Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 24, 2014

Modeling and Simulating Asymmetrical Conductance Changes in Gramicidin Pores

  • Shixin Xu , Minxin Chen EMAIL logo , Sheereen Majd , Xingye Yue and Chun Liu

Abstract

Gramicidin A is a small and well characterized peptide that forms an ion channel in lipid membranes. An important feature of gramicidin A (gA) pore is that its conductance is affected by the electric charges near the its entrance. This property has led to the application of gramicidin A as a biochemical sensor for monitoring and quantifying a number of chemical and enzymatic reactions. Here, a mathematical model of conductance changes of gramicidin A pores in response to the presence of electrical charges near its entrance, either on membrane surface or attached to gramicidin A itself, is presented. In this numerical simulation, a two dimensional computational domain is set to mimic the structure of a gramicidin A channel in the bilayer surrounded by electrolyte. The transport of ions through the channel is modeled by the Poisson-Nernst-Planck (PNP) equations that are solved by Finite Element Method (FEM). Preliminary numerical simulations of this mathematical model are in qualitative agreement with the experimental results in the literature. In addition to the model and simulations, we also present the analysis of the stability of the solution to the boundary conditions and the convergence of FEM method for the two dimensional PNP equations in our model.

References

[1] T. W. Allena, M. Hoylesa, S. Kuyucakb, and S. H. Chunga. Molecular and brownian dynamics study of ion selectivity and conductivity in the potassium channel. Chem. Phys. Lett., 313:358-365, 1999.10.1016/S0009-2614(99)01004-0Search in Google Scholar

[2] O. S. Andersen, R. E. Koeppe, and B. Roux. Gramicidin channels. IEEE T. Nanobiosci., 4:295-306, 2005.10.1109/TNB.2004.842470Search in Google Scholar

[3] H. J. Apell, E. Bamberg, and P. Lauger. E_ects of surface charge on the conductance of the gramicidin channel. Biochem. Biophys. Acta, 552:369-378, 1979.10.1016/0005-2736(79)90181-0Search in Google Scholar

[4] A. Archer. Dynamical density functional theory for dense atomic liquids. J. Phys.: Condens. Matter, 18:5617, 2006.Search in Google Scholar

[5] I. Babuska. The _nite element method for elliptic equations with discontinuous coe_cients. Computing, 5:207-218, 1970.10.1007/BF02248021Search in Google Scholar

[6] R. Capone, S. Blake, M. R. Restrepo, J. Yang, and M. Mayer. Designing nanosensors based on charged derivatives of gramicidin a. J. Am. Chem. Soc., 129:9737-9745, 2007.10.1021/ja0711819Search in Google Scholar

[7] A. E. Cardenas, R. D. Coalson, and M. G. Kurnikova. Three-dimensional Poisson-Nernst-Planck theory studies: Influence of membrane electrostatics on gramicidin A channel conductance. Biophys. J., 79:80-93, 2000.Search in Google Scholar

[8] Z. M. Chen and J. Zhou. Finite elemtent methods and their convergence for elliptic and parabolic interface problems. Numer. Math, 79:175-202, 1996.10.1007/s002110050336Search in Google Scholar

[9] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. Elsevier, 1978.10.1115/1.3424474Search in Google Scholar

[10] S. Durand-Vidal, J. P. Simonin, and P. Turq. Electrolytes at Interfaces. Kluwer, Boston, 2000.Search in Google Scholar

[11] S. Durand-Vidal, P. Turq, O. Bernard, C. Treiner, and L. Blum. perspectives in transport phenomena in electrolytes. Physica A, 231:123-143, 1996.10.1016/0378-4371(96)00083-0Search in Google Scholar

[12] B. Eisenberg, Y. Hyon, and C. Liu. Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. J. Chem. Phys, 113:104-127, 2010.Search in Google Scholar

[13] B. Eisenberg and W. S. Liu. Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J. Math. Analysis, 38(6):1932-1966, 2007.10.1137/060657480Search in Google Scholar

[14] J. Forster. Mathematical modeling of complex fluids. master thesis, University of Wurzbur, 2013.Search in Google Scholar

[15] H. K. Gummel. A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE T. Electron. Dev., 11, 1964.10.1109/T-ED.1964.15364Search in Google Scholar

[16] U. Hollerbach, D. Chen, and R. S. Eisenberg. Two- and three-dimensional Poisson-Nernst-Planck simulations of current flow through gramicidin a. J. Sci. Comput., 16:373-409, 2001.10.1021/la991525bSearch in Google Scholar

[17] T. Horng, T. Lin, C. Liu, and B. Eisenberg. Pnp equations with steric e_ects: A model of ion flow through channels. J. Phys. Chem. B., 116(37):11422-11441, 2012.Search in Google Scholar

[18] H. Hwang, G. C. Schatz, and M. A. Ratner. Incorporation of inhomogeneous ion difiusion coe_cients into kinetic lattice grand canonical monte carlo simulations and application to ion current calculations in a simple model ion channel. J. Phys. Chem., 111(49):12506-12512, 2007.10.1021/jp075838oSearch in Google Scholar

[19] W. Im and B. Roux. Ion permeation and selectivity of OmpF porin: A theoretical study based on molecular dynamics, brownian dynamics and continuum electrodi_usion theory. J. Mol. Biol., 322:851-869, 2002.Search in Google Scholar

[20] M. G. Kurnikova, R. D. Coalson, P. Graf, and A. Nitzan. A lattice relaxation algorithm for three-dimensional Poisson-Nernst- Planck theory with application to ion transport through the gramicidin A channel. Biophys. J., 76:642-656, 1999.10.1016/S0006-3495(99)77232-2Search in Google Scholar

[21] K. Lee, H. Rui, R. W. Pastor, and W. Im. Brownian dynamics simulations of ion transport through the vdac. Biophys. J., 100:611-619, 2011.10.1016/j.bpj.2010.12.3708Search in Google Scholar PubMed PubMed Central

[22] L. L. Lee. Molecular Thermodynamics of Electrolyte Solutions. World Scienti_c, Singapore, 2008.10.1142/6836Search in Google Scholar

[23] B. Lu, M. J. Holst, A. Mccammon, and Y. C. Zhou. Poisson-Nernst-Planck equations for simulating biomolecular di_usionreaction processes I: Finite element solutions. J. Comput. Phys., 229:6979-6994, 2010.Search in Google Scholar

[24] B. Lu and Y. C. Zhou. Poisson-Nernst-Planck equations for simulating biomolecular di_usion-reaction processes II: Size e_ects on ionic distributions and di_usion-reaction rates. Biophys. J., 100:2475-2485, 2011.Search in Google Scholar

[25] M. X. Macrae, S. Blake, X. Jiang, R. Capone, D. J. Estes, M. Mayer, and J. Yang. A semi-synthetic ion channel platform for detection of phosphatase and protease activity. ACS Nano, 3:3567-3580, 2009.10.1021/nn901231hSearch in Google Scholar PubMed PubMed Central

[26] M. X. Macrae, S. Blake, M. Mayer, and J. Yang. Nanoscale ionic diodes with tunable and switchable rectifying behavior. J. Am. Chem. Soc., 132:1766-1767, 2010.10.1021/ja909876hSearch in Google Scholar PubMed

[27] M. X. Macrae, D. Schlamadinger, J. E. Kim, M. Mayer, and J. Yang. Using charge to control the functional properties of self-assembled nanopores in membranes. Small, 7:2016-2020, 2011.10.1002/smll.201100394Search in Google Scholar PubMed

[28] S. Majd, C. Yusko, A. D. MacBriar, J. Yang, and M. Mayer. Gramicidin pores report the activity of membrane-active enzymes. J. Am. Chem. Soc., 131:16119-16126, 2009.10.1021/ja904072sSearch in Google Scholar PubMed PubMed Central

[29] U. M. B. Marconi and P. Tarazona. Dynamic density functional theory of fluids. J. Chem. Phys., 110:8032, 1999.10.1063/1.478705Search in Google Scholar

[30] S. R. Mathur and J. Y. Murthy. A multigrid method for the Poisson-Nernst-Planck equations. SIAM J. Appl. Math., 52:4031-4039, 2009.10.1016/j.ijheatmasstransfer.2009.03.040Search in Google Scholar

[31] W. Nonner, D. Gillespie, D. Henderson, and B. Eisenberg. Ion accumulation in a biological calcium channel: E_ects of solvent and con_ning pressure. J. Phys. Chem. B, 105:6427-6436, 2001.Search in Google Scholar

[32] S. Y. Noskov, W. Im, and B. Roux. Ion permeation through the _-hemolysin channel: Theoretical studies based on brownian dynamics and Poisson-Nernst-Plank electrodi_usion theory. Biophys. J., 87:2299-2309, 2004.Search in Google Scholar

[33] L. Onsager. Reciprocal relations in irreversible processes. I. Phys. Rev., II. Ser. 37:405-426, 1931.10.1103/PhysRev.37.405Search in Google Scholar

[34] L. Onsager. Reciprocal relations in irreversible processes. II. Phys. Rev., 2:2265-2279, 1931.10.1103/PhysRev.38.2265Search in Google Scholar

[35] P. O. Persson and G. Strang. A simple mesh generator in matlab. SIAM Rev., 46:329-345, 2004.10.1137/S0036144503429121Search in Google Scholar

[36] K. S. Pitzer. Thermodynamics. Mcgraw-Hill College, New York, 1995.Search in Google Scholar

[37] K. S. Pitzer and J. J. Kim. Thermodynamics of electrolytes. iv. activity and osmotic coe_cients for mixed electrolytes. J.Search in Google Scholar

Am. Chem. Soc., 96:5701-5707, 1974.10.1021/ja00825a004Search in Google Scholar

[38] T. Z. Qian, X. P. Wang, and P. Sheng. A variational approach to the moving contact line hydrodynamics. J. Fluid Mech., 564:333-360, 2006.10.1017/S0022112006001935Search in Google Scholar

[39] G. M. Roger, O. Bernard S. Durand-Vidal, and P. Turq. Electrical conductivity of mixed electrolytes: Modeling within the mean spherical approximation. J. Phys. Chem. B, 113:8670-8674, 2009.Search in Google Scholar

[40] B. Roux, T. Allen, Simon Berneche, and W. Im. Theoretical and computational models of biological ion channels. Q. Rev. Biophys., 37:15-103, 2 2004.10.1017/S0033583504003968Search in Google Scholar

[41] T. Schirmer and P. Phale. Brownian dynamics simulation of ion flow through porin channels. J. Mol. Biol., 294:1159-1167, 1999.10.1006/jmbi.1999.3326Search in Google Scholar

[42] G. Stell and C. G. Joslin. The donnan equilibrium a theoretical study of the e_ects of interionic forces. Biophys., 50:855-859, 1986.10.1016/S0006-3495(86)83526-3Search in Google Scholar

[43] J. W. Strutt. Some general theorems relating to vibrations. Proc. London Math. Soc., IV:357-368, 1873.10.1112/plms/s1-4.1.357Search in Google Scholar

[44] V. Thomée. Galerkin _nite element methods for parabolic problems. Springer, 1997.10.1007/978-3-662-03359-3Search in Google Scholar

[45] B. Tu, M. X. Chen, Y. Xie, L. B. Zhang, B. Eisenberg, and B. Z. Lu. A parallel _nite element simulator for ion transport through three-dimensional ion channel systems. J. Phys. Chem., 34(24):2065-2078, 2013.10.1002/jcc.23329Search in Google Scholar

[46] L. Vrbka, J. Vondrasek, B. Jagoda-Cwiklik, R. Vacha, and P. Jungwirth. Quanti_cation and rationalization of the higher a_nity of sodium over potassium to protein surfaces. P. Natl. Acad. Sci. USA, 17:15440-15444, 2006.10.1073/pnas.0606959103Search in Google Scholar

[47] B. A. Wallace. Structure of gramicidin a. Biophys. J., 49:295-306, 1986.10.1016/S0006-3495(86)83642-6Search in Google Scholar

[48] H. Wu, T. Lin, and C. Liu. On transport of ionic solutions: from kinetic laws to continuum descriptions. arXiv:1306.3053, 2014.Search in Google Scholar

[49] J. Xu and L. Zikatanov. A monotone _nite element scheme for convection-di_usion equations. Math. Comp., 68:1429-1446, 1999.10.1090/S0025-5718-99-01148-5Search in Google Scholar

[50] S. Xu, P. Sheng, and C. Liu. Energy variational approach for ions transport. Comm. Math. Sci., 12, 1964.Search in Google Scholar

[51] S. Yu and G.W. Wei. Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities.Search in Google Scholar

J. Comput. Phys., 227(1):602 - 632, 2007.10.1016/j.jcp.2007.08.003Search in Google Scholar

[52] C. Yuan, R. J. O’Connell, P. L. Feinberg-Zadek, L. J. Johnston, and S. N. Treistman. Bilayer thickness modulates the conductance of the bk channel in model membranes. Biophys. J., 86:3620-3633, 2004.10.1529/biophysj.103.029678Search in Google Scholar PubMed PubMed Central

[53] Q. Zheng, D. Chen, and G. W. Wei. Second-order Poisson-Nernst-Planck solver for ion transport. J. Comput. Phys., 230:5239-5262, 2011.10.1016/j.jcp.2011.03.020Search in Google Scholar PubMed PubMed Central

[54] Y.C. Zhou, S. Zhao, M. Feig, and G.W. Wei. High order matched interface and boundary method for elliptic equations with discontinuous coeficients and singular sources. J. Comput. Phys., 213(1):1 - 30, 2006. 10.1016/j.jcp.2005.07.022Search in Google Scholar

Received: 2013-12-20
Accepted: 2014-03-21
Published Online: 2014-04-24
Published in Print: 2014-01-01

© 2014 Shixin Xu et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.2478/mlbmb-2014-0003/html
Scroll to top button