Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-29T17:46:22.600Z Has data issue: false hasContentIssue false

Transfinite recursive progressions of axiomatic theories

Published online by Cambridge University Press:  12 March 2014

Solomon Feferman*
Affiliation:
Stanford University, Institute for Advanced Study

Extract

The theories considered here are based on the classical functional calculus (possibly of higher order) together with a set A of non-logical axioms; they are also assumed to contain classical first-order number theory. In foundational investigations it is customary to further restrict attention to the case that A is recursive, or at least recursively enumerable (an equivalent restriction, by [1]). For such axiomatic theories we have the well-known incompleteness phenomena discovered by Godei [6]. Quite far removed from such theories are those based on non-constructive sets of axioms, for example the set of all true sentences of first-order number theory. According to Tarski's theorem, there is not even an arithmetically definable set of axioms A which will give the same result (cf. [18] for exposition).

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Craig, W., On axiomatizability within a system, this Journal, vol. 18 (1953), pp. 3032.Google Scholar
[2]Feferman, S., Ordinal logics re-examined (abstract), this Journal, vol. 23 (1958), p. 105.Google Scholar
[3]Feferman, S., On the strength of ordinal logics (abstract), this Journal, vol. 23 (1958), pp. 105106.Google Scholar
[4]Feferman, S., Some completeness results for recursive progressions of theories (ordinal logics) (abstract), this Journal, vol. 24 (1959), pp. 312313.Google Scholar
[5]Feferman, S., Arithmetization of metamathematics in a general setting, Fundamenta mathematicae, vol. 49 (1960), pp. 3592.CrossRefGoogle Scholar
[6]Gödel, K., Über formal itnentscheidbare Sätze der Principia Mathematica und verwandter Systeme, Monatshefte für Mathematik und Physik, vol. 38 (1931), pp. 173198.CrossRefGoogle Scholar
[7]Grzegorczyk, A., Mostowski, A. and Ryll-Nardzewski, C., The classical and the ω-complete arithmetic, this Journal, vol. 23 (1958), pp. 188206.Google Scholar
[8]Hilbert, D. and Bernays, P., Grundlagen der Mathematik, vol. II, Berlin (Springer), 1939, xii + 498 pp.Google Scholar
[9]Kleene, S. C., On the forms of predicates in the theory of constructive ordinals, American journal of mathematics, vol. 66 (1944), pp. 4158.CrossRefGoogle Scholar
[10]Kleene, S. C., Introduction to metamathematics, Amsterdam (North-Holland), Groningen (Noordhoff), New York and Toronto (van Nostrand), 1952, x + 550 pp.Google Scholar
[11]Kleene, S. C., Arithmetical predicates and function quantifiers, Transactions of the American Mathematical Society, vol. 79 (1955), pp. 312340.CrossRefGoogle Scholar
[12]Kleene, S. C., On the forms of the predicates in the theory of constructive ordinals (second paper), American Journal of Mathematics, vol. 77 (1955), pp. 405428.CrossRefGoogle Scholar
[13]Kreider, D., Analytic predicates and extensions of the notion of constructive ordinal, Ph.D. Thesis, Massachusetts Institute of Technology, 1958.Google Scholar
[14]Kreisel, G., Ordinal logics and the characterization of informal concepts of proof, Proceedings of the International Congress of Mathematicians at Edinburgh, 1958, pp. 289299.Google Scholar
[15]Kreisel, G., La predicativité, Bulletin de la Société Mathematique de France, vol. 88 (1960), pp. 371391.CrossRefGoogle Scholar
[16]Kreisel, G., Shoenfield, J. and Wang, H., Number-theoretic concepts and recursive well-orderings, Archiv für Mathematische Logik und Grundlagenforschung, vol. 5 (1960), pp. 4264.CrossRefGoogle Scholar
[17]Kreisel, G. and Tait, W. W., Completeness properties of formalisms for recursively enumerable relations and recursive functions, to appear.Google Scholar
[18]Mostowski, A., Sentences undecidable in formalized arithmetic, Amsterdam (North-Holland), 1952, viii + 117 pp.Google Scholar
[19]Rogers, H., Theory of recursive functions and effective computability, vol. I (mimeographed), Department of Mathematics, Massachusetts Institute of Technology 1956, xiii + 155 pp.Google Scholar
[20]Rosser, J. B., Gödel theorems for non-constructive logics, this Journal, vol. 2 (1937), pp. 129137.Google Scholar
[21]Schütte, K., Beweistheorie, Berlin (Springer), 1960, x + 355 pp.Google Scholar
[22]Shoenfield, J. R., On a restricted ω-rule, Bulletin de l'Académie Polonaise des Sciences, vol. 7 (1959), pp. 405407.Google Scholar
[23]Spector, C., Recursive well-orderings, this Journal, vol. 20 (1955), pp. 151163.Google Scholar
[24]Tarski, A., Einige Betrachtungen über die Begriffe der ω-Widerspruchsfreiheit und der ω-Vollständigkeit, Monatshefte für Mathematik und Physik, vol. 40 (1933), pp. 97112.CrossRefGoogle Scholar
[25]Tarski, A., with Mostowski, A. and Robinson, R. M., Undecidable theories, Amsterdam (North-Holland), 1953, ix + 98 pp.Google Scholar
[26]Turing, A. M., Systems of logic based on ordinals, Proceedings of the London Mathematical Society, ser. 2, vol. 45 (1939), pp. 161228.CrossRefGoogle Scholar