
 96

STUDIA UNIVERSITATIS BABEȘ-BOLYAI

Engineering 65(1) 2020 doi:10.24193/subbeng.2020.1.10

A Python application to generate digital signals

Tatian-Cristian Mălin, Dorian Nedelcu*, Gilbert-Rainer Gillich

We introduce in this paper an application developed in the Python pro-

gramming language that can be used to generate digital signals with

known frequencies and amplitudes. These digital signals, since have

known parameters, can be used to create benchmarks for test and nu-

merical simulation.

Keywords: Python application, signal generation, sinusoid, noise, damp-

ing, phase shift

1. Introduction

The typical sensor for measuring the dynamic response of structures is the ac-

celerometer. It generates a digital signal that is represented by a sequence of discrete

values [1]-[3]. When interpreting earthquake response signals measured with accel-

erometers, estimation of velocities and displacements is often required [4].

To study the behavior of structures during earthquakes, we need digital signals

that are presenting different earthquake movements. A list of databases that can be

accessed on the Web that contain earthquake accelerograms in digital form are pre-

sented in [5], the most relevant being [6]-[8]. Due to modern techniques and methods

of processing and converting analog data into digital data, the original recordings

from bulletins and seismograms can be digitized and re-analyzed [9]. However, since

most diagrams represent acceleration signals, we need to find the antiderivatives,

namely the velocity and displacement. In prior research we developed an algorithm

and implemented it in an application written in Python language, which calculates

the antiderivatives. To test the accuracy of this application we need using digital

signals with known parameters (frequency, amplitude, phase, damping coefficient,

existence of noise). In this paper, we introduce the application that generates digital

signals with known parameters and exemplify outcomes for different settings of the

parameters.

 97

2. The generated signal

The aim of this section is to introduce the theoretical aspects regarding the sig-

nals we can generate with an application we developed in Python. In the proposed

application we can generate signals with up to three harmonic components Si

(i=1…3), which have the amplitudes a, b and c, the frequencies fi and the phase Phi.

Thus, the harmonic components of the signal can be written as follows:

- the first sinusoidal component is:

S� = � ∙ sin	2 ∙ � ∙ �� ∙
 + � ∙ �ℎ�� (1)

- the second sinusoidal component is:

 �� = � ∙ sin	2 ∙ � ∙ �� ∙
 + � ∙ �ℎ�� (2)

- the third sinusoidal component is:

 �� = � ∙ sin	2 ∙ � ∙ �� ∙
 + � ∙ �ℎ�� (3)

In relations (1) to (4), t represents the time, i.e. the length of the signal.

We can also add both noise W and damping D to the signal. The damping is

generated by involving the term:

� = � ���� ∙ � (4)

where Damp is the damping coefficient. Note that, the damping coefficient can get

associated positive values in the case of increasing the amplitude of the signal, or

negative values in the case we intend to decrease the amplitudes.

The effect of noise can be expressed as:

� = 	!� ∙ "#$%�/'�!(p	x�+ (5)

 where p(x) is the probability density for the Gaussian distribution and Noise is a

randomly generated value for each discrete time moment.

Finally, the most complex form of the signal is:

 � = � ∙ 	S� + �� + �� + �� (6)

The signal is used to test application that derivate or integrate signals, for which

the signal parameters should be known.

 98

3. The SignalGeneration application

The SignalGeneration application was developed based on the Python program-

ming language and is defined by four classes: "SignalGeneration", "Table_Grid",

"Plot" and "PlotNotebook" and four public functions: "ExtragTextMemory", "Ex-

tragImageMemory", "IsNumeric" and "Put_Clipboard". The main window repre-

sents a notebook control, which manage one chart window with the named tab: "Sig-

nal Generated". The "Plot" and "PlotNotebook" classes create the main window

where the notebook with the chart windows will be created.

The public function "ExtragTextMemory" extract the Excel template from da-

tabase to be saved as Excel file into "RESULTS" folder created by application. The

template contains chart that will be updated at the end of the transfer. The public

function "ExtragImageMemory", extracts the icons from database to memory to be

used as icons when creating the toolbar.

The public function "Put_Clipboard" copies a string into Windows Clipboard

and is called by "OnExcel" function from "SignalGeneration" class. When the results

are exported to Excel file, these are memorized in strings copied to Windows Clip-

board and pasted into Excel. The reason of this operation is a significative short time

required for transfer comparing with export values cell by cell.

The "Table_Grid" show the numerical results on screen into a grid control.

The application uses a SQLite database to memorize the toolbar icons as image

format and the "Excel template.xls" file, where the numerical and charts results will

be exported. These files were loaded as Binaly Large Objects (BLOB) in "Con-

fig.db" application’s file. Features of the toolbar are shown in figures 1 and 2.

Figure 1. The toolbar of the SignalGeneration application – input data

Figure 2. The toolbar of the SignalGeneration application – processing buttons

 99

The application’s toolbar is located at the top-left of the main window and in-

cludes text and button controls marked, with the functions described in table 1.

Table 1. Functions of the SignalGeneration toolbar

Open – Load signal form CSV saved previous file.

Text control to input ‘Number of samples’ N vari-

able.

Text control to input ‘Sampling frequency’ FR

variable.

Text control to show ‘Time interval’ Delta T vari-

able (Read Only – computed by application).

Text controls to input ‘First/Second/ Third Ampli-

tude’ values of the A1/ A2/A3 variables.

Text controls to input ‘First/Second/Third Target

Frequency’ values of the f1/f2/f3 variables.

Text controls to input ‘First/Second/ Third Phase’

coefficients of the Ph1/ Ph2/Ph3 variables.

Text control to input ‘White Noise’ Noise variable.

Text control to input ‘Damping coefficient’ Damp

variable.

Generate – Calculate the signal based on equation

(6) and create the chart of the signal.

Data table – Shows the table of the signal values,

calling "Table_Grid " class.

Word – Save application’s graphical results to

Word file.

Excel – Save application’s results (graphical and

numerical) to Excel file.

Fit Chart – Returns to initial view in the chart win-

dows.

Zoom - Enlarges selected area in chart windows.

 100

Pan - zoom in/out with the right mouse button

pressed.

Exit – Quit the application, calling "OnClose"

function from "SignalGeneration" class.

The SignalGeneration application use the dependencies presented in table 2.

Table 2. Dependencies used by the SignalGeneration program

Python(x,y) A free scientific and engineering

development software for numeri-

cal computations, data analysis and

data visualization based on Python

programming language.

https://python-xy.github.io/

Matplotlib A Python 2D plotting library which

produces publication quality

charts.

https://matplotlib.org/

wxPython The cross-platform Graphical User

Interface toolkit for the Python lan-

guage.

https://wxpython.org/

SQLite A C-language library that imple-

ments a small, fast, self-contained,

high-reliability, full-featured, SQL

database engine.

https://www.sqlite.org/index.html

numpy The fundamental package for sci-

entific computing with Python.

https://numpy.org/

4. Examples of generated signals

The signals, which represent measured accelerations in mm/s2 are generated

with a number of samples N=6000 by a sampling frequency FR=1000 Hz. In table 3

are presented different settings of the parameters used to generate signals with the

SignalGeneration application.

Table 3. Parameter settings for the generated signals

Figure a b c f1 f2 f3 Ph1 Ph2 Ph3 Damp Noise

3 1 0 0 1 0 0 0 0 0 0 0

4 1 0 0 1 0 0 1 0 0 0 0.5

5 1 0 0 1 0 0 1 0 0 0.5 0

 101

6 1 1 0 1 15 0 0 0 0 -0.5 0.5

7 1 1 1 1 5 10 0 0 0 0 0

8 1 1 1 1 5 10 0 0 0 -0.5 0

9 1 1 1 1 5 10 1 1 1 -0.5 0.5

Figure 3. The signal with one harmonic component

Figure 4. The signal with one harmonic component polluted with noise

 102

Figure 5. The signal with progressively increasing amplitude

Figure 6. Damped signal with two components

Figure 7. Signal with three components

 103

Figure 8. Damped signal with three components

Figure 9. Damped signal with three components polluted with noise

In figures 3 to 9, we present the generated signals with the parameter set-

tings from table 3. The different signals are represented in these figures with

different colors (green – damping, gray – noise, cyan – signal with one to three

components in the absence of damping and noise) and with red is represented

the resulted signal.

5. Conclusion

In this paper, we present an application developed in the Python programming

language that generates digital signals with known parameters (frequency, ampli-

tude, phase, damping coefficient, existence of noise) and exemplify outcomes for

different settings of the parameters. These digital signals, since have known param-

eters, can be used to create benchmarks for test and numerical simulation.

 104

For our future research we need digital signals, with known parameters, to cal-

culate the velocity and displacement from accelerograms and to use them as input

for dynamic simulations, made for base-isolated structures.

References

[1] Dueck R.K., Digital Design with CPLD Applications and VHDL, Cengage

Learning, 2nd edition, 2011.

[2] Proakis J.G., Manolakis D.G., Digital Signal Processing, Pearson Prentice Hall,

2007.

[3] Grahame S., Analogue and Digital Communication Techniques, Newnes, 1999.

[4] Nedelcu D., Malin T.C., Gillich G.R., Barbinta C.I., Iancu V., Displacement

and velocity estimation of the earthquake response signals measured with

accelerometers, The 9th International Conference on Advanced Concepts in

Mechanical Engineering - ACME 2020, Jun. 4-5, 2020, Iasi, Romania.

[5] Malin T.C., Gillich G.R., Nedelcu D., Iancu V., Earthquake registrations

database, Analele Universitatii „Eftimie Murgu“ Resita, Fascicula de Inginerie

26(1), 2019.

[6] https://www.ngdc.noaa.gov/hazard/earthqk.shtml last accessed 09.08.2020.

[7] https://earthquake.usgs.gov/earthquakes/search/ last accessed 09.08.2020.

[8] https://www.strongmotion.org last accessed 09.08.2020.

[9] Malin T.C., Gillich G.R., Nedelcu D., Iancu V., Digitization of earthquake

signals stored as images, 43rd International Conference on Mechanics of Solids,

2019.

Addresses:

• PhD Student Tatian-Cristian Mălin, Babeș-Bolyai University, Faculty

of Engineering, Piaţa Traian Vuia, nr. 1-4, 320085, Reşiţa,

cristian.malin@student.uem.ro

• Prof. Dr. Eng. Dorian Nedelcu, Babeș-Bolyai University, Faculty of

Engineering, Piaţa Traian Vuia, nr. 1-4, 320085, Reşiţa,

d.nedelcu@uem.ro

(*corresponding author)

• Prof. Dr. Eng. Gilbert-Rainer Gillich, Babeș-Bolyai University, Faculty

of Engineering, Piaţa Traian Vuia, nr. 1-4, 320085, Reşiţa,

gr.gillich@uem.ro

