鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
時間分解X線イメージングを利用した金属合金における固液共存体の引張および圧縮変形挙動のその場観察
柳楽 知也安田 秀幸宇野木 諒森下 浩平杉山 明吉矢 真人上杉 健太朗
著者情報
ジャーナル オープンアクセス HTML

2017 年 103 巻 12 号 p. 668-677

詳細
抄録

Synchrotron X-ray radiography was used to study tensile and compressive deformations of semi solid Al-Cu and/or Fe-C alloys. In the case of tensile deformation of globular Al-Cu sample at ~60% solid, relatively high strain regions were formed even at mean strain of 0.005. The normal strain rate at the regions was 10 times as high as mean normal strain rate (3.45×10–3 s–1). At mean strain of 0.04, tensile deformation was localized in the high strain region, resulting in the formation of internal cracking in the plane normal to the tensile axis. On the other hand, in the case of compressive deformations of globular Al-Cu sample at ~55% solid and polygonal Fe-C sample at ~73% solid, shear bands with decreased solid fraction were formed at the domains tilted by approximately 45 degrees with respect to compressive plane. Rearrangement of solid particles including translation and rotation caused the shear induced dilation at the shear domains. Shear strain was localized at the shear domain with decreased solid fraction. Deformation of the polygonal solid particle of Fe-C sample caused a force to transmit over a longer distance than for the globular Al-Cu sample. Shear fracture finally occurred due to inadequate liquid flow into the expanding spaces between solid particles caused by shear-induced dilation. The solid/solid interaction including impingement between solid particles and rearrangement has significant role in the compressive deformation. These observations demonstrated that the mechanism of cracking formations induced by compressive deformation was totally different from that in the tensile deformation.

著者関連情報
© 2017 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top