Skip to main content
Log in

Metamerism, heterochrony, and inflorescence morphology of the Pithecellobium-complex (Leguminosae: Mimosoideae: Ingeae)

  • Articles
  • Published:
Brittonia Aims and scope Submit manuscript

Abstract

The diverse inflorescence morphology of species in the Pithecellobium-complex is shown to be a result of: 1) the organization of the components of the inflorescence and their relative positions; 2) the hierarchical relationship of the axes of the inflorescences and the position they assume in total tree architecture; and 3) heterochronic development of the components of the inflorescence. It is shown that the typological system of nomenclature of inflorescences leads to false assumptions of homology and therefore must be discarded. The morphology of inflorescences is discussed in terms of metamerism, and the term Repeating Growth Unit (RGU) is introduced and is defined as the smallest complete sequence of metamers produced by a meristem. A module is defined as the sequence of RGUs produced by a meristem. An inflorescence is defined as that sequence of metamers in an RGU which participates in the production and/or presentation of flowers and fruit. Heterochrony, proleptic and sylleptic buds, and shoot dimorphism are discussed and their role in modifying inflorescence morphology in the Pithecellobium-complex is illustrated. Examples from the Pithecellobium-complex are provided which demonstrate the various modifications of the inflorescence that result from the interaction of these various phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Barlow, P. W. 1989. Meristems, metamers and modules and the development of shoot and root systems. J. Linn. Soc., Bot. 100: 255–279.

    Article  Google Scholar 

  • Borchert, R. 1969. Unusual shoot-growth pattern in a tropical tree, Oreopanax (Araliaceae). Amer. J. Bot. 56: 1033–1041.

    Article  Google Scholar 

  • Briggs, B. G. & L. A. S. Johnson. 1979. Evolution in the Myrtaceae—evidence from inflorescence structure. Proc. Linn. Soc. New South Wales 102: 157–256.

    Google Scholar 

  • Claßen-Bockhoff, R., J. A. Armstrong & M. Ohligschläger. 1991. The inflorescences of the Australian genera Diplolaena R. Br. and Chorilaena Endl. (Rutaceae). Austral. J. Bot. 39: 31–42.

    Article  Google Scholar 

  • Derstine, K. S. & S. C. Tucker. 1991. Organ initiation and development of inflorescences and flowers of Acacia baileyana. Amer. J. Bot. 78: 816–832.

    Article  Google Scholar 

  • Doak, C. C. 1935. Evolution of foliar types, dwarf shoots, and cone scales of Pinus. Univ. Illinois Bull. 32: 1–106.

    Google Scholar 

  • Esau, K. 1954. Primary vascular differentiation in plants. Biol. Rev. 29: 46–86.

    Article  Google Scholar 

  • Fink, S. 1983. The occurrence of adventitious and preventitious buds within the bark of some temperate and tropical trees. Amer. J. Bot. 70: 523–542.

    Article  Google Scholar 

  • Fisher, J. B. 1977. A quantitative study of Terminalia branching. Pages 285–320. In: P. B. Tomlinson & M. H. Zimmerman, editors. Tropical trees as living systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Fisher, J. B. & D. E. Hibbs. 1982. Plasticity of tree architecture: specific and ecological variations found in Aubreville’s model. Amer. J. Bot. 69: 690–702.

    Article  Google Scholar 

  • Gaudichaud, C. 1841. Recherches generales sur l’organographie, la physiologie et l’organogénie des végétaux. Compt. Rend. Hebd. S’eances Acad. Sci. 12: 627–637.

    Google Scholar 

  • Gould, S. J. 1977. Ontogeny and phylogeny. Belknap Press, Cambridge, MA.

    Google Scholar 

  • Gray, A. 1849. On the composition of the plant by phytons, and some applications of phyllotaxis. Proc. Amer. Assoc. Advancem. Sci. 1849: 438–444.

    Google Scholar 

  • Halle, F. 1979. Architectural variation at the specific level in tropical trees. Pages 209–221. In: P. B. Tomlinson & M. H. Zimmerman, editors. Tropical trees as living systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hallé, F. & R. A. A. Oldeman. 1970. Essai sur l’architecture et la dynamique de croissance des arbres tropicaux. Masson & Co., Paris.

    Google Scholar 

  • Hallé, F., R. A. A. Oldeman & P. B. Tomlinson. 1978. Tropical trees and forests: an architectural analysis. Springer-Verlag, Berlin.

    Google Scholar 

  • Holttum, R. E. 1953. Evolutionary trends in an equatorial climate. Symp. Soc. Exp. Biol. 7: 159–173.

    Google Scholar 

  • Jackson, B. D. 1928. A dictionary of botanic terms. Gerald Duckworth & Co., London.

    Google Scholar 

  • Jones, M. 1985. Modular demography and form in Silver Birch. Pages 223–237. In: J. White, editor. Studies on plant demography. Academic Press, London.

    Google Scholar 

  • Kalin-Arroyo, M. T. 1981. Breeding systems and pollination biology in Leguminosae. Pages 723–769. In: R. M. Polhill & P. H. Raven, editors. Advances in legume systematics. Vol. 2. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Kirchoff, B. K. 1991. Heterochrony, heterotopy and homeosis in flowering plants. Amer. J. Bot. 78(no. 6, suppl.): 15.

    Article  Google Scholar 

  • Koriba, K. 1958. On the periodicity of tree growth in the tropics. Gard. Bull. Straits Settlem. 17: 11–81.

    Google Scholar 

  • Kostermans, A. J. G. H. 1954. A monograph of the Asiatic, Malaysian, Australian and Pacific species of Mimosaceae, formerly included in Pithecollobium Mart. Bull. Org. Natuurw. Onderz. Indon’esië 20: 1–122.

    Google Scholar 

  • Müller-Doblies, U. & F. Weberling. 1984. Über Prolepsis und verwandte Begriffe. Beitr. Biol. Pflanzen 59: 121–144.

    Google Scholar 

  • Prévost, M.-F. 1979. Modular construction and its distribution in tropical woody plants. Pages 223–231. In: P. B. Tomlinson & M. H. Zimmerman, editors. Tropical trees as living systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rickett, H. W. 1944. The classification of inflorescences. Bot. Rev. (Lancaster) 10: 187–231.

    Article  Google Scholar 

  • —. 1955. Materials for a dictionary of botanical terms. III. Inflorescences. Bull. Torrey Bot. Club 82: 419–445.

    Article  Google Scholar 

  • Stebbins, G. L. 1974. Flowering plants: evolution above the species level. Belknap Press, Cambridge, MA.

    Google Scholar 

  • Tomlinson, P. B. 1978. Branching and axis differentiation in tropical trees. Pages 187–207. In: P. B. Tomlinson & M. H. Zimmerman, editors. Tropical trees as living systems. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • —. 1980. The biology of trees native to tropical Florida. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • — & A. M. Gill. 1973. Growth habits of tropical trees: some guiding principles. Pages 129–143. In: B. J. Meggers, E. S. Ayensu & W. D. Duckworth, editors. Tropical forest ecosystems in Africa and South America: a comparative review. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Tucker, S. C. 1987a. Floral initiation and development in legumes. Pages 183–239. In: C. H. Stirton, editor. Advances in legume systematics. Part 3. Royal Botanic Gardens, Kew.

    Google Scholar 

  • —. 1987b. Pseudoracemes in papilionoid legumes: their nature, development and variation. J. Linn. Soc., Bot. 95: 181–206.

    Article  Google Scholar 

  • —. 1988. Heteromorphic flower-development in Neptunia pubescens, a mimosoid legume. Amer. J. Bot. 75: 205–224.

    Article  Google Scholar 

  • Van Steenis, C. G. G. J. 1963. Definition of the concept ‘inflorescence’ with special reference to lignaceous plants. Fl. Males. Bull. 18: 1005–1007.

    Google Scholar 

  • Weberling, F. 1989. Morphology of flowers and inflorescences. Cambridge University Press, Cambridge. English translation by R. J. Pankhurst.

    Google Scholar 

  • White, J. 1979. The plant as a metapopulation. Ann. Rev. Ecol. Syst. 10: 109–145.

    Article  Google Scholar 

  • —. 1984. Plant metamerism. Pages 15–47. In: R. Dirzo & J. Sarukhan, editors. Perspectives on plant population ecology. Sinauer, Sunderland, MA.

    Google Scholar 

  • Wisniewski, M. & A. L. Bogle. 1982. The ontogeny of the inflorescence and flower of Liquidambar styraciflua L. (Hamamelidaceae). Amer. J. Bot. 69: 1612–1624.

    Article  Google Scholar 

  • Wyatt, R. 1982. Inflorescence architecture: how flower number, arrangement, and phenology affect pollination and fruit set. Amer. J. Bot. 69: 585–594.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimes, J. Metamerism, heterochrony, and inflorescence morphology of the Pithecellobium-complex (Leguminosae: Mimosoideae: Ingeae). Brittonia 44, 140–159 (1992). https://doi.org/10.2307/2806829

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.2307/2806829

Key words

Navigation