Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 1, 2005

Prediction of the unit cell edge length of cubic A22+BB′O6 perovskites by multiple linear regression and artificial neural networks

  • Sandra Dimitrovska EMAIL logo , Slobotka Aleksovska and Igor Kuzmanovski
From the journal Open Chemistry

Abstract

The unit cell edge length, a, of a set of complex cubic perovskites having the general formula A22+BB′O6 is predicted using two methodologies: multiple linear regression and artificial neural neworks. The unit cell edge length is expressed as a function of six independent variables: the effective ionic radii of the constituents (A, B and B′), the electronegativities of B and B′, and the oxidation state of B. In this analysis, 147 perovskites of the A22+BB′O6 type, having the cubic structure and belonging to the Fm3m space group, are included. They are divided in two sets; 98 compounds are used in the calibration set and 49 are used in the test set. Both models give consistent results and could be successfully use to predict the lattice cell parameter of new members of this series.

[1] F.S. Galasso (Ed.): Structure, Properties and Preparation of Perovskite-type Compounds, Pergamon Press, Oxford., 1969 (and references therein). 10.1016/B978-0-08-012744-6.50005-7Search in Google Scholar

[2] E.J. Baran: “Structural chemistry and physicochemical properties of perovskite-like Materials”, Catalysis Today, Vol 8, (1990), pp. 133–151 (and the references therein). http://dx.doi.org/10.1016/0920-5861(90)87015-U10.1016/0920-5861(90)87015-USearch in Google Scholar

[3] P.W. Barnes: Exploring structural changes and distortions in quaternary perovskites and defect pyrochlores using powder diffraction techniques, Thesis(PhD), The Ohio State University, 2003. Search in Google Scholar

[4] R.H. Butner and E.N. Maslen: “Electron difference density and structural parameters in CaTiO3”, Acta Cryst. B, Vol. 48, (1992), pp. 644–649. http://dx.doi.org/10.1107/S010876819200459210.1107/S0108768192004592Search in Google Scholar

[5] O. Fukunaga and T. Fujita: “The relationship between ionic radii and cell volumes in the perovskite compounds”, J. Solid State. Chem., Vol. 8, (1973), pp. 331–338. http://dx.doi.org/10.1016/S0022-4596(73)80030-110.1016/S0022-4596(73)80030-1Search in Google Scholar

[6] D.M. Giaquinta and H. Conrad zur Loye: “Structural predictions in the ABO3 phase diagram”, Chem. Mater., Vol. 6, (1994), pp. 365–372. http://dx.doi.org/10.1021/cm00040a00710.1021/cm00040a007Search in Google Scholar

[7] N.W. Thomas: “A new global parameterization of perovskite structures”, Acta Cryst. B, Vol. 54, (1998), pp. 585–594. http://dx.doi.org/10.1107/S010876819800197910.1107/S0108768198001979Search in Google Scholar

[8] A.A. Bokov, N.P. Protsenko and Z.-G. Ye: “Relationship between ionicity ionic radii and order/disorder in complex perovskites”, J. Phys. Chem. Solids, Vol. 61, (2000), pp. 1519–1527. http://dx.doi.org/10.1016/S0022-3697(00)00004-410.1016/S0022-3697(00)00004-4Search in Google Scholar

[9] M.W. Lufaso and P.M. Woodward: “Prediction of the crystal structure of perovskites using the software program SpuDS”, Acta Cryst. B, Vol. 57, (2001), pp. 725–738. http://dx.doi.org/10.1107/S010876810101528210.1107/S0108768101015282Search in Google Scholar

[10] L. Chonghe, T. Yihao, Z. Yingzhi, W. Chunmei and W. Ping: “Prediction of lattice constants in perovskites of GdFeO3 structure”, J. Phys. Chem. Solids, Vol. 64, (2003), pp. 2147–2156. http://dx.doi.org/10.1016/S0022-3697(03)00209-910.1016/S0022-3697(03)00209-9Search in Google Scholar

[11] V. Petruševski and S. Aleksovska: “Correlations between effective crystal radii and unit cell volume in Tutton salts”, Croat. Chem. Acta, Vol. 64(4), (1991), pp. 577–583. Search in Google Scholar

[12] V. Petruševski and S. Aleksovska: “Structural correlations in alums”, Croat. Chem. Acta, Vol. 67, (1994), pp. 221–230. Search in Google Scholar

[13] S. Aleksovska, V. Petruševski and Lj. Pejov: “Crystal structures of members in isostructural series: prediction of the crystal structure of Cs2MnO4—a β-K2SO4 type isomorph”, Croat. Chem. Acta, Vol. 70, (1997), pp. 1009–1019. Search in Google Scholar

[14] S. Aleksovska, S.C. Nyburg, Lj. Pejov and V.M. Petruševski: “β-K2SO4 type isomorphs: prediction of structure and refinement of Rb2CrO4”, Acta Cryst. B., Vol. 54, (1998), pp. 115–120. http://dx.doi.org/10.1107/S010876819701152X10.1107/S010876819701152XSearch in Google Scholar

[15] S. Aleksovska, V.M. Petruševski and B. Šoptrajanov: “Calculation of structural parameters in isostructural series: the kieserite group”, Acta Cryst. B, Vol. 54, (1998), pp. 564–567. http://dx.doi.org/10.1107/S010876819800097410.1107/S0108768198000974Search in Google Scholar

[16] V.M. Petruševski and S. Aleksovska: “Dependence of the crystal structure parameters on the size of the structural units in some isomorphous/isostructural series”, Croat. Chem. Acta, Vol. 72(1), (1999), pp. 71–76. Search in Google Scholar

[17] I. Kuzmanovski and S. Aleksovska: “Optimization of artificial neural networks for prediction of the unit cell parameters in orthorhombic perovskites. Comparison with multiple linear regression”, Chemometr. Intell. Lab. Syst., Vol. 67, (2003), pp. 167–174. http://dx.doi.org/10.1016/S0169-7439(03)00092-310.1016/S0169-7439(03)00092-3Search in Google Scholar

[18] K.E. Stitzer, M.D. Smith and H.-C. zur Loye: “Crystal growth of Ba2MOsO6 (M=Li, Na) from reactive hydroxy fluxes”, Solid State Sciences, Vol. 4, (2002), pp. 311–316. http://dx.doi.org/10.1016/S1293-2558(01)01257-210.1016/S1293-2558(01)01257-2Search in Google Scholar

[19] Y. Izumiyama, Y. Doi, M. Wakeshima, Y. Hinatsu, A. Nakamura and Y. Ishii: “Magnetic and calorimetric studies on ordered perovskite Ba2ErRuO6”, J. Solid State Chem., Vol. 169(1), (2002), pp. 125–130. http://dx.doi.org/10.1016/S0022-4596(02)00041-510.1016/S0022-4596(02)00041-5Search in Google Scholar

[20] S.B. Kim, B.W. Lee and C.S. Kim: “Neutron and Mössbauer studies of the double perovskite A2FeMoO6 (A=Sr and Ba)”, J. Magn. and Magn. Mater., Vol. 242–245, (2002), pp. 747–750. http://dx.doi.org/10.1016/S0304-8853(01)01015-010.1016/S0304-8853(01)01015-0Search in Google Scholar

[21] J.B. Philipp, P. Majewski, L. Alff, A. Erb, R. Gross, T. Graf, M.S. Brandt, J. Simon, T. Walther, W. Mader, D. Topwal and D.D. Sarma. “Structural and doping effects in the half metallic double perovskite A2CrWO6”, Phys. Rev. B, Vol. 68, (2003), pp. 144431–144445. http://dx.doi.org/10.1103/PhysRevB.68.14443110.1103/PhysRevB.68.144431Search in Google Scholar

[22] W.T. Fu and D.J.W. Ijdo: “On the Structure of BaTl0.5Sb0.5O3: An Ordered Perovskite”, J. Solid State Chem., Vol. 128, (1997), pp. 323–325. http://dx.doi.org/10.1006/jssc.1997.729010.1006/jssc.1997.7290Search in Google Scholar

[23] W. Dmowski, M.K. Akbas, P.K. Davies and T. Egami: “Local structure of Pb(Sc1/2Ta1/2)O3 and related structures”, J. Phys. Chem. Solids, Vol. 61, (2000), pp. 229–237. http://dx.doi.org/10.1016/S0022-3697(99)00286-310.1016/S0022-3697(99)00286-3Search in Google Scholar

[24] D.-Y. Jung, G. Demazeau and J.-H. Chof: “Iridium(III) stabilized in oxygen lattices of perovskite structure Sr2MIrIII O6 (M=Nb, Ta)”, J. Mater. Chem., Vol. 5(3), (1995), pp. 517–519. http://dx.doi.org/10.1039/jm995050051710.1039/jm9950500517Search in Google Scholar

[25] P.E. Kazin, A.M. Abakumov, D.D. Zaytsev, Yu.D. Tretyakov, N.R. Khasanova, G. Van Tendeloo and M. Jansen: “Synthesis and crystal structure of Sr2ScBiO6”, J. Solid State Chem., Vol. 162(1), (2001), pp. 142–147. http://dx.doi.org/10.1006/jssc.2001.937510.1006/jssc.2001.9375Search in Google Scholar

[26] H.W. Eng: The crystal and electronic structures of oxides containing d 0transition metals in octahedral coordination, ‘Thesis (PhD), The Ohio State University, 2003. Search in Google Scholar

[27] Y. Teraoka, M.-D. Wei and S. Kagawa: “Double perovskites containing hexavalent molybdenum and tungsten: synthesis, structural investigation and proposal of fitness factor to discriminate the crystal symmetry”, J. Mater. Chem., Vol. 8(11), (1998), pp. 2323–2325. http://dx.doi.org/10.1039/a806442c10.1039/a806442cSearch in Google Scholar

[28] M.J. Martínez-Lope, J.A. Alonso, M.T. Casais and M.T. Fernández-Díaz: “Preparation, crystal and magnetic structure of the double perovskites Ba2CoBO6 (B=Mo, W)”, Europian J. Inorg. Chem., Vol. 2002(9), (2002), pp. 2463–2469. http://dx.doi.org/10.1002/1099-0682(200209)2002:9<2463::AID-EJIC2463>3.0.CO;2-J10.1002/1099-0682(200209)2002:9<2463::AID-EJIC2463>3.0.CO;2-JSearch in Google Scholar

[29] A.K. Azad, S.-G. Eriksson, S.A. Ivanov, R. Mathieu, P. Svedlindh, J. Eriksen and H. Rundlöf: “Synthesis, structural and magnetic characterisation of the double perovskite A2MnMoO6 (A=Ba, Sr)”, J. Alloys and Comp., Vol. 364(1–2), (2004), pp. 77–82. http://dx.doi.org/10.1016/S0925-8388(03)00611-X10.1016/S0925-8388(03)00611-XSearch in Google Scholar

[30] C.M. Lapa, Y.P. Yadava, R.A. Sanguinetti Ferreira, J. Albino Aguiar, C.L. Da Silva, D.P.F. De Souza: “Production, sintering and microstructural characteristics of Ba2NiWO6 complex perovskite oxide ceramics”, Acta Microscopica, Vol. 12 Supplement C, (2003) (XIX Congress of the Brazilian Society for Microscopy and Microanalysis), pp. 77–78. Search in Google Scholar

[31] S.-O. Lee, T.Y. Cho and S.-H. Byeon: “Magnetic propertiy of oxide with the perovskite structure, A2Fe(III)BO6 (A=Ca, Sr, Ba and B=Sb, Bi)”, Bull. Korean Chem. Soc., Vol. 18(1), (1997), pp. 91–97. Search in Google Scholar

[32] G. Baldinozzi, Ph. Scian, M. Pinot and D. Grebille: “Crystal structure of the antiferroelectric perovskite Pb2MgWO6”, Acta Cryst. B, Vol. 51, (1995), pp. 668–673. http://dx.doi.org/10.1107/S010876819401404710.1107/S0108768194014047Search in Google Scholar

[33] V. Primo-Martín and M. Jansen: “Synthesis, Structure, and Physical Properties of Cobalt Perovskites: Sr3CoSb2O9 and Sr2CoSbO6-δ”, J. Solid State Chem., Vol. 157, (2001), pp. 76–85. http://dx.doi.org/10.1006/jssc.2000.904110.1006/jssc.2000.9041Search in Google Scholar

[34] R.D. Shannon: “Revised effective ionic radii in halides and chalcogenides”, Acta Cryst. A, Vol. 32, (1976), pp. 751–767. http://dx.doi.org/10.1107/S056773947600155110.1107/S0567739476001551Search in Google Scholar

[35] D.R. Lide: Handbook of Chemistry and Physics, CRC Press/Chapman and Hall, Boca Raton, FL/London, 2002. Search in Google Scholar

[36] STATGRAPHICS PLUS, VER, 3.0, Statistical Graphics Package, Educational Institution edition, Statistical Graphics, 1994–1997. Search in Google Scholar

[37] A. Bos, M. Bos and W.E. van der Linden: “Artificial neural networks as a tool for soft-modelling in quantitative analytical chemistry: the prediction of the water content of cheese”, Anal. Chim. Acta, Vol. 256, (1992), pp. 133–144. http://dx.doi.org/10.1016/0003-2670(92)85338-710.1016/0003-2670(92)85338-7Search in Google Scholar

[38] J. Zupan and J. Gasteiger: Neural Networks in Chemistry and Drug Design, WCH, Weinhaim, 1999. Search in Google Scholar

[39] D. Nguyen and B. Widrow: “Inproving the learning speed of 2-layer neural network by choosing initial values of the aspative weights”, IEEE Proc. 1st Int. Joint. Conf. Neural Networks, Vol. 3, (1990), pp. 21–26. Search in Google Scholar

[40] J.J. Moré: “The Levenberg-Marquardt Algorithm: Implementation and Theory”, In: G.A. Watson (Ed.): Numerical Analysis, Lecture Notes in Mathematics 630, Springer Verlag, 1977, pp. 105–116. Search in Google Scholar

[41] MATLAB 6.0, Mathworks, 1984–2000. Search in Google Scholar

[42] I. Kuzmanovski, M. Trpkovska, B. Šoptrajanov and V. Stefov: “Détermination of the composition of human urinary calculi composed of whewellite, weddellite and carbonate apatite using artificial neural nentworks”, Anal. Chim. Acta, Vol. 491, (2003), pp. 211–218. http://dx.doi.org/10.1016/S0003-2670(03)00787-610.1016/S0003-2670(03)00787-6Search in Google Scholar

[43] I. Kuzmanovski, M. Ristova, B. Šoptrajanov, V. Stefov and V. Popovski: “Determination of the composition of sialoliths composed of carbonate apatite and albumin using artificial neural networks”, Talanta, Vol. 62, (2004), pp. 813–817. http://dx.doi.org/10.1016/j.talanta.2003.10.00910.1016/j.talanta.2003.10.009Search in Google Scholar

Published Online: 2005-3-1
Published in Print: 2005-3-1

© 2005 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.2478/BF02476250/html
Scroll to top button