鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
590 MPa級冷延鋼板の穴広げ成形シミュレーションの解析精度に及ぼす異方性降伏関数の影響
橋本 一真桑原 利彦飯塚 栄治Jeong-Whan Yoon
著者情報
ジャーナル オープンアクセス

2010 年 96 巻 9 号 p. 557-563

詳細
抄録

The deformation behavior of a high-strength steel alloy with a tensile strength of 590 MPa is investigated both experimentally and analytically to clarify the effect of the material model (anisotropic yield function) on the predictive accuracy of the finite element simulation of hole expansion. Biaxial tensile tests of the test material have been carried out. Measured contours of plastic work and the directions of plastic strain rates are found to be in good agreement with those predicted using the Yld2000-2d yield function with an exponent of 6. The anisotropy in uniaxial tensile flow stresses and r-values has been also in good agreement with those predicted by the Yld2000-2d yield function, as opposed to the previous study [T.Kuwabara, K.Hashimoto, E.Iizuka and J.-W.Yoon: J. Jpn. Soc. Technol. Plast., 50 (2009), 925]. Forming simulations of and experiments on the hole expansion of the test material have been carried out using the von Mises, Hill's quadratic and the Yld2000-2d yield functions with different exponents. The Yld2000-2d yield functions have given the closest agreement with the experimental results. Consequently, it is found that anisotropic yield functions significantly affect the predictive accuracy of the deformation behavior of an anisotropic sheet metal subjected to hole expansion and that the biaxial tensile test is effective in identifying a proper anisotropic yield function to be used in the hole expansion simulation.

著者関連情報
© 2010 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top