5 2, 023078 (2023).

[107] Bibek Pokharel, Siddarth Srinivasan, Gregory Quiroz, and Byron Boots, "Scalable measurement error mitigation via iterative bayesian unfolding", Physical Review Research 6 1, 013187 (2024).

[108] Benchen Huang, Marco Govoni, and Giulia Galli, "Simulating the Electronic Structure of Spin Defects on Quantum Computers", PRX Quantum 3 1, 010339 (2022).

[109] Muhammad Kashif and Saif Al-Kuwari, "Physical Realization of Measurement Based Quantum Computation", IEEE Access 11, 90105 (2023).

[110] Abdullah Ash Saki, Mahabubul Alam, Koustubh Phalak, Aakarshitha Suresh, Rasit Onur Topaloglu, and Swaroop Ghosh, 2021 IEEE European Test Symposium (ETS) 1 (2021) ISBN:978-1-6654-1849-2.

[111] Jihye Kim, Byungdu Oh, Yonuk Chong, Euyheon Hwang, and Daniel K Park, "Quantum readout error mitigation via deep learning", New Journal of Physics 24 7, 073009 (2022).

[112] Benchen Huang, Nan Sheng, Marco Govoni, and Giulia Galli, "Quantum Simulations of Fermionic Hamiltonians with Efficient Encoding and Ansatz Schemes", Journal of Chemical Theory and Computation 19 5, 1487 (2023).

[113] Jelena Mackeprang, Daniel Bhatti, and Stefanie Barz, "Non-adaptive measurement-based quantum computation on IBM Q", Scientific Reports 13 1, 15428 (2023).

[114] Bibek Pokharel and Daniel A. Lidar, "Demonstration of Algorithmic Quantum Speedup", Physical Review Letters 130 21, 210602 (2023).

[115] Shihao Zhang, Jiacheng Bao, Yifan Sun, Lvzhou Li, Houjun Sun, and Xiangdong Zhang, "An Exact and Practical Classical Strategy for 2D Graph State Sampling", Annalen der Physik 535 2, 2200531 (2023).

[116] Conrad Strydom and Mark Tame, "Implementation of single-qubit measurement-based t-designs using IBM processors", Scientific Reports 12 1, 5014 (2022).

[117] Bo Yang, Rudy Raymond, and Shumpei Uno, "Efficient quantum readout-error mitigation for sparse measurement outcomes of near-term quantum devices", Physical Review A 106 1, 012423 (2022).

[118] Frank Leymann and Johanna Barzen, "The bitter truth about gate-based quantum algorithms in the NISQ era", Quantum Science and Technology 5 4, 044007 (2020).

[119] Benjamin Weder, Johanna Barzen, Frank Leymann, Marie Salm, and Daniel Vietz, Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software 2 (2020) ISBN:9781450381000.

[120] Senrui Chen, Yunchao Liu, Matthew Otten, Alireza Seif, Bill Fefferman, and Liang Jiang, "The learnability of Pauli noise", Nature Communications 14 1, 52 (2023).

[121] Fei Hua, Meng Wang, Gushu Li, Bo Peng, Chenxu Liu, Muqing Zheng, Samuel Stein, Yufei Ding, Eddy Z. Zhang, Travis Humble, and Ang Li, Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis 1468 (2023) ISBN:9798400707858.

[122] Vincent R. Pascuzzi, Andre He, Christian W. Bauer, Wibe A. de Jong, and Benjamin Nachman, "Computationally efficient zero-noise extrapolation for quantum-gate-error mitigation", Physical Review A 105 4, 042406 (2022).

[123] Sau Lan Wu and Shinjae Yoo, "Challenges and opportunities in quantum machine learning for high-energy physics", Nature Reviews Physics 4 3, 143 (2022).

[124] Ken N. Okada, Keita Osaki, Kosuke Mitarai, and Keisuke Fujii, "Classically optimized variational quantum eigensolver with applications to topological phases", Physical Review Research 5 4, 043217 (2023).

[125] Ewout van den Berg, Zlatko K. Minev, and Kristan Temme, "Model-free readout-error mitigation for quantum expectation values", Physical Review A 105 3, 032620 (2022).

[126] Majid Haghparast, Tommi Mikkonen, Jukka K. Nurminen, and Vlad Stirbu, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 173 (2023) ISBN:979-8-3503-4323-6.

[127] Rebecca Hicks, Christian W. Bauer, and Benjamin Nachman, "Readout rebalancing for near-term quantum computers", Physical Review A 103 2, 022407 (2021).

[128] Sisi Zhou, Spyridon Michalakis, and Tuvia Gefen, "Optimal Protocols for Quantum Metrology with Noisy Measurements", PRX Quantum 4 4, 040305 (2023).

[129] Elijah Pelofske, Andreas Bärtschi, and Stephan Eidenbenz, "Short-depth QAOA circuits and quantum annealing on higher-order ising models", npj Quantum Information 10 1, 30 (2024).

[130] Changjun Kim, Kyungdeock Daniel Park, and June-Koo Rhee, "Quantum Error Mitigation With Artificial Neural Network", IEEE Access 8, 188853 (2020).

[131] Syed Tihaam Ahmad, Ahmad Farooq, and Hyundong Shin, "Self-guided quantum state tomography for limited resources", Scientific Reports 12 1, 5092 (2022).

[132] Changwon Lee and Daniel K Park, "Scalable quantum measurement error mitigation via conditional independence and transfer learning", Machine Learning: Science and Technology 4 4, 045051 (2023).

[133] James Mills and Rawad Mezher, "Mitigating photon loss in linear optical quantum circuits: classical postprocessing methods outperforming postselection", arXiv:2405.02278, (2024).

[134] Michael R. Geller and Mingyu Sun, "Toward efficient correction of multiqubit measurement errors: pair correlation method", Quantum Science and Technology 6 2, 025009 (2021).

[135] Ashley Montanaro and Stasja Stanisic, "Error mitigation by training with fermionic linear optics", arXiv:2102.02120, (2021).

[136] Kazunobu Maruyoshi, Takuya Okuda, Juan W. Pedersen, Ryo Suzuki, Masahito Yamazaki, and Yutaka Yoshida, "Conserved charges in the quantum simulation of integrable spin chains", Journal of Physics A Mathematical General 56 16, 165301 (2023).

[137] Pranav Gokhale, Ali Javadi-Abhari, Nathan Earnest, Yunong Shi, and Frederic T. Chong, "Optimized Quantum Compilation for Near-Term Algorithms with OpenPulse", arXiv:2004.11205, (2020).

[138] Ashley Montanaro and Stasja Stanisic, "Compressed variational quantum eigensolver for the Fermi-Hubbard model", arXiv:2006.01179, (2020).

[139] Manpreet Singh Jattana, Fengping Jin, Hans De Raedt, and Kristel Michielsen, "General error mitigation for quantum circuits", Quantum Information Processing 19 11, 414 (2020).

[140] Hyeokjea Kwon and Joonwoo Bae, "A hybrid quantum-classical approach to mitigating measurement errors", arXiv:2003.12314, (2020).

[141] Benjamin Nachman and Michael R. Geller, "Categorizing Readout Error Correlations on Near Term Quantum Computers", arXiv:2104.04607, (2021).

[142] Julien Gacon, "Scalable Quantum Algorithms for Noisy Quantum Computers", arXiv:2403.00940, (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2024-05-17 09:43:22) and SAO/NASA ADS (last updated successfully 2024-05-17 09:43:23). The list may be incomplete as not all publishers provide suitable and complete citation data.