Skip to main content
Log in

Small-scale spatial variation of macrobenthic community structure

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Examination of small-scale spatial variation in essential to understanding the relationships between environmental factors and benthic community structure in estuaries. A sampling experiment was performed in October 1993 to measure infauna association with sediment composition and salinity gradients in Nueces Bay, Texas, USA. The bay was partitioned into four salinity zones and three sediment types. Higher densities of macrofaua, were found in sediments with greater sand content and in areas with higher salinity. High diversity was also associated with high homogeneous salinity (31–33‰) and greater sand content. Macrofauna biomass and diversity were positively correlated with bottom salinity, porewater salinity, and bottom dissolved inorganic nitrogen (DIN). Furthermore, species dominance shifted along the estuarine gradient.Streblospio benedicti dominated at lower salinity, but,Mediomatsus ambiseta andMulinia lateralis were the dominant species at higher salinity. Statistical analyses revealed significant correlations for sediment characteristics (i.e., increased fine sediments, water content, and total organic carbon) with decreased total abundance and diversity. Increased salinity and DIN were correlated with increased total biomass, diversity, and macrofauma community structure. These physico-chemical variables are regulated by freshwater inflow, so inflow is an important factor influencing macrofauna community structure by indirectly influencing the physico-chemical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Blanchard, G. F. andP. A. Montagna. 1992. Photosynthetic response of natural assemblages of marine benthic microalgae to short-/and long-term variations of incident irradiance in Baffin Bay, Texas.Journal of Phycology 28:7–14.

    Article  Google Scholar 

  • Boesch, D. F. 1973. Classification and community structure of macrobenthos in the Hampton Roads area, Virginia.Marine Biology 21:226–244.

    Article  Google Scholar 

  • Bowden, K. F. 1967. Circulation and diffusion, p. 15–36.In G. H. Lauff (ed.), Estuaries. Publication No. 83. American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  • Buchanan, J. B. andJ. M. Kain. 1971. Measure of the physical and chemical environment, Chapter 3, p. 30–58.In N. A. Holme and A. D. McIntyre (eds.), Methods for the Study of Marine Benthos. Blackwell Scientific, Oxford, England.

    Google Scholar 

  • Calnan, T. R., R. S. Kimble, andT. G. Littleton. 1983. Benthic invertebrates, p. 34–72.In Submerged Lands of Texas, Corpus Christi Area: Sediments, Geochemistry, Benthic Macroinvertebrates, and Associated Wetlands. Bureau of Economic Geology, University of Texas, Austin, Texas.

    Google Scholar 

  • Carriker, M. R. 1967. Ecology of estuarine benthic invertebrates: A perspective, p. 442–487.In G. H. Lauff (ed.), Estuaries. Publication No. 83. American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  • Chester, A. J., R. L. Ferguson, andG. G. Thayer. 1983. Environmental gradients and benthic macroinvertebrate distributions in a shallow North Carolina estuary.Bulletin of Marine Science 33:282–295.

    Google Scholar 

  • Colijn, F. andV. N. de Jonge. 1984. Primary production of microphytobenthos in the Ems-Dollard Estuary.Marine Ecology Progress Series 14:185–196.

    Article  Google Scholar 

  • Dauer, D. M. 1993. Biological criteria, environmental health and estuarine macrobenthic community structure.Marine Pollution Bulletin 26:249–157.

    Article  Google Scholar 

  • Flint, R. W. andR. D. Kalke. 1985. Benthos structure and function in a south Texas estuary.Contributions in Marine Science 28:33–53.

    Google Scholar 

  • Folk, R. L. 1964. Petrology of Sedimentary Rocks. The University of Texas, Austin. Texas.

    Google Scholar 

  • Freund, R. A. andB. A. Nicolau. 1994. Nueces Bay salinity and freshwater inflow at Calallen, summary report. Conrad Blucher Institute for Surveying and Science, Texas A&M University, Corpus Christi, Texas.

    Google Scholar 

  • Galehouse, J. S. 1971. Sedimentation analysis, Chapter 4, p. 69–83.In R. E. Carver (ed.), Procedures in Sedimentary Petrology. Wiley Interscience, New York.

    Google Scholar 

  • Hedges, J. I. andJ. H. Stern. 1984. Carbon and nitrogen determinations of carbonate-containing solids.Limnology and Oceanography 29:657–663.

    CAS  Google Scholar 

  • Henley, D. E. andD. G. Rauschuber. 1981. Freshwater needs of fish and wildlife resources in the Nueces-Corpus Christi Bay area, Texas: A literature synthesis. United States Fish and Wildlife Service, Office of Biological Services. Washington, D.C. FWS/OBS-80/10.

    Google Scholar 

  • Holland, A. F., A. T. Shaughnessy, andM. H. Hiegel. 1987. Long-term variation in mesohaline Chesapeake Bay macrobenthos: Spatial and temporal patterns.Estuaries 10:227–245.

    Article  Google Scholar 

  • Ingram, R. L. 1971. Sieve analysis, Chapter 3, p. 49–66.In R. E. Carver (ed.), Procedures in Sedimentary Petrology. Wiley Interscience, New York.

    Google Scholar 

  • Jones, A. R., C. J. Watson-Russel, andA. Murray. 1986. Spatial patterns in the macrobenthic communities of the Hawkesbury Estuary, New South Wales.Australian Journal of Marine and Freshwater Research 37:521–543.

    Article  Google Scholar 

  • Jones, K. K., C. A. Simenstad, D. L. Higley, andD. L. Bottom. 1990. Community structure, distribution, and standing stock of benthos, epibenthos, and plankton in the Columbia River Estuary.Progress in Oceanography 25:211–241.

    Article  Google Scholar 

  • Kalke, R. D. andP. A. Montagna. 1991. The effect of freshwater inflow on macrobenthos in the Lavaca River Delta and upper Lavaca Bay, Texas.Contributions in Marine Science 32:49–71.

    Google Scholar 

  • Kennish, M. J. 1986a. Ecology of Estuaries: Physical and Chemical Aspects, Volume 1. CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  • Kennish, M. J. 1986b. Ecology of Estuaries: Biological Aspects, Volume 2. CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  • Kirk, R. E. 1982. Experimental Design. Brooks/Cole Publishing Co., Monterey, California.

    Google Scholar 

  • Levinton, J. S. 1982. Marine Ecology. Prentince Hall, Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

  • Lorenzen, C. J. 1966. A method for the continuous measurement ofin vivo chlorophyll concentration.Deep-Sea Research 13:223–227.

    Google Scholar 

  • Ludwig, J. A. andJ. F. Reynolds. 1988. Statistical Ecology. J. Wiley and Sons, New York.

    Google Scholar 

  • McBride, E. F. 1971. Mathematical treatment of size distribution data. Chapter 6, p. 109–127.In R. E. Carver (ed.), Procedures in Sedimentary Petrology. Wiley Interscience, New York.

    Google Scholar 

  • McLain, D. H. 1974. Drawing contours from arbitrary data points.The Computer Journal 17:318–324.

    Google Scholar 

  • Mannino, A. 1994. Effects of freshwater inflow and sediment characteristics on small scale variation of macrobenthic community structure in Nueces Bay. M.A. Thesis, University of Texas at Austin, Texas.

    Google Scholar 

  • Mannino, A. andP. A. Montagna. 1996. Fine-scale spatial variation of sediment composition and salinity in Nueces Bay.The Texas Journal of Science 48:1–13.

    Google Scholar 

  • Montagna, P. A. andR. D. Kalke. 1992. The effect of freshwater inflow on meiofaunal and macrofaunal populations in the Guadalupe and Nueces estuaries, Texas.Estuaries 15:307–326.

    Article  Google Scholar 

  • Montagna, P. A. andW. B. Yoon. 1991. The effect of freshwater inflow on meiofaunal consumption of sediment bacteria and microphytobenthos in San Antonio Bay, Texas, U.S.A.Estuarine Coastal and Shelf Sciene 33:529–547.

    Article  Google Scholar 

  • Moutford, N. K., A. F. Holland, andJ. A. Mihursky. 1977. Identification and description of macrobenthic communities in the Calvert Cliffs regions of the Chesapeake Bay.Chesapeake Science 18:360–369.

    Article  Google Scholar 

  • Nixon, S. W., M. E. Q. Pilson, C. A. Oviatt, P. Donaghay, B. Sullivan, S. Seitzinger, D. Rudnick, andJ. Frithsen. 1984. Eutrophication of a coastal marine ecosystem—An experimental study using the MERL microcosms, p. 105–135.In M. J. R. Fasham (ed.), Flows of Energy and Materials in Marine Ecosystems Theory and Practice. Plenum Press, New York.

    Google Scholar 

  • Remane, A. andC. Schlieper. 1971. Biology of Brackish Water. J. Wiley and Sons, New York.

    Google Scholar 

  • Rhoads, D. C. 1974. Organism-sediment relations on the muddy sea floor.Oceanography and Marine Biology Annual Review 12: 263–300.

    CAS  Google Scholar 

  • Rhoads, D. C. andD. K. Young. 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure.Journal of Marine Research 28:150–177.

    Google Scholar 

  • Sanders, H. L. 1958. Benthic studies in Buzzards Bay. I. Animalsediment relationships.Limnology and Oceanography 3:245–258.

    Article  Google Scholar 

  • Sanders, H. L. 1968. Marine benthic diversity: A comparative study.American Naturalist 102:243–282.

    Article  Google Scholar 

  • Sanders, H. L., P. C. Mangelsdorf Jr., andG. R. Hampson. 1965. Salinity and faunal distribution in the Pocasset River, Massachusetts.Limnology and Oceanography (Suppl.) 10:R216-R229.

    Google Scholar 

  • SAS Institute, Inc. 1985. SAS/STAT Guide for Personal Computers, version 6 edition. SAS Institute Inc., Cary, North Carolina.

    Google Scholar 

  • Service, S. K. andR. J. Feller. 1992. Long-term trends of subtidal macrobenthos in North Inlet, South Carolina.Hydrobiology 231:13–40.

    Article  Google Scholar 

  • Steel, R. G. D. andJ. H. Torrie. 1980. Principles and Procedures of Statistics a Biometrical Approach, second edition. McGraw-Hill, Inc., New York.

    Google Scholar 

  • SYSTAT, Inc. 1992. SYSTAT for Windows. Graphics, Version 5 Edition. SYSTAT, Inc., Evanston, Illinois.

    Google Scholar 

  • Tenore, K. R. 1972. Macrobenthos of the Pamlico River Estuary, North Carolina.Ecological Monographs 42:51–69.

    Article  Google Scholar 

  • United States Fish and Wildlife Service. 1979. National Wetlands Index of the Nueces Estuary. Texas Parks and Wildlife, Austin, Texas.

    Google Scholar 

  • White, W. A., T. R. Calnan, R. A. Morton, R. S. Kimble, T. G. Littleton, J. H. McGowen, H. S. Nance, andK. E. Schmedes. 1983. Submerged lands of Texas, Corpus Christi area: Sediments, geochemistry, benthic macroinveertebrates, and associated wetlands. Bureau of Economic Geology, University of Texas, Austin. Texas.

    Google Scholar 

  • Whitledge, T.E., S. C. Malloy, C. J. Patton, and C. D. Wirick. 1981. Automated nutrient analyses in seawater. Brookhaven National Laboratory, Formal Report 51938, Upton, New York.

  • Wolff, W. J. 1983. Estuarine benthos, p. 151–182.In B. H. Ketchum (ed.), Estuaries and Enclosed Seas. Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Mannino.

Additional information

University of Texas Marine Science Institute contribution number 991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mannino, A., Montagna, P.A. Small-scale spatial variation of macrobenthic community structure. Estuaries 20, 159–173 (1997). https://doi.org/10.2307/1352729

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1352729

Keywords

Navigation