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Abstract 

Sleep is essential for a healthy and productive life, yet 

its importance is largely overlooked, allowing populations 

to sleep less and to develop sleep disturbances. This trend 

results into an epidemic of poor quality and insufficient 

sleep that is turn jeopardizes health, performance, mood, 

memory, social relationships and productivity. A first step 

to overcome this epidemic relies on uncovering it at the 

individual and societal levels. The availability of different 

wearable devices that can track physiological signals 

represents a great opportunity to define and quantify the 

problem. Many such devices incorporate a 

photoplethysmography (PPG) sensor. This triggers 

interest in studies aiming to get insight into human sleep 

structure based on information obtained from PPG 

sensors. 

This study aimed to validate a new automated sleep 

analysis which is simply based on the inter-beat-interval 

series obtained from PPG, and that uses features of heart 

rate variability. The candidate algorithm was tested 

against gold standard scoring of whole night state-of-the-

art sleep studies. 

The PPG-based sleep scoring performs very well in 

differentiating sleep stages, however, the sleep/wake 

separation is not sufficient and requires improvement. This 

last task is facilitated by the fact that the majority of 

devices with PPG capabilities, are equipped with 

accelerometers providing additional information for better 

separation. Combining accelerometers and PPG signals 

from wearable devices in a sleep analyser is likely to 

provide a reliable and accurate automated detection of 

sleep and wakefulness, including sleep macro- and micro-

architecture.  

 

 

1. Introduction 

Human life has changed very rapidly during the last 

century. People move less, eat more, sleep less. 

Technology made this possible, yet the price is high as we 

live in a sleepless and heavy-bodied society. The solution 

to this crisis may be found in technology itself. 

Smartphones became an indispensable companion for the 

vast majority of people, wearable devices tend to follow 

this trend.  Now many use their smart communication 

companion and their wearable device to monitor their level 

of physical activity, their nutrition balance, or their sleep. 

Knowing some metrics regarding those vital human 

functions may help improve the human sleep-life balance, 

thus improving health, mood, performance, memory and 

longevity. Same wearables that track activity can help 

monitoring sleep, based on accelerometer and/or 

instantaneous heart rate signals. Poor quality sleep and 

insufficient sleep jeopardize health, performance and 

wellbeing [1]. Medically provided sleep solutions are 

limited, and expensive, leaving most sufferers undetected, 

and thus untreated efficiently. Sleep self-assessment, 

followed by digital personalized expert guidance, may 

represent a suitable solution for individuals as well as for 

the health establishment.  

Most fitness trackers and smart watches offer sleep 

analysis derived from their accelerometer sensors, offering 

information regarding sleep and wakefulness periods only 

[2,3], yet they lack the ability to discriminate between 

various sleep stages (Light Sleep (LS), Deep Sleep (DS), 

or Rapid Eyes Movement Sleep (REM)) sleep 

fragmentation, stress levels and Heart Rate (HR) during 

sleep. Many such devices incorporate a sensor that uses 

Photoplethysmography (PPG) to measure HR. The signals 

originating in this sensor allow detection of the 

instantaneous Inter Beat Interval (IBI), which enables the 

evaluation of the autonomic nervous fluctuations [4]. 

Our ECG-based validated sleep diagnostic software [5] 

based on HR variability (HRV) analysis, has been 

modified to rely solely on IBI series obtained from ECG 

signal (IBIECG). The wide availability of PPG based 

devices for HR detection during physical activity triggered 

our interest to evaluate whether the IBI obtained from PPG 

signals (IBIPPG) during sleep, allows to evaluate sleep 

structure.  

Several studies [4,6] indicate that HRV based on IBIPPG 

may be used as an alternative to the HRV calculated from 

electrical signals of the heart, IBIECG. The two time series 
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(IBIECG and IBIPPG) are not identical, as the pulse wave 

travels from the heart to the wrist/finger, and the time 

required for this, known as the pulse transient time (PTT), 

has its inherent beat to beat variability. 

The goal of this study is to evaluate the applicability, 

accuracy, and reliability of our sleep analysis algorithm 

when adjusted to rely on IBIPPG. 

 

2. Methods 

Data from 88 whole night gold standard sleep studies 

(PSG) that included both ECG (standard lead II), and 

finger PPG (Nonin transmissive PPG) were used to check 

the performance of a PPG based algorithm. 35 sleep studies 

(20% male, 51.6±8.3 years, BMI 30.3±5.1) were used as a 

training set, and the remaining 53 studies (17% male, 

51.8±8.9 years, BMI 29.0±5.6) served as the test set.  

All the sleep studies used represent a subset of a case-

control study characterizing polysomnographic traits of 

chronic fatigue syndrome. The study was conducted at the 

Center for Disease Control in Wichita, Kansas, and is 

described elsewhere [7]. The PSG tests were performed 

using a N7000 system by Embla. ECG and PPG signals 

were recorded as part of the standard PSG protocol. The 

transmissive pulse oximeter probe was applied to either the 

right or left index finger. The PPG signal was sampled at 

75Hz and 8bit resolution, and the ECG signal at 200Hz and 

16bit. 

Each PSG recording was scored manually according to 

the American Academy of Medicine Scoring criteria [8], 

by a single registered technologist, in 30sec epochs. Each 

epoch was scored as either wake, stage 1 or 2, slow-wave 

(SWS also referred as DS), or REM sleep.  

The automated PPG analysis included: (1) A 

preprocessing procedure applied to the PPG signal that 

consisted of up-sampling the PPG signal to 200Hz, 

followed by low-pass filtering the result with a cutoff 

frequency of 10Hz. (2) The extraction of the IBI series 

from the PPG signal. Portions of the PPG signals were 

tainted by clipping, which precluded defining the beats 

location based on detecting of the apex points. Therefore, 

we chose to define the IBI as the time-interval between two 

consecutive inflection points in the upslope part of the 

filtered PPG signal. (3) An automated correction procedure 

in which outlier IBI points were located based on their 

surrounding values and were removed.  

The automated sleep analysis applied to the PPG signal 

was a version of a validated ECG-based sleep diagnostic 

software [5]. The algorithm used a similar approach, and a 

similar set of HRV features, yet this time for IBIPPG instead 

of IBIECG. The time-domain features included sample 

statistics of IBI duration and differences, nonlinear 

features such as characteristics features of Poincaré plot, 

and detrended fluctuation analysis [9]. The frequency 

domain features were based on time frequency 

decomposition, which allowed optimizing the resolution in 

time and frequency providing spectral powers in the very-

low (0.008-0.04Hz), low (0.04-0.15Hz), and high (0.15-

0.5Hz) frequency bands [10]. Finally, the stage definition 

was based on a Bayesian classifier. The outcome of the 

classifier was then combined with a correction procedure 

based on arousals and awakenings detection, obtained 

separately from the analysis of consecutive beat series. 

The algorithm uncovered sleep architecture in 30 

seconds epochs, including wakefulness, LS (corresponding 

to combined stages 1 and 2 in PSG), DS, REM sleep [11], 

and additional events such as autonomic arousals and 

awakenings.  

The classification of the sleep stages was performed in 

three steps. The algorithm first differentiated between 

wakefulness and sleep, then sleep epochs were further 

divided into REM and Non-REM, and finally the Non-

REM epochs were classified into LS and DS.  

The training set was used to assess whether the 

performance of the IBIPPG algorithm performed the same 

as when using the IBIECG, and to optimize the algorithm in 

case of underperformance when compared to the IBIECG. 

When optimization became satisfactory, the algorithm was 

applied to the test set, for validation.   

The hypnogram of the automated IBIPPG algorithm was 

compared to the gold standard hypnogram to test for 

epoch-by-epoch agreement. Comparison with PSG was 

performed for the period between lights off and lights on. 

The following basic statistical parameters were used: 

agreement, sensitivity, specificity, positive predictive 

value (PPV), and negative predictive value (NPV). In 

addition, we used Cohen’s kappa coefficient (‘kappa’), 

which is considered a more robust measure of agreement 

in cases with imbalance in the occurrence of the different 

states, as in our case. Cohen’s kappa values are usually 

interpreted as follows: below 0.20 is considered slight 

agreement, 0.21-0.4 fair agreement, 0.41-0.60 moderate 

agreement, 0.61-0.8 substantial agreement, and above 0.81 

almost perfect agreement. The results presented here relate 

to the output of the test set only.  

 

3. Results 

The test set included a total of 49,726 epochs.  For 

48,541 epochs (98.6%) PPG was present and adequate for 

analysis. All those epochs were scored using both our 

candidate algorithm and gold standard, independent 

manual evaluation. 

An example of a hypnogram obtained using the IBIPPG 

based algorithm as compared to that of the gold standard 

scored PSG can be seen in Figure 1. The high similarity 

between the two hypnograms is evident. One can observe 

that, at the beginning of the night, the IBIPPG algorithm 

misses a region of about 12 minutes of sleep, mistakenly 

scoring it as wake.  

The epoch-by-epoch sleep/wake comparison between the 

output of the IBIPPG automated algorithm with PSG results 
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yields fair agreement according to the obtained kappa of 

0.31. The results indicate a relatively low sensitivity to 

wake (38%), and very high specificity (92%), as shown in 

Table 1. The same validation technique, over the same 

sleep sessions, but when the tested algorithm was the one 

based on IBIECG, showed substantially higher agreement 

with a kappa of 0.46, sensitivity of 52%, and specificity of 

93%.    

 

 
 

Figure 1. An example of single night hypnogram: A. 

obtained using gold standard manual scoring, B. Same 

study scored automatically using the IBIPPG algorithm.  

 

When considering sleep stages only, the ability of the 

IBIPPG algorithm to differentiate between REM and non-

REM showed a sensitivity to REM of 51% and the 

corresponding specificity of 92%, with kappa of 0.46. 

These results indicated a much better performance 

compared to the sleep /wake classification.  

Subdividing the non-REM further into DS and LS 

resulted in a sensitivity and specificity of 76% and 75% 

respectively with kappa of 0.42.  

 

Table 1. Epoch-by-epoch agreement between sleep stages 

scored using IBIPPG and gold standard PSG scoring. 

 

 Wake/ 

Sleep 

REM/ 

NREM 

DS/ 

LS 

Agreement (%) 84.3 83.6 75.1 

Sensitivity (%) 38.1 51.3 76.8 

Specificity (%) 91.7 91.7 74.6 

PPV (%) 42.2 61.1 46.9 

NPV (%) 90.3 88.2 91.6 

Kappa 0.31 0.46 0.42 

 

4. Conclusions 

Measurement results depend on the measuring methods 

used, and when presenting and interpreting results, we 

need to consider the kind of metric used. Sleep measures 

differ when we evaluate sleep based on 

electroencephalogram, electro-occulogram, and muscle 

activity as in the gold standard PSG, or when we evaluate 

based through the perspective of autonomic nervous 

fluctuations, as in our ECG based algorithm [5], or based 

on observing behaviors (body position, movement, 

performance of motor tasks etc.), or finally based on 

cognition and disconnection from the environment. 

Clearly, sleep detection based on a single signal cannot be 

expected to issue identical results to those obtained based 

on information provided by the multiple sensors used in 

gold standard PSG. Moreover, when manual scoring is 

used, the interscorer agreement for the same night standard 

PSG scoring is around 83% only [12]. Our results suggest 

that the IBIPPG sleep scoring performs very well in 

differentiating between different sleep stages (LS, DS and 

REM). The sleep/wake separation, however is less 

satisfactory.  

The sleep/wake classification based on IBIECG 

performed significantly better than the one based on IBIPPG. 

This suggests that there is no inherent limitation when 

trying to detect sleep/wake based on HRV analysis. The 

difference in the performance of the two algorithms may 

be due to errors in the detection of the beat location in the 

PPG signal, and/or to the PTT variability which is known 

to affect mainly the high frequency band of the HRV [6]. 

Further studies should be performed to determine the exact 

source of the above difference, and to evaluate the 

contribution of the PTT to the results. The analysis of the 

PPG pulse wave can contribute additional information and 

improve the results.  

The tested algorithm is a first attempt to establish a 

method of defining sleep architecture based on signals 

originating in PPG signals obtained with consumer wrist-

worn devices. The PPG device that was used in this study 

was a medical transmissive sensor (using red and infrared 

light) positioned on the finger. Most consumer PPG based 

devices use reflective green light and are positioned on the 

wrist. In addition, to save battery life, their signal is 

sampled at lower rates. The limited sampling rate may 

increase the error in the detection of the beat location, 

whereas the different location of the PPG on the wrist 

provides information on the blood flow in different blood 

vessels (different dimensions, depth and regulation 

mechanism) than the standard finger PPG, and needs 

separate testing, optimization, and validation.   

Many devices with PPG signals are also equipped with 

accelerometers that may help improving the separation 

between sleep and wake. Combining accelerometer and 

PPG signals in a new sleep algorithm will provide a rather 

accurate automated detection of the four stages of sleep 

and wakefulness. Indeed, a recent study [13] presented 

results of an algorithm for sleep stages detection based on 

PPG and accelerometer signal. The sleep analysis is based 

not on the IBI-HRV analysis only, but on cardio- 

respiratory coupling with the respiration signal obtained 
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from the PPG. The additional information supplied by the 

accelerometer and respiratory signals explains the better 

results presented in the new study [13].  

The presented results could be further improved by 

adding accelerometer data. Further studies of specific 

wrist-worn PPG devices may help in defining the factors 

that influence the detection of the IBI series, and when 

those are better defined the sleep analyser can gain 

reliability. 

No doubt that when using wearable devices to define 

human physiology and behavior, we need basic testing and 

understanding of what we measure, and on how those 

measures relate to those used in the clinical-medical 

laboratories. Unless standardization of signal 

measurement, sampling and transmission is defined, each 

wearable device requires appropriate testing and validation 

of analysis algorithms. 
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