Skip to main content
Log in

Water quality associated with survival of submersed aquatic vegetation along an estuarine gradient

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The decline of submersed aquatic vegetation (SAV) in tributaries of the Chesapeake Bay has been associated with increasing anthropogenic inputs, and restoration of the bay remains a major goal of the present multi-state “Bay Cleanup” effort. In order to determine SAV response to water quality, we quantified the water column parameters associated with success of transplants and natural regrowth over a three-year period along an estuarine gradient in the Choptank River, a major tributary on the eastern shore of Chesapeake Bay. The improvement in water quality due to low precipitation and low nonpoint source loadings during 1985–1988 provided a natural experiment in which SAV was able to persist upstream where it had not been for almost a decade. Mean water quality parameters were examined during the growing season (May–October) at 14 sites spanning the estuarine gradient and arrayed to show correspondence with the occurrence of SAV. Regrowth of SAV in the Choptank is associated with mean dissolved inorganic nitrogen <10 μM; mean dissolved phosphate <0.35 μM; mean suspended sediment <20 mg l−1; mean chlorophylla in the water column <15 μg l−1; and mean light attenuation coefficient (Kd) <2 m−1. These values correspond well with those derived in other parts of the Chesapeake, particularly in the lower bay, and may provide managers with values that can be used as target concentrations for nutrient reduction strategies where SAV is an issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Antia, N. J., B. R. Berland, D. J. Bonin, andS. Y. Maestrini. 1975. Comparative evaluation of certain organic and inorganic sources of nitrogen for phototrophic growth of marine microalgae.Journal of the Marine Biological Association of the U.K. 55:519–539.

    Article  CAS  Google Scholar 

  • Banse, K., C.P. Falls, andL.A. Hobson. 1963. A gravimetric method for determining suspended matter in sea water using Millipore filters.Deep-Sea Research 10:693–642.

    Google Scholar 

  • Barko, J. W. andR. M. Smart. 1981. Sediment-based nutrition of submersed macrophytes.Aquatic Botany 10:339–352.

    Article  CAS  Google Scholar 

  • Carter, V. andN. Rybicki. 1986. Resurgence of submersed aquatic macrophytes in the tidal Potomac River, Maryland, Virginia, and the District of Columbia.Estuaries 9:368–375.

    Article  Google Scholar 

  • Champ, M. A., G. A. Gould, W. E. Bozzo, S. G. Ackelson, andK. C. Vierra. 1980. Characterization of light extinction and attenuation in Chesapeake Bay, August 1977, p. 263–277.In V. S. Kennedy (ed.), Estuarine Perspectives. Academic, New York.

    Google Scholar 

  • Connor, J. L. 1979. Benthic Macroalgae Associated with Central Chesapeake Bay Oyster Communities. M.S. Thesis, University of Maryland, College Park, Maryland. 126 p.

    Google Scholar 

  • Cronin, W. B. andD. W. Pritchard. 1975. Additional statistics on the dimensions of the Chesapeake Bay and its tributaries: Cross-section widths and segment volumes per meter depth. Johns Hopkins University, Baltimore, Maryland. 475 p.

    Google Scholar 

  • Dennison, W. C., R. J. Orth, K. A. Moore, J. C. Stevenson, V. Carter, S. Kollar, P. W. Bergstrom, andR. Batiuk. 1993. Assessing water quality with submersed aquatic vegetation.Bioscience 43:86–94.

    Article  Google Scholar 

  • Fisher, T. R., L. W. Harding, D. W. Stanley, andL. G. Ward. 1988. Phytoplankton, nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries.Estuarine, Coastal and Shelf Science 27:61–83.

    Article  CAS  Google Scholar 

  • Gerloff, G. C. andP. H. Krumbholz. 1966. Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants.Limnology and Oceanography 11:529–537.

    Google Scholar 

  • Goldsborough, W. J. andW. M. Kemp. 1988. Light responses of a submersed macrophyte: Implications for survival in turbid waters.Ecology 69:1775–1786.

    Article  Google Scholar 

  • Jagels, R. andA. Barnabas. 1989. Variation of leaf ultrastructure ofRuppia maritima L. along a salinity gradient.Aquatic Botany 33:207–221.

    Article  Google Scholar 

  • Kemp, W. M., W. R. Boynton, J. C. Stevenson, R. R. Twilley, andJ. C. Means. 1983. The decline of submerged vascular plants in the upper Chesapeake Bay: Summary of results concerning possible causes.Marine Technology Society Journal 17: 78–89.

    Google Scholar 

  • Kemp, W. M., W. R. Boynton, R. R. Twilley, J. C. Stevenson, andL. G. Ward. 1984. Influences of submersed vascular plants on ecological processes in upper Chesapeake Bay, p. 367–394.In V. S. Kennedy (ed.), The Estuary as a Filter. Academic Press, New York.

    Google Scholar 

  • Kirk, J. T. O. 1983. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge, United Kingdom. 401 p.

    Google Scholar 

  • Koifoid, C. A. 1903. The plankton of the Illinois River, 1894–1899, with introductory notes on the hydrography of the Illinois River and its Basin. Part 1, Quantitative investigations and general results. Bulletin of the Illinois Laboratory of Natural History. 629 p.

  • Lee, V. andS. Olsen. 1985. Eutrophication and management initiatives for the control of nutrient inputs to Rhode Island coastal lagoons.Estuaries 8:191–202.

    Article  Google Scholar 

  • Lipschultz, F., J. J. Cunningham, andJ. C. Stevenson. 1979. Nitrogen fixation associated with four species of submersed angiosperms in the central Chesapeake Bay,Estuarine, Coastal and Shelf Science 9:813–818.

    CAS  Google Scholar 

  • Lomax, K. andJ. C. Stevenson. 1982. Diffuse source loadings in a flat coastal plain watershed: Water movements and nutrient budgets. Maryland Department of Natural Resources, Annapolis, Maryland, 72 p.

    Google Scholar 

  • Lubbers, L., W. R. Boynton, andW. M. Kemp. 1990. Variations in structure of estuarine fish communities in relation to abundance of submersed vascular plants.Marine Ecology-Progress Series 65:1–14.

    Article  Google Scholar 

  • Malone, T. C., L. H. Crocker, S. E. Pike, andB. W. Wendler. 1988. Influence of river flow on the dynamics of phytoplankton production in a partially stratified estuary.Marine Ecology-Progress Series 48:235–249.

    Article  Google Scholar 

  • Morris, I. 1972. Nitrogen assimilation and protein synthesis, p. 583–635.In I. Morris (ed.), Algal Physiology and Biochemistry. University of California Press, Berkeley, California.

    Google Scholar 

  • Orth, R. J., A. A. Frisch, J. F. Nowak, andK. A. Moore. 1987. Distribution of submerged aquatic vegetation in the Chesapeake Bay. Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia. 247 p.

    Google Scholar 

  • Orth, R. J. andA. A. Moore. 1983. Chesapeake Bay: An unprecedented decline in submerged aquatic vegetation.Science 222:51–53.

    Article  Google Scholar 

  • Orth, R. J. andK. A. Moore. 1984. Distribution and abundance of submerged aquatic vegetation in Chesapeake Bay: An historical perspective.Estuaries 7:531–540.

    Article  Google Scholar 

  • Orth, R. J. andK. A. Moore. 1988. Submerged, aquatic vegetation in the bay: A barometer of bay health, p. 619–629.In M. Lynch (ed.), Understanding the Estuary: Advances in Chesapeake Bay Research. Chesapeake Research Consortium, Solomons, Maryland.

    Google Scholar 

  • Orth, R. J. andJ. F. Nowak. 1990. Distribution of Submerged Aquatic Vegetation in the Chesapeake Bay—1989. Final Report, United States Environmental Protection Agency Chesapeake Bay Program, Annapolis, Maryland. 249 p.

    Google Scholar 

  • Orth, R. J., J. Simons, J. Capelli, V. Carter, L. Hindman, S. Hodges, K. Moore, andN. Rybicki. 1986. Distribution of Submerged Aquatic Vegetation in the Chesapeake Bay and Tributaries—1985. Final Report, United States Environmental Protection Agency Chesapeake Bay Program, Annapolis, Maryland. 296 p.

    Google Scholar 

  • Parsons, T. R., Y. Maita, andC. M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford, United Kingdom. 173 p.

    Google Scholar 

  • Phillips, G. L., D. Eminson, andB. Moss. 1978. A mechanism to account for macrophyte decline in progressively eutrophicated fresh waters.Aquatic Botany 4:103–126.

    Article  Google Scholar 

  • Pip, E. 1989. Water temperature and freshwater macrophyte distribution.Aquatic Botany 34:367–373.

    Article  Google Scholar 

  • Rivrin, R. andM. A. Voytek. 1985. Photoadaptations of photosynthesis by dinoflagellates from natural populations: A species approach, p. 97–102.In S. S. Anderson, White, and Baden (eds.), Toxic Dinoflagellates. Elsevier, New York.

    Google Scholar 

  • Sanford, L. P. andM. A. Boicourt. 1990. Wind-forced salt intrusion into a tributary estuary.Journal of Geophysical Research 95:13357–13371.

    Article  Google Scholar 

  • Shenton-Leonard, M. A. 1982. Nitrifying and denitrifying activity in the sediments of estuarine littoral zones. M.S. Thesis, University of Maryland, College Park, Maryland. 51 p.

    Google Scholar 

  • Shepherd, S. A., A. J. McComb, D. A. Bulthuis, V. Neverauskas, A. J. Steffensen, andR. West. 1989. Decline of seagrasses, p. 346–393.In A. W. D. Larkum, A. J. McComb, and S. A. Shepherd (eds.), Biology of Seagrasses. Elsevier, Amsterdam.

    Google Scholar 

  • Staver, K. W. 1984. Responses of epiphytic algae to nitrogen and phosphorus enrichment and effects of productivity of the host plant,Potamogeton perfoliatus L. in estuarine waters. M.S. Thesis, University of Maryland, College Park, Maryland. 62 p.

    Google Scholar 

  • Staver, K., R. Brinsfield, andJ. C. Stevenson. 1988. Strategies for reducing nutrient and pesticide movement from agricultural land in the Chesapeake region, p. 87–101.In J. B. Summers and S. S. Anderson (eds.), Toxic Substances in Agricultural Water Supply and Drainage: Searching for Solutions. United States Committee on Irrigation and Drainage, Denver, Colorado.

    Google Scholar 

  • Staver, L. 1986. Competitive interactions of submerged aquatic vegetation under varying nutrient and salinity conditions. M.S. Thesis, University of Maryland, College Park, Maryland. 58 p.

    Google Scholar 

  • Stevenson, J. C. 1988. Comparative ecology of submersed grass beds in freshwater, estuarine, and marine environments.Limnology and Oceanography 33:867–893.

    Article  CAS  Google Scholar 

  • Stevenson, J. C. andN. M. Confer. 1978. Summary of available information on Chesapeake Bay usubmerged vegetation. United States Fish and Wildlife Service. Annapolis, Maryland. 335 p.

    Google Scholar 

  • Stevenson, J. C., K. Staver, andR. Brinsfield. 1986. Surface runoff and groundwater impacts from agricultural activities in the Chesapeake Region, p. 211–219.In J. B. Summers and S. S. Anderson (eds.), Toxic Substances in Agricultural Water Supply and Drainage. United States Committee on Irrigation and Drainage. Denver, Colorado.

    Google Scholar 

  • Swingle, H. S. 1947. Experiments on pond fertilization.Alabama Experiment Station Bulletin 264:34.

    Google Scholar 

  • Twilley, R. R., W. M. Kemp, K. W. Staver, J. C. Stevenson, andK. W. Boynton. 1985. Nutrient enrichment of estuarine submersed vascular plant communities. 1. Algal growth and effects on production of plants and associated communities.Marine Ecology Progress Series 23:179–191.

    Article  Google Scholar 

  • United States Environmental Protection Agency. 1983. Chesapeake Bay Program: Findings and Recommendations. United States Environmental Protection Agency, Philadelphia, 48 p.

    Google Scholar 

  • Valderrama, J. C. 1981. The simultaneous analysis of total nitrogen and phosphorus in natural waters.Marine Chemistry 10:109–122.

    Article  CAS  Google Scholar 

  • Valiela, I. andJ. E. Costa. 1988. Eutrophication of Buttermilk Bay, a Cape Cod coastal embayment: Concentration of nutrients and watershed budgets.Environmental Management 12:539–553.

    Article  CAS  Google Scholar 

  • Ward, L. G., W. M. Kemp, andW. R. Boynton. 1984. The influence of waves and seagrass communities on suspended particulates in an estuarine environment.Marine Geology 59: 85–103.

    Article  Google Scholar 

  • Ward, L. G. andR. R. Twilley. 1986. Seasonal distributions of suspended particulate material and dissolved nutrients in a coastal plain estuary.Estuaries 9:156–168.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. 1975. Limnology. W. B. Saunders, Philadelphia. 743 p.

    Google Scholar 

  • Wetzel, R. G. andR. A. Hough. 1973. Productivity and the role of aquatic macrophytes in lakes: An assessment.Polskie Archiwum Hydrobiologii 20:9–19.

    CAS  Google Scholar 

  • Wetzel, R. L. andH. A. Neckles. 1986. A model ofZostera marina L. photosynthesis and growth: Simulated effects of selected physical-chemical variables and biological interactions.Aquatic Botany 26:307–323.

    Article  Google Scholar 

  • Wetzel, R. L. andP. A. Penhale. 1983. Production ecology of seagrass communities in the lower Chesapeake Bay,Marine Technology Society Journal 17:22–31.

    Google Scholar 

  • Yarbro, L. A., P. R. Carlson, T. R. Fisher, J. Chanton, andW. M. Kemp. 1983. A sediment budget for the Choptank River estuary in Maryland, U.S.A.,Estuarine Coastal Shelf Science 17:555–570.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Court Stevenson, J., Staver, L.W. & Staver, K.W. Water quality associated with survival of submersed aquatic vegetation along an estuarine gradient. Estuaries 16, 346–361 (1993). https://doi.org/10.2307/1352507

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352507

Keywords

Navigation