ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Strengthening Mechanisms in Aluminum-Ceramic Particle Composite Alloys Produced by Mechanical Alloying
Tadashi HasegawaTsunemasa MiuraTohru TakahashiTakao Yakou
Author information
JOURNAL FREE ACCESS

1992 Volume 32 Issue 8 Pages 902-908

Details
Abstract

Room-temperature yield strength of powder-metallurgy Al-ceramic particle composite alloys produced by mechanical alloying was analyzed from a viewpoint of microstructure which was characterized by several features: high dislocation density (in the order of 1014 m–2), uniform dispersion of fine Al4C3 and Al2O3 particles (35 nm in size) and coarse ceramic particles (0.4-1.0 μm), and small grain size (0.5 μm). A large portion (more than 80%) of yield strength was concluded to be contributed through dispersion hardening by the fine particles and particle reinforcing by the coarse particles; the contribution was greater through the former mechanism than through the latter one for a given volume fraction of particles. The former mechanism was based on detaching pinned-down dislocations at the fine particles from them, and the latter one on restricting matrix deformation by mechanical constraint around the coarse particles. Impurities in the Al matrix made a modest contribution to strength, probably through solution hardening. These mechanisms raised the strength additively. Work hardening due to a high density of dislocations introduced during processing and grain boundary strengthening due to small grain size were considered not to be principal mechanisms for determining the yield strength.

Content from these authors
© The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top