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Abstract

Nowadays, the electrocardiogram (ECG) is still the
most widely used signal for the diagnosis of cardiac
pathologies. However, this recording is often disturbed by
the powerline interference (PLI), its removal being manda-
tory to avoid misdiagnosis. Although a broad variety of
methods have been proposed for that purpose, often they
substantially alter the original signal morphology or are
computationally expensive. Hence, the present work in-
troduces a simple and efficient algorithm to suppress the
PLI from the ECG. Briefly, the input signal is decom-
posed into four Wavelet levels and the resulting coeffi-
cients are thresholded to remove the PLI estimated from
the TQ intervals. The denoised ECG signal is then re-
constructed by computing the inverse Wavelet transform.
The method has been validated making use of fifty 10-min
length clean ECG segments obtained from the MIT–BIH
Normal Sinus Rhythm database, which were contaminated
with a sinusoidal signal of 50 Hz and variable harmonic
content. Comparing the original and denoised ECG sig-
nals through a signed correlation index, improvements be-
tween 10–72% have been observed with respect to com-
mon adaptive notch filtering, implemented for comparison.
These results suggest that the proposed method is featured
by an enhanced trade-off between noise reduction and sig-
nal morphology preservation

1. Introduction

The surface electrocardiogram (ECG) has proven to be
extremely useful in the diagnosis of many cardiac disor-
ders, thus resulting essential in daily clinical practice [1,2].
This signal reflects the heart electrical activity through po-
tential differences captured by electrodes placed in stan-
dardized positions on the patient’s thorax. However, the
potentials obtained in this way are extremely weak, usually
presenting few millivolts. Thus, they can be substantially
disturbed by different kinds of nuisance signals, includ-
ing baseline wandering, electromyographic interferences

or instrumentation noise from electronic devices. In this
context, the powerline interference (PLI) is a major com-
mon perturbation in the ECG [3]. This nuisance signal is
caused by capacitive coupling between the patient’s body
and the surrounding wirings from the mains or many oth-
ers associated to power supplies of active equipments [4].

Although the nominal mains frequency is well-
established in each country (50 or 60 Hz), it often presents
fluctuations both in frequency and amplitude [5]. Hence,
the PLI can be considered as a non-stationary nuisance sig-
nal, its successful removal being a challenging task [3].
Another aspect also hampering PLI reduction is the fact
that this interference falls within the bandwidth of inter-
est for the ECG recording, i.e. within the frequency range
from 0.05 to 150 Hz [1]. Both issues have been broadly
considered to explain the poor performance exhibited by
the most common algorithms recently proposed for PLI
reduction from the ECG. In fact, typical fixed-bandwidth
notch filtering presents the major limitation of requiring
a relatively wide stop-band to deal with frequency devia-
tions in the PLI, thus notably disturbing the original ECG
morphology [6]. To palliate this problem, several adaptive
approaches with ability to track time-varying fluctuations
in the PLI have also been proposed [7–9]. Although these
methods have reported a better performance than common
notch filtering, they still introduce a significantly large al-
teration in the ECG morphology. Indeed, sudden voltage
transitions associated with QRS complexes often interfere
with the parameter estimation [9].

As an alternative to these methods, denoising based on
Wavelet transform (WT) has been recently applied to the
ECG signal [10–14]. Thus, given a suitable wavelet func-
tion, it has been proven that orthogonal decomposition
of a noisy ECG recording can separate its main profile
from overlapped white noise and other sinusoidal interfer-
ences [13, 14]. This ECG transformation has been tradi-
tionally developed through a well-known multiresolution
algorithm, where the input signal is progressively filtered
and decimated [13]. However, this procedure does not pre-
serve translation invariance in the resulting wavelet coeffi-
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cients, thus removing high-frequency information from the
input signal and, then, modifying the native morphology
of the QRS complexes [15, 16]. To minimize this aspect
and achieve a good trade-off between PLI reduction and
original ECG morphology preservation, a novel denoising
algorithm based on stationary WT (SWT) is proposed in
the present work. Note that this transformation is a shifted
invariant version of the discrete WT, where the input signal
is never sub-sampled and the filters are upsampled at each
level of decomposition [15, 16].

2. Methods

2.1. Study population

To validate the proposed algorithm, fifty 10-min length
and noise-free ECG segments were extracted from the
MIT–BIH Normal Sinus Rhythm database, which is freely
available at PhysioNet [17]. This dataset consists of 18
long-term ECG signals, which were acquired with a sam-
pling rate of 128 Hz. Although two leads were available
for all the recordings, only the one showing most common
morphological patterns for the ECG waves was chosen.

The selected ECG segments were then resampled to
1000 Hz and contaminated with a synthesized PLI. To
mimic this interference as realistic as possible, common
fluctuations in the mains frequency were considered. Ac-
cording to the standard EN50160 [5], the power supply
frequency is mainly set at 50 Hz with a maximum varia-
tion of ±1%. Moreover, this signal can also present har-
monic components with a power lower than 2, 5, 1 and
6% for the first four multiples of 50 Hz, respectively [5].
Consequently, the PLI was simulated as a sinusoidal sig-
nal of 50 Hz and its first four harmonic components with
random amplitude and frequency variations within the de-
scribed limits. The resulting interference was finally used
to obtain noisy ECG recordings with signal-to-interference
(SIR) ratios of 15, 10, 5, 0, −5 and −10 dB.

2.2. SWT-based denoising algorithm

A block diagram summarizing the proposed denoising
algorithm is displayed in Figure 1. As can be seen, the
noisy ECG recording was firstly decomposed into four
wavelet levels making use of a sixth-order Daubechies
function. The resulting coefficients for the scales 1, 2, 3
and 4 were then thresholded to remove the PLI. As a final
step, the denoised ECG signal was reconstructed by apply-
ing the inverse SWT to the shrunk wavelet coefficients.

In this methodology proper selection of shrinkage
thresholds (i.e., λ1, λ2, λ3 and λ4) plays a key role to suc-
cessfully cancel out the PLI and, simultaneously, to pre-
serve the original ECG morphology. Indeed, the optimal
cut-off value for each scale must act as an oracle to dis-
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Figure 1. Block diagram for the proposed SWT-based de-
noising algorithm.

cern between relevant and irrelevant wavelet coefficients.
For this purpose, an adaptive threshold λj for each scale
was computed in this work by discarding high-amplitude
information, which is mainly associated with QRS com-
plexes [15, 16]. More precisely, the threshold λj was ob-
tained as the result of applying a moving median filter for
a window of 200 ms to the absolute value of the wavelet
coefficients for the scale j.

The way by which wavelet coefficients are thresholded
also had a significant impact on the PLI suppression from
the ECG signal. Thus, a combination of the well-known
soft and hard thresholding functions was adopted to exploit
the main characteristics of the ECG morphology [14]. In
fact, whereas a hard thresholding was applied to the QRS
complexes, a soft shrinkage was used for the remaining
ECG intervals.

2.3. Performance assessment

As a reference for comparison, an adaptive notch filter-
ing was also considered to reduce the PLI. This algorithm
was implemented according to the indications found in the
Costa et al.’s work [18]. Moreover, an adaptive signed
correlation index (ASCI) was used to quantify noise re-
duction and morphology preservation in the resulting ECG
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Figure 2. Mean and standard deviation values of ASCI ob-
tained from the proposed SWT-based denoising algorithm
and the reference adaptive notch filtering for different lev-
els of SIR.

signal for the two analyzed denoising algorithms. From a
mathematical point of view, if the original clean ECG is
named x(n) and the denoised recording x̂(n), this metric
was computed as

ASCI
[
x(n), x̂(n)

]
=

1

L

L∑
k=1

x(k)⊗ x̂(k), (1)

where L is the number of samples both for x(n) and x̂(n)
and the operator ⊗ is defined as

x(n)⊗ x̂(n) =
{

1 if |x(n)− x̂(n)| ≤ ξ,
−1 if |x(n)− x̂(n)| > ξ.

(2)

The threshold ξ was experimentally set to 5% of the stan-
dard deviation of x(n).

3. Results

Figure 2 summarizes average and standard deviation
values of ASCI for the proposed SWT-based denoising
algorithm and the reference adaptive notch filtering. As
shown, whereas the proposed method presented a stable
behavior regardless of the noise level, adaptive filtering
was specially sensitive to SIR levels of ≤ 10 dB. Indeed,
the SWT-based technique reported improvements of ASCI
between 10–72% with respect to the reference filtering.

Figure 3 displays a denoising example with the two con-
sidered algorithms applied to a noisy ECG with SIR of
5 dB. Note how the resulting recording provided by the
proposed method was clearly denoised preserving its na-
tive morphology, whereas a highly contaminated signal
was still observed for the adaptive notch filtering.

Original ECG

Noisy ECG

Denoised ECG using the proposed SWT-based method

Denoised ECG using the reference adaptive notch filtering

Figure 3. Typical example of the resulting ECG signals
from the two analyzed denoising methods when a SIR of 5
dB was considered.

4. Discussion and conclusions

To a greater or lesser extent, the PLI is always present in
the surface ECG recording and, therefore, a filtering stage
able to reduce this perturbation is mandatory before fur-
ther processing. For this purpose, adaptive notch filtering
has been widely used as an alternative to common fixed-
bandwidth filtering, due to its ability to track time-varying
changes in the input signal [18]. However, although the
results obtained in this study have shown an acceptable
behavior for high values of SIR, the implemented adap-
tive filtering presented a poor performance for moderate
and high levels of noise. Thus, whereas mean values of
ASCI about 85% were seen for a SIR of 15 dB, they were
around 20% for −10 dB (see Figure 2). This worsening
performance with growing levels of noise has also been
suggested by other authors as a major drawback of this de-
noising algorithm [7, 9].

Interestingly, this limitation has been largely overcome
by the proposed SWT-based algorithm. As can be seen
in Figure 2, morphological alterations caused by this de-

Page 3



noising method were negligible and remained mostly con-
stant for every SIR. Indeed, regardless of the noise level,
mean and standard deviation values of ASCI were always
about 94% and 2%, respectively. As a consequence, the
proposed method reached a good trade-off between PLI re-
moval and preservation of the native ECG integrity. Other
attractive feature of this method is its simplicity, so that it
may be easily incorporated to commercial recording sys-
tems. Nonetheless, additional experiments to corroborate
that aspect will be developed in the near future.
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