About the journal

Cobiss

Chemical Industry and Chemical Engineering Quarterly 2009 Volume 15, Issue 4, Pages: 237-249
https://doi.org/10.2298/CICEQ0904237S
Full text ( 335 KB)
Cited by


Heavy metal ions adsorption from mine waters by sawdust

Stanković Velizar (Technical Faculty, Bor)
Božić Dragana ORCID iD icon (Technical Faculty, Bor)
Gorgievski Milan ORCID iD icon (Technical Faculty, Bor)
Bogdanović G. (Technical Faculty, Bor)

In this work the results on the batch and column adsorption of copper and some associated ions by employing linden and poplar sawdust as a low-cost adsorbent are presented. The mine water from a local abandoned copper mine, as well as synthetic solutions of those ions which are the main constituents of the mine water were both used as a model-system in this study. The adsorption ability of the chosen sawdust to adsorb heavy metal ions is considered as a function of the initial pH of the solution and kind of metal ions. At lower pH of solutions the adsorption percentage (AD %) decreases leading to a zero AD % at pH < 1.1. Maximum AD % is achieved at 3.5 < pH < 5. It was found that poplar and linden sawdust have both almost equal adsorption capacities against copper ions. The highest AD % ( ?80%) was achieved for Cu2+, while for Fe2+ it was slightly above 10%. The other considered ions (Zn2+ and Mn2+) were within this interval. The results obtained in the batch mode were verified through the column test by using the real mine water originating from an acid mine drainage (AMD) of the copper mine 'Cerovo', RTB Bor. The breakthrough curves are presented as a function of the aqueous phase volume passed through the column allowing having an insight into the column adsorption features. Breakthrough points were determined for copper, manganese and zinc ions. A very high adsorption degree - higher than 99% was achieved in these experiments for all mentioned ions. After completing the adsorption, instead of desorption, the loaded sawdust was drained, dried and burned; the copper bearing ash was then leached with a controlled volume of sulphuric acid solution to concentrate copper therein. The obtained leach solution had the concentration of copper higher than 15 g dm-3 and the amount of H2SO4 high enough to serve as a supporting electrolyte suitable to be treated by the electrowinning for recovery of copper. The technology process based on the column adsorption is proposed and discussed.

Keywords: mine water, adsorption, leaching, sawdust

More data about this article available through SCIndeks